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Abstract

Genetic and genomic approaches have implicated hundreds of genetic loci in neurodevelopmental 

disorders and neurodegeneration, but mechanistic understanding continues to lag behind the pace 

of gene discovery. Understanding the role of specific genetic variants in the brain involves 

dissecting a functional hierarchy that encompasses molecular pathways, diverse cell types, neural 
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circuits and, ultimately, cognition and behaviour. With a focus on transcriptomics, this Review 

discusses how high-throughput molecular, integrative and network approaches inform disease 

biology by placing human genetics in a molecular systems and neurobiological context. We 

provide a framework for interpreting network biology studies and leveraging big genomics data 

sets in neurobiology.

Large-scale genetic association studies have begun to unravel the genetic architecture of 

neurodevelopmental and neurodegenerative disorders and have found that hundreds to 

thousands of genetic loci are involved in disease risk1. To understand how genetic variants 

contribute to disease, neuroscientists are faced with the task of measuring and understanding 

phenotypes in the central nervous system (CNS), a hierarchically organized complex system 

(FIG. 1a). This leads to a reliance on models that only account for a few features of the CNS 

at a time, as is done in most laboratory experiments. Although this has been fruitful for some 

highly penetrant variants that yield clear phenotypes, it has been less successful for 

genetically complex diseases.

To understand how genes contribute to CNS phenotypes, it is necessary to adopt rigorous 

data-driven frameworks that operate at a systems or a network level2–4. Methods have 

recently become available that permit the measurement of large-scale molecular4,5, cellular6 

and circuit-level3 phenotypes, and additional methods are currently in development7. One 

goal of these approaches is to connect genetic risk and mechanism by combining a 

molecular systems or integrative network approach with systems neuroscience to understand 

the molecular regulatory networks and pathways that underlie circuit function, behaviour 

and cognition in health and disease. Collaborative and consortium-level efforts have made 

substantial progress by mapping transcriptomic, epigenomic and proteomic landscapes in the 

brain8–10. Recent important advances include the evaluation of spatial and temporal 

transcriptomes by the Allen Brain Institute and BrainSpan8,11–13, the quantification of the 

epigenetic landscape in CNS tissue and cell types by the Roadmap Epigenomics Mapping 

Consortium14, and the integration of genetic variation with gene expression in the brain by 

the Genotype-Tissue Expression (GTEx) project15, as well as others16,17. These efforts have 

provided the first systematic view of the immensely complex molecular landscape across 

brain development, between brain regions and among major cell types (FIG. 1b). However, 

the molecular signatures of specific cell types, finer-grained temporal dynamics and causal 

or reactive alterations in CNS diseases remain mostly uncharacterized (FIG. 1c). 

Nevertheless, these new resources serve as an important foundation and proof of the value of 

such tissue- and stage-specific profiling data.

Molecular profiling and network approaches in disease-relevant neuroscience research face 

several major challenges when applied to the CNS: the complexity of molecular phenotypes 

owing to cell type, spatial and temporal heterogeneity throughout nervous system 

development and maturation (BOX 1); a dearth of human tissue and model systems with 

definitive human relevance (the ‘translational’ and ‘evolutionary’ problems4,18,19); and poor 

knowledge of appropriate intermediate phenotypes to measure. Although these challenges 

are not unique to studying the CNS, neuroscience has historically struggled with each of 

them owing to the extent that they affect the ability to link molecular function to behavior 

Parikshak et al. Page 2

Nat Rev Genet. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and cognition. Foundational aspects of each point have not been agreed: the definition of a 

cell type in the brain remains controversial20,21; the relationships of human disease 

phenotypes to developmental trajectories are relatively unknown; model systems in many 

neurobiological studies are often chosen on the basis of convenience and history; and most 

phenotypes are based on clinical and behavioural symptomatology rather than on biological 

mechanism or aetiology22–24.

Box 1

The unique cytoarchitecture and development of the brain

Most neurodevelopmental and neurodegenerative disorders are defined by perturbations 

in specific cognitive and/or behavioural domains, pointing to a selective vulnerability of 

specific cells. Regional and cellular heterogeneity pose obstacles for transcriptomic 

studies in the central nervous system (CNS)100,200, but whole-tissue investigations in 

post-mortem human brain tissue are essential for identifying human-relevant global 

changes. These changes can be compared across regions to identify the most vulnerable 

regions and time points for further investigation. In general, the value of whole-tissue 

profiling in post-mortem brain tissue depends on the disease. In neurodevelopmental 

disorders, the specific brain regions, cell types or time points that are most affected 

remain poorly defined and whole-tissue profiling still holds great value. By contrast, for 

many neurodegenerative diseases, the selective death of certain cellular populations and 

the infiltration of inflammatory cells is well characterized, so transcriptomic studies 

focusing on sorted cellular populations are now necessary to identify new associations 

with disease.

To maximize neurobiological understanding from whole-tissue profiles, global changes 

can be related to cell type-specific gene expression profiles30,32,149,163,201, and targeted 

experiments can be carried out to identify novel insights, as highlighted by several recent 

studies202–205. However, it will be impossible to study disease-affected cell types without 

a complete knowledge of cell identities in normal brain development and ageing. A 

priority is to develop a complete knowledge of the cellular identity and cytoarchitectural 

changes that occur over time. This will necessitate surveying the diversity of cellular 

types and deciphering their molecular identities using single-cell approaches206–208.

Additionally, neuronal gene expression and epigenetic programmes also undergo changes 

at finer spatial and temporal scales, including changes induced by activity-dependent 

transcription in the nucleus and translation209 at the synapse. Locally regulated 

translation of these subcellular transcriptomes210 has a crucial role in synaptic function 

and plasticity211. Deeper characterization of these events at a high spatiotemporal 

resolution in normal brains followed by integration with coarser profiles from specific 

diseases will identify cellular compartments and mechanisms for more targeted study that 

are currently missed. Network approaches are particularly useful for relating whole-

tissue-level changes to data from these high-resolution experiments11–13,26 (FIG. 2a).

In this Review, we provide an overview of integrative genomics approaches that have been 

applied to understand the basis of CNS disorders, and we anchor this discussion around 
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transcriptomics (BOX 1). However, the themes discussed can be generalized to genomic, 

proteomic and epigenomic methods. We describe how large-scale molecular data sets and 

gene network approaches provide organizing principles that permit the development of 

testable hypotheses on a genome-wide scale. We discuss new insights into 

neurodevelopmental disorders and neurodegenerative diseases from these studies, highlight 

emerging themes and provide recommendations for designing and executing future 

molecular profiling studies.

Network biology and transcriptomics in the brain

Despite challenges in studying the CNS, dozens of informative transcriptional analyses of 

neurodevelopmental and neurodegenerative disorders have been carried out in the human 

brain. A major challenge, which has mostly been surmounted at the theoretical level and 

which now requires reduction to practice, has been measuring and identifying which genes 

are altered in disease in specific cells, circuits and regions. Differential gene expression 

analysis (DGE analysis) addresses this issue, albeit one gene at a time, but does not take into 

account the relationships between genes. This leads to additional challenges, including the 

interpretation of long lists of differentially expressed genes and integration of DGE sets with 

other data. Network methods (BOX 2) relate genes to each other using the measured or 

predicted relationships between them4 and provide an essential organizing framework that 

places each gene in the context of its molecular system. Gene network methods are now 

being applied to integrate genetics with transcriptomics, epigenomics and proteomics to 

identify causal molecular drivers of cellular, circuit-level and brain-wide pathology in 

disease. We review the principles of network analysis below and also delve into applications 

of molecular systems and integrative network approaches in neuropsychiatric and 

neurodegenerative disease.

Box 2

A framework for interpreting gene network analysis

Molecular profiling data can be modelled as a network in which molecules or gene 

products are nodes and their functional relationships with each other are edges. Gene 

network analysis can be summarized in five basic steps.

Node specification

Seeded (prior-based) networks have nodes that are selected using prior knowledge, such 

as genetic variants that are associated with a disorder, and unseeded (genome-wide) 

networks use all available measurements from the genome.

Edge specification

In order to define edges, studies need to include one or more of the following: 

experimentally observed pairwise statistical relationships25,212,213 evaluating shared 

patterns of molecular levels across experiments, such as co-expression; experimentally 

observed or literature-curated physical interactions, such as protein interactions from 

immunoprecipitation and yeast two-hybrid (Y2H) experiments; or computationally 

predicted relationships, such as transcription factor binding based on DNA motifs. 
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Notably, edges are susceptible to ascertainment biases52,214,215 and confounding factors 

that can induce spurious relationships178 (FIG. 2b).

Module identification

Modules are identified from an adjacency matrix to simplify biological relationships at a 

higher-order level, identifying interacting or highly correlated gene products (FIG. 2c). 

Assessing node connectivity or position within the module can identify hubs and enables 

the comparison of changes between health and disease at the module level.

Annotation of modules or gene connectivity

There are several common approaches to annotate modules. External measures of gene 

importance (such as cell type specificity or genome-wide association study (GWAS) 

signals) can be related to module membership, intra-modular connectivity or network-

wide gene connectivity. Module summary or hub gene measurements, such as module 

eigengenes or average expression levels, can be associated with biological traits. Any 

differential gene expression (DGE) test that can be applied at a single-gene level can be 

applied to module-level summaries, such as eigengenes. Module-level association 

reduces the problem of multiple comparisons, as there are far fewer modules than genes 

in a network. The preservation or changes in network connectivity for specific genes or 

modules can be assessed between health and disease. Data can be integrated at the edge 

level or the module level across biological levels, such as different cell types or brain 

regions, or different regulatory levels, such as gene expression and ChIP–seq signals.

Validation

The crucial issue of reproducibility is addressed by validating network observations in 

independent data or experiments (BOX 3; TABLE 1). Biological validation may involve 

experimental testing of mechanistic predictions.

Box 3

Recommendations and general guidelines for transcriptomic studies

Experimental design

• Randomize or balance sample preparation and data collection over all known 

factors to reduce confounding variation from batch effects, which can introduce 

spurious correlations. For RNA-seq, we recommend barcoding and multiplexing 

samples (over eight per lane) to reduce batch effects216.

• Evaluate the contribution of both biological and technical factors via 

unsupervised methods such as principal component analysis178 and apply 

appropriate methods to remove unwanted variation from the data181,217.

• RNA-seq studies with degraded RNA (RNA integrity number <9; essentially all 

post-mortem studies) should use ribosomal RNA depletion library 

preparation218. Sequencing samples with a read length of 50 bp with 10 million 

unique reads (20 million paired-end reads) will detect most highly expressed 

genes. Deeper sequencing and longer read lengths may be required to accurately 
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and systematically detect noncoding RNAs, splicing or novel features, and pilot 

experiments are recommended for these scenarios.

DGE analysis

• In most experiments, biological variability is greater than technical variability, 

so biological replicates are of greater value than technical replicates174,175,219.

• For well-controlled experiments with expected changes of >twofold in many 

genes, three or more independent samples per condition are 

recommended175,219. For post-mortem samples, in which the detection of lower-

fold changes may be important and variation may be greater owing to clinical 

heterogeneity and technical factors, at least 15 case and 15 control samples are 

recommended in an initial cohort.

• Appropriately transformed and normalized sequencing data can be treated 

similarly to microarray data as far as statistical modelling and multiple 

corrections are concerned175,220. For differential gene expression (DGE), RNA-

seq studies should observe existing analytical and statistical guidelines for 

microarrays221 and, if possible, should carry out pilot experiments to estimate 

power222.

Co-expression network analysis

• The power of network analysis is dependent on similar factors to DGE but is 

also dependent on the network features of interest. At currently available sample 

sizes, networks are most reproducible at a module level35,38,39, then at the hub 

gene level41,223 and, last, at the level of precise gene connectivity rankings or 

precise module memberships of genes40,49.

• To obtain module-level reproducibility, 20 independent samples are usually 

sufficient40, but systematic and accurate reconstruction of specific edges, 

particularly for systematic regulatory relationship discovery, may require 

hundreds of samples49. For studies comparing conditions, we recommend a 

minimum of 20 samples per condition. More samples may be necessary if many 

additional factors vary; for example, age, sex and different brain regions.

• Given the large number of parameters in network analysis, there is no ‘one-size 

fits all’ solution. The most rigorous approach is to apply the empirical 

reproducibility criteria discussed below.

Reproducibility and biological value

• Apply permutation analyses to ensure that gene network modules are 

significantly co-expressed (interconnected).

• To reduce over-fitting and to improve reproducibility, select the outcome of 

interest (fold change for each gene and gene membership in a module) and 

apply cross-validation or the bootstrap method224.

• Demonstrating reproducibility of major findings (for example, module 

definitions, top DGE genes and changes in gene network position between 

Parikshak et al. Page 6

Nat Rev Genet. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions) is the most convincing form of validation of a particular analysis. 

Replication involves identifying the outcome of interest, applying the same 

analysis as in the original study but to independent data, and demonstrating 

statistical replication of the same finding.

• Generate hypotheses from the DGE and/or network analyses and test them 

bioinformatically or with wet-laboratory experiments to demonstrate predictive 

biological value.

• To allow other researchers to examine the data sets, raw data should be 

deposited in a public database (such as GEO, SRA or dbGaP).

• To allow for a comparison of analysis methods, always publish clear and usable 

code along with the publication reporting this analysis.

Networks organize biology

For gene expression studies, co-expression network analysis leverages the fact that gene 

expression reflects the state of the cellular or tissue system that is being analysed25. A major 

advantage of network analysis over DGE analysis is that it can identify multiple levels of 

molecular organization within the hierarchy of brain region, cell type, organelle and 

molecular pathways using only transcriptional data, and can thus enable integration with 

other information, such as known pathway annotations, protein interactions and other 

molecular profiling data11,12,26,27 (BOX 1; FIG. 2a). Furthermore, when thousands of genes 

might be differential between conditions, network analysis can subdivide changes into 

smaller, more biologically coherent sets of modules for further experimental analyses.

Networks organize genome-wide molecular data by modelling molecules as nodes (typically 

genes or gene products) and the relationships between nodes as edges. Edges are not 

necessarily physical interactions — they may also reflect statistical similarity (for example, 

correlation or mutual information), computational inference or combinations of these edge 

types (FIG. 2b). Edges define the connectivity of nodes to each other in a network, and this 

connectivity can be used to organize and analyse the nodes. Many biological networks have 

a hierarchical structure such that their nodes can be organized into a relatively small 

collection of highly interconnected modules4,28,29 (FIG. 2c). Inter-modular connectivity 

reflects a higher-order structure of biological relationships in a gene network, and intra-

modular connectivity can identify which genes are biological hubs within modules. In co-

expression networks, hubs are highly connected genes; being a hub is an indication of the 

importance of a gene in the process of interest. Hubs can be key molecular drivers, such as 

transcriptional regulators that drive co-expression30,31, or they may annotate a module by 

reflecting the predominant biological role of the module. For example, when evaluating co-

expression across brain regions, hubs in modules that are associated with specific regions, 

such as the cerebellum, are usually markers for predominant cell types, such as granule 

cells11,12,26,32.

Modularity is very useful, and although it provides a general organizing principle in biology, 

it need not be present in all constructed networks, and network biology provides many 

module-free analytical approaches; for example, nodes can be organized in relation to each 
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other by ranking direct and indirect connectivity. If two gene products share an edge, they 

are said to be neighbours in the network; the more highly interconnected, the closer the 

neighbours. Thus, gene products that are involved in an unknown cell type or biological 

process can be annotated on the basis of their proximity to marker genes of known function 

(‘guilt by association’)26,33,34. Additionally, both modularity and connectivity rankings can 

be compared between studies to assess whether they are preserved35, and how a module or 

the position of specific genes within a module change in health and disease can be evaluated 

to prioritize those that show the most significant changes for further evaluation35–37.

Different approaches to gene co-expression

The most common workflow in gene co-expression network analysis in neuroscience 

involves the construction of co-expression relationships from microarray or RNA 

sequencing (RNA-seq) data, identifying modules and then annotating modules on the basis 

of the known function of module hubs, enrichment for gene sets and module-level 

association with biological factors such as disease (FIG. 2a). Discussion of the various 

options and the technical merits of specific network approaches is beyond the scope of this 

Review38–41. Comparisons among methods have indicated several important points: 

weighted networks are more reproducible and powerful than binary networks42; signed 

networks are more predictive of protein interactions and shared pathway relationships than 

unsigned networks38,42,43; weighted networks constructed with the topological overlap of 

correlation (for example, by weighted gene co-expression network analysis (WGCNA)42,44) 

have similar sensitivity and specificity for detecting true network structure for experiments 

involving monotonic relationships as do networks constructed with nonlinear association 

measures such as mutual information (for example, by the Algorithm for the Reconstruction 

of Accurate Cellular Networks (ARACNE)45)38,39; and edge relationships using mutual 

information or other association measures might be necessary to accurately detect modules 

in time-series data, which can be non-monotonic46–48. Differential co-expression or 

connectivity methods36,37 are additional means for determining gene connectivity changes 

between conditions and can identify disruption or gain of function in pathways.

We provide guidelines in BOX 3 to aid co-expression network reproducibility regardless of 

the method used. Importantly, the replication of major conclusions in independent data and 

experimental validation lend the greatest confidence to a network analysis. There is a need 

for studies that rigorously compare network analysis in human CNS transcriptome data 

using experimental validation as a gold standard, similar to what has been done in the 

Dialogue on Reverse Engineering Assessment and Methods (DREAM) regulatory network 

inference challenge49. The DREAM challenge identified that the integration of multiple 

network methods yields the most robust regulatory relationship predictions49. This 

leveraged the availability of hundreds of gene expression profiles in single-cell organisms 

(bacteria and yeast) and compared regulatory predictions between methods with gold 

standard experimental validations. Building such regulatory networks in complex tissues 

such as the CNS is a step beyond current co-expression networks in the brain. Large 

amounts of data, ideally from homogeneous cellular populations, are necessary to 

systematically and accurately predict gene regulatory relationships in network studies.
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Literature-curated data

There are many databases that aggregate experiments to construct genome-wide data sets 

that can be utilized for network construction (TABLE 1). Gene networks that are built on 

data that contain even a small fraction of literature-curated components can contain 

substantial bias. Furthermore, when data are from non-neuronal tissue, the database may 

contain relationships not found in neural tissues (TABLE 1). Although reliant on data from 

non-neuronal tissue, pathway databases such as the Gene Ontology (GO50), the Kyoto 

Encyclopaedia of Genes and Genome Elements (KEGG51), Ingenuity Pathway Analyses and 

MetaCore are valuable for evaluating specific genes and pathways. However, networks with 

edges that are derived from shared pathway membership can reflect cellular states that might 

not be found in the CNS, and they will certainly lack many important CNS-specific 

relationships. In a worst-case scenario, hubs in these networks may be the most studied 

genes in other areas of biology, and therefore may not reflect neurobiological relevance. It is 

therefore important to distinguish between networks that are constructed using edges from 

pathway databases and those using edges derived from tissue-specific primary molecular 

profiling experiments.

Protein–protein interaction (PPI) databases, which compile known physical interactions 

between proteins, are another example of literature-curated data. PPI experiments may focus 

on a few proteins and evaluate interactions in a tissue-specific manner using co-

immunoprecipitation followed by proteomics. Alternatively, most genome-wide PPI 

experiments use methods such as yeast two-hybrid (Y2H) screens or tandem affinity 

purification and are cell type agnostic. The genome-wide approaches yield many more 

interactions, so most databases typically combine both target-focused and genome-wide 

experiments52. Similar to pathway databases, these PPI data sets are biased to highly studied 

gene categories (for example, those implicated in cancer biology) and are still generally 

incomplete2,53 (TABLE 1). A particularly salient example of the utility of defining tissue-

relevant networks is the power obtained by using PPIs derived from cardiac tissue to 

identify new human loci for long QT syndrome54. To reduce bias and improve tissue 

specificity for genome-wide networks in the absence of tissue-specific PPIs, one approach is 

to intersect tissue-specific RNA expression or co-expression with literature-curated PPI 

data55,56.

These considerations also apply to other physical interaction data, including CLIP–seq, 

ChIP–seq and miRNA binding data, unless they come from experiments using relevant 

tissues57. Computational approaches to predict physical interactions can partly circumvent 

bias (TABLE 1), but they do not address tissue specificity, and there may be relatively low 

reproducibility across different methods 58,59. There is compelling evidence that using 

DNase hypersensitivity or ATAC-seq data to infer open chromatin, followed by combining 

transcription factor binding with open chromatin footprinting, can provide a powerful and 

comprehensive way to identify tissue-specific transcription factor regulation60,61. The 

increasing availability of large amounts of relevant data sets within the public domain10,14 

now permits the evaluation of network modules for complex regulatory relationships by 

combining network edges from statistical associations, time-series data, physical binding 

and computational predictions (FIG. 2b).
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When combining multiple molecular levels in networks, it is important to recognize that 

transcriptomics, epigenomics and proteomics all query unique levels of cellular or tissue 

organization. For example, most proteins found only in mitochondria do not physically 

interact with most proteins found only in ribosomes or proteasomes, and these proteins 

would normally form distinct (but possibly connected) modules in PPI networks. However, 

in circumstances such as cellular stress or neurodegeneration, the genes encoding these 

organelle-specific proteins might be transcriptionally co-regulated and hence highly 

connected at a co-expression level. In this case, transcriptomics can provide a novel view of 

cellular mechanisms. In general, tissue-, time- or disease-specific data sets aid in conferring 

specificity to otherwise non-neuronal data. Until such data are available, we suggest 

beginning with genome-wide tissue-specific data such as transcriptomics, followed by 

combining literature-curated or non-tissue-specific evidence with gene co-expression 

modules.

Neurodevelopmental disorders

Neurodevelopmental disorders are characterized by abnormal behavioural or cognitive 

phenotypes originating either in utero or during early postnatal life, and can be accompanied 

by clinical features outside the CNS. Various genetic approaches have been successful in 

identifying the causes of more than 1,000 Mendelian, and fewer non-Mendelian, forms of 

neurodevelopmental disorders: prototypical examples are intellectual disability62–68, autism 

spectrum disorder (ASD)69–77, epilepsy78,79 and schizophrenia80–82.

As more genetic risk variants for these disorders have been discovered, studies have found 

remarkable pleiotropy1,1,83,84. Several rare, highly penetrant mutations in evolutionarily 

constrained fetal brain-expressed genes are associated with ASD, schizophrenia and 

intellectual disability, as well as epilepsy83,85–87. We frame this issue using the concept of 

developmental canalization88, whereby natural selection on developmental programmes in 

humans has led to robustness in a range of genetic or environmental perturbations89,90: 

typical development occurs along a ‘track’ (FIG. 1c). Under this framework, the observed 

pleiotropy is consistent with the notion that disrupting highly evolutionarily constrained 

genes leads to the ‘derailment’ of typical development off this track, rather than setting the 

brain on a path to a specific clinically defined disorder (FIG. 1c). Thus, many severe 

mutations do not converge on one specific phenotype but instead seem to cause a range of 

clinical disorders74,76,80,81,84,87,91. This formulation leads to several important questions 

that can be informed by integrative genomic studies, including whether diverse genetic 

lesions affect similar pathways and where disease specificity emerges. We provide examples 

below of gene network studies that use co-expression, PPIs and integrated networks to 

understand ASD and schizophrenia.

Dysregulated networks in the brains of individuals with ASD or schizophrenia

ASD is a phenotypically and aetiologically heterogeneous neurodevelopmental disorder that 

is defined by deficits in social communication and mental flexibility, with an onset in the 

first few years of life75. More transcriptional studies of ASD post-mortem brains have been 

limited by the paucity of available tissue, which has made them underpowered to identify 

reproducible pathways with statistical rigour92–95. Nevertheless, some themes have emerged 
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across studies, including the increased expression of immune-microglial genes and the 

decreased expression of synaptic genes in the cerebral cortex. The first ASD study to 

identify reproducible, genome-wide findings used WGCNA42 to identify two modules, one 

containing upregulated genes and another containing downregulated genes that defined 

coherent biological processes in ASD brains30. This study used co-expression module 

eigengenes (the first principal component of the gene expression levels of each module) to 

identify modules associated with ASD and to ensure that they were unrelated to potential 

confounders such as RNA integrity, age or seizure history. This module-level association 

approach reduces the problem of multiple comparisons and highlights the advantages of 

using networks as an organizing framework96. The integration of genetic data with co-

expression modules showed that the downregulated neuronal signalling module has a 

potential causal role in ASD, and that the upregulated ASD module was probably a 

response, which is consistent with its enrichment in microglia and astrocyte genes30. These 

results supported the findings of several previous smaller studies92,93. Synaptic and 

microglial modules have been replicated in ASD cortex using RNA-seq in larger 

independent cohorts97.

Schizophrenia is defined by prolonged or recurrent episodes of psychosis (characterized by 

hallucinations and delusions) as well as negative symptoms and deficits in cognitive 

function98. Although diagnosis is usually made in late adolescence or early adulthood, 

extensive evidence indicates a neurodevelopmental origin99. Transcriptional studies of 

schizophrenia have benefited from considerably larger sample sizes than those of ASD. 

However, patients with schizophrenia have greater comorbidity of confounders such as 

smoking, alcohol and substance abuse than those with ASD. Overcoming potential 

confounders requires careful matching of patient and control individuals and must take into 

account potential covariate effects when possible, as has been done in many studies100,101. 

Despite variable results, consistent findings across studies can be identified, including 

dysregulation of GABAergic signalling102; downregulation of oligodendrocyte- and 

myelination-related genes103, mitochondrial function or energy metabolism104, and synaptic 

genes105; and upregulation of immune and inflammatory genes106.

One of the first studies to put schizophrenia transcriptomics into a genome-wide co-

expression network used mutual information and WGCNA107. This study showed that, as in 

ASD, the overall transcriptomic structure that is observed in control brains is intact but that 

a neural differentiation module that is associated with schizophrenia does not follow the 

normal trajectory of downregulation with age. Another study confirmed that a dysregulated 

neuronal differentiation module was consistently observed in schizophrenia post-mortem 

brains and suggested that the same pathways were involved in bipolar disorder108. 

Moreover, genome-wide association study (GWAS) signal enrichment analysis30 found that 

common variants associated with schizophrenia and bipolar disorder were enriched in the 

neuronal differentiation module, suggesting that disorders sharing a genetic architecture84 

may also share functional transcriptional alterations: a hypothesis that warrants rigorous 

testing.
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Mapping risk genes onto developmental networks

A shortcoming of studies using post-mortem brain tissue is that the tissue is usually obtained 

long after the disease-causing changes have occurred. Given that the human brain 

transcriptome has a reproducible structure12,26, one useful way to explore how mutations in 

risk genes perturb typical brain development is to map risk genes onto transcriptional 

networks that represent normal brain structure or development (FIG. 1c). The first study to 

do this identified co-expression modules that had cell type-specific and region-specific 

expression patterns using nearly 1,000 adult brain regions12,109, and identified neuronal 

gene-enriched modules containing ASD candidate genes and ASD GWAS signals. 

Moreover, this study found that genes in these modules have dynamic developmental 

trajectories, demonstrating a role for ASD risk genes in neural development.

The identification of genetic risk factors by whole-exome sequencing70–73 and the 

availability of transcriptome data spanning multiple brain regions and developmental 

stages13,17 created new opportunities to map disease risk genes onto developmental 

transcriptional networks. One network study defined robust co-expression modules that were 

reproducible in independent data and identified five developmentally regulated co-

expression modules that were enriched for PPIs and ASD risk genes27. By comparing these 

genes with genes that cause intellectual disability, this study identified molecular processes 

that are preferentially disrupted by ASD risk genes, including transcriptional regulation, 

chromatin regulation and synaptic development, and it identified disruption of specific 

pathways, such as BAF (SWI/ SNF) complex-mediated neuronal development 30,110,111. A 

complementary study identified developmental co-expression networks enriched for ASD 

risk genes seeded around nine genes with the highest ASD association signal from whole-

exome sequencing112. These investigators asked if, when and where ASD genetic risk 

converges during brain development by evaluating seeded co-expression networks. They 

started with the nine ‘high-confidence’ risk genes and expanded the network using 

combinations of spatial and temporal expression data from post-mortem brain tissue. They 

identified three spatiotemporal combinations that passed stringent correction for multiple 

testing: frontal cortical regions during the fetal period, and thalamic and cerebellar regions 

from birth to 6 years of postnatal age. Interestingly, there was no pathway or PPI enrichment 

in these modules, probably owing to the inclusion of both positive and negative correlations 

when computing co-expression relationships (unsigned networks), which is a method that is 

less sensitive to pathway and protein interaction detection38,43.

Importantly, both of these studies found convergence for rare de novo ASD-associated 

mutations during early fetal and mid-fetal development, with the greatest enrichment for risk 

in genes found in cortical glutamatergic neurons. Thus, despite the fact that the same gene is 

rarely hit recurrently by rare de novo variants in ASD, this class of variation preferentially 

disrupts projection neurons. Notably, the genome-wide approach27 assessed both ASD and 

intellectual disability genes, and further suggested that the disruption of the upper 

neocortical layers (layers 2–4) is related to ASD-like phenotypes and not intellectual 

disability. Other studies have also found that fetal cortical development and glutamatergic 

neurons are affected by mutations in ASD, suggesting that it is a robust finding11,113,114.
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A seeded co-expression approach has also been used to identify risk convergence in 

schizophrenia, identifying fetal development of the prefrontal cortex as a point of 

convergence for de novo mutations115. This study did not extend the network to genes 

beyond the seed set, and it did not investigate cellular, laminar or regulatory relationships 

among these genes. As larger sets of risk genes are becoming available72,77,80,81, a more 

refined view will emerge of how mutations in ASD, schizophrenia, intellectual disability 

and other psychiatric disorders overlap and diverge to affect cells and circuits.

Regulatory hubs in neurodevelopment and disease

Another promising approach to identify disease-associated networks is to experimentally 

construct a seed-based network for a candidate regulatory molecule. Using CLIP–seq, 

investigators identified the RNA binding targets of the translational regulator fragile X 

mental retardation protein (FMRP)116, and a subsequent analysis found that these targets are 

highly enriched for de novo mutations in ASD72. Both genome-wide27 and seeded114 co-

expression network analysis further connected FMRP targets with multiple forms of ASD 

genetic risk, including copy number variations (CNVs)114. Additionally, whole-exome 

sequencing studies of other neurodevelopmental disorders have found enrichment for FMRP 

targets in rare mutations in schizophrenia81, intellectual disability68 and epilepsy78. As 

many FMRP targets are highly conserved and are under purifying selection72,87,117, FMRP-

related activity-dependent regulation during fetal brain development might be particularly 

vulnerable to genetic perturbations, with severe mutations resulting in disruption of 

developmental canalization.

At the transcriptional regulation level, ChIP–seq in induced pluripotent stem cell-derived 

neurons has been used to define the network of genes regulated by chromodomain helicase 

DNA-binding protein 8 (CHD8)118, which is the gene most frequently affected by ASD-

associated rare de novo variation72,119–121. Integration of ChIP–seq, CHD8 knockdown and 

gene co-expression suggested that CHD8 directly regulates co-expression modules that are 

enriched for rare de novo mutations and genes found in the proliferating layers of the fetal 

cortex27. Another study applied a similar approach but evaluated CHD8 targets in the fetal 

brain in vivo57. This study identified stronger enrichment for ASD mutations, suggesting 

that ChIP–seq in the human brain at the right time point identifies interactions that are more 

disease relevant57. Given the emerging role of fetal brain-expressed transcriptional and 

chromatin regulators in ASD27,77,122, integrating ChIP–seq of other transcriptional 

regulators with developmental co-expression networks may help to elucidate a shared, 

evolutionarily constrained regulatory network that is susceptible to disruption in brain 

development.

PPI networks define new interactions

Genetic investigations in ASD have constructed seed-based networks with literature-curated 

PPIs to identify the convergence of ASD risk genes71,73. This approach was applied to 

identify a highly interconnected PPI subnetwork among rare de novo variants in ASD71. 

Genes in this subnetwork were evaluated in a larger cohort in a targeted sequencing 

study120, which identified more risk variants compared with chance and demonstrated that 

PPI connectivity can be a predictor of ASD risk mutations. However, the biases inherent to 

Parikshak et al. Page 13

Nat Rev Genet. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



literature-curated data and the lack of tissue specificity in these PPI networks limit the 

identification of novel pathways or circuits with this approach (TABLE 1).

Recently, one study used global literature-curated PPI interactions in a genome-wide 

network analysis to identify modules that are enriched for ASD-associated genes123. This 

identified a PPI module that is enriched for genes related to synaptic function and weakly 

enriched for mutations from individuals with ASD. Integration with transcriptomics 

annotated the module as highly expressed in oligodendrocytes and the corpus callosum, 

demonstrating that tissue-specific data are essential for a neurobiological interpretation of 

PPI modules123. Given the biases inherent to global PPIs discussed above and in TABLE 1, 

these findings warrant replication with new PPI data. Understanding why these relationships 

are detected at the PPI level but not at the co-expression level will be valuable.

To evaluate whether ASD risk genes interact at the protein level in an unbiased manner, 

Sakai and colleagues124 carried out a Y2H screen of 35 syndromic or candidate ASD genes 

and identified many novel PPIs. This study was the first of its kind in neurodevelopmental 

disorders and showed that the PPI network seeded around these 35 genes was indeed highly 

interconnected. Another Y2H study assessed a larger seed set of ASD candidate genes that 

corresponded to spliced isoforms identified by whole-brain RNA-seq125, hypothesizing that 

isoform-level PPIs would allow for the discovery of tissue-specific PPI networks126. The 

genes in the most interconnected component of the PPI network formed a module that was 

modestly enriched for gene co-expression, gene co-regulation and known ASD genes. These 

results further demonstrated convergence among known disease-relevant genes at the PPI 

level and also demonstrated that evaluating tissue-specific isoforms can be used to identify 

novel interactions. Both of these PPI studies used state-of-the-art quality control and 

validation, and identified many novel interactions. However, even with knowledge of 

isoform-specific interactions, the tissue environment for interaction cannot be efficiently 

recapitulated with current PPI approaches at a genome-wide scale (TABLE 1). This, and 

other recent work studying cardiac tissue54, highlights how tissue-specific molecular data 

improve PPI analyses to identify or prioritize genetic variants that specifically function in 

that tissue, in this case causing cardiac arrhythmia.

Integrating multiple molecular levels

The idea that multiple lines of evidence may increase the power to detect disease-relevant 

interactions has motivated the integration of literature-curated, molecular and genetic 

evidence to support specific genes or pathways. The Network-Based Analysis of Genes 

(NETBAG)127 approach combines multiple forms of literature-curated data using an 

integrated network approach that has been demonstrated to be effective for predicting gene 

essentiality in yeast128. The goal of NETBAG is to construct a network in which highly 

interconnected genes are likely to participate in a similar phenotype. Edges in NETBAG are 

predominantly derived from multiple PPI databases, GO50 and KEGG51, which are all 

literature-curated databases, and thus NETBAG is susceptible to the biases discussed above. 

The first study with NETBAG evaluated CNV-hit genes implicated in ASD and found a 

highly interconnected module related to synaptic function129. Furthermore, genes in CNVs 

from females contributed more to the module connectivity than those from males, 
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suggesting that females are affected by more severe genetic hits in ASD, an observation that 

has been replicated in exome-sequencing studies76,117. Another approach130 has evaluated 

CNV duplications in addition to CNV deletions and also found an interconnected PPI 

network that was enriched for proteins involved in synaptic transmission, validating the 

observation that pathogenic CNVs affect similar gene networks127. An extension of the 

NETBAG approach (dubbed NETBAG+) has also been applied to simultaneously evaluate 

large sets of single-nucleotide variants (SNVs) and CNVs in schizophrenia131 and ASD132, 

confirming the convergence of disease genes onto shared pathways.

An exciting approach is to simultaneously integrate PPIs, co-expression and mutational 

burden in neurodevelopmental disorders, as has been done by Merging Affected Genes into 

Integrated networks (MAGI133). This approach begins with mutation-affected genes in their 

known pathways and then adds genes to these ‘seed pathways’ on the basis of high co-

expression or PPI connectivity. The extent to which genes are added to make a module is 

determined by an objective function that maximizes pathogenic mutations from cases 

compared with controls in the module. MAGI identified modules containing functionally 

related genes enriched for deleterious mutations in ASD, many of which are under strong 

purifying selection, and are also found in epilepsy, schizophrenia and intellectual 

disability133.

Neurodegenerative disease

Neurodegenerative diseases are characterized by a progressive loss of neural tissue that 

results in a decline in cognitive and behavioural function. Many of these diseases have 

known causes that involve mutations in ubiquitously expressed proteins134, but they follow 

stereotyped patterns of degeneration that selectively affect certain cell subsets more 

severely, resulting in disease-specific spatial and temporal patterns of degeneration135–137 

(BOX 1). Neuropathological investigations have identified protein-centric mechanisms that 

might be involved in disease pathogenesis, but causal mechanisms are difficult to pinpoint, 

as post-mortem samples reflect the consequence of years of ageing and disease progression. 

Important disease-associated molecular changes can be confounded by environmental and 

clinical factors. Additionally, although positional cloning has identified genes and pathways 

that are involved in many neurodegenerative diseases, pathological mechanisms, modulators 

of pathogenesis and disease biomarkers have remained elusive, suggesting that genome-

wide approaches are needed. Transcriptional and PPI network studies have recently 

identified many new insights into these diseases. Below, we focus on representative 

transcriptomic studies of two genetically complex diseases (Alzheimer disease and 

frontotemporal dementia (FTD)) and PPI studies of two diseases for which causal genes are 

well defined (Huntington disease and inherited ataxia), but for which disease mechanisms 

are still poorly understood.

Post-mortem transcriptomic analysis in dementia

The major challenge in Alzheimer disease and FTD transcriptomics has been the 

identification of changes that are independent of alterations in cell type proportions, which 

accompany cell death and inflammation. Three major study design principles have been 

used to overcome this issue: transcriptomes in differentially vulnerable brain regions or 
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cellular populations can be compared to identify vulnerable or protected pathways138,139 

(BOX 1); preclinical changes in at-risk individuals with a milder disease presentation can 

identify genes and pathways that might lead to disease140; and cell type-specific markers can 

be used in combination with bioin-formatic analyses to account for the effect of changes in 

cell proportion on the overall transcriptome141,142.

Multiple transcriptomic studies of Alzheimer disease have been carried out in the human 

brain at varying spatial resolutions143. Large studies using quantitative metrics of severity140 

and differentially vulnerable regions144 have identified pathway-level changes in 

transcriptional regulation, apoptosis, cell proliferation, energy metabolism and synaptic 

transmission. One particularly powerful approach involved the use of the pattern of regional 

vulnerability to guide a microarray study that identified a defect in the retromer complex, 

which is responsible for endosome-mediated recycling of membrane proteins145. The 

involvement of this pathway in Alzheimer disease was experimentally validated146. The first 

large transcriptomic study (involving 188 controls and 176 individuals with Alzheimer 

disease)147 connected genetic variation to expression changes by using expression 

quantitative trait locus analysis (eQTL analysis) in controls and Alzheimer disease, and 

further supported the pathway-level findings related to transcriptional regulation and energy 

metabolism in Alzheimer disease140,148. Integration of eQTLs can identify causality in 

transcriptomic studies in the context of Alzheimer disease risk, adding a crucial mechanistic 

element to studies of post-mortem gene expression.

In FTD, transcriptional signatures related to differential regional vulnerability have helped 

to identify modulators of neurodegeneration. The first of two well-powered studies that 

applied this approach carried out transcriptomic analysis in a mouse model of FTD, 

identifying the gene Npepps138. Cross-species analyses in flies and humans confirmed the 

expression pattern and neuroprotective effect of NPEPPS138. The second study139 compared 

post-mortem tissue from patients with FTD harbouring dominant mutations in the pro-

granulin (GRN) gene, patients who had FTD but who did not have a known family history or 

mutations, and control individuals. This study also leveraged regional vulnerability by 

comparing transcriptome profiles in the frontal cortex, hippocampus and cerebellum, 

identifying a diminishing hierarchy of susceptibility to FTD. The findings demonstrated that 

GRN-positive individuals were a transcriptomically distinct group from those with sporadic 

FTD139. Both of these studies in FTD demonstrate the value of using selective vulnerability 

and differential genetic risk in study design.

From individual genes to networks and mechanism

Most early post-mortem studies from individuals with Alzheimer disease or FTD generated 

long gene lists and were followed by analysis of GO or KEGG pathway 

enrichment139,140,147. In an early network study, Miller and colleagues149 applied network 

analysis to compare the transcriptome in normal ageing and Alzheimer disease, finding 

many shared features that were downregulated in Alzheimer disease and normal human 

ageing149. They subsequently150 incorporated more than 1,000 microarrays from mouse 

models of Alzheimer disease and human patients with Alzheimer disease from public 

databases to reproduce and extend these results, identifying additional co-expression 
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modules that are related to mitochondrial dysfunction and synaptic plasticity. This work also 

found major differences in dementia susceptibility genes between humans and mice, 

potentially identifying why some mouse models might not recapitulate human 

neuropathology. Another study used similar methods to identify overlap in transcriptional 

networks between vascular disease (a major risk factor for dementia) and Alzheimer disease, 

identifying potential molecular mechanisms that might underlie their co-occurrence151. 

Forabosco and colleagues152 used network analysis to explore the function of TREM2 

(triggering receptor expressed on myeloid cells 2), an Alzheimer disease risk gene, 

suggesting a role for microglial function and further implicating neuroinflammation in 

Alzheimer disease. In FTD, two studies re-analysed published transcriptome data139 to 

discover a role for WNT signalling in GRN-mediated FTD153,154. Both involved extensive 

bioinformatic analyses of expression data from in vitro neural progenitor models and 

identified transcriptomic changes shared across the post-mortem human brain, human neural 

cell lines and the mouse brain. Experimental validation of predictions from these networks 

showed that this cross-species approach can identify consistent, high-confidence 

perturbations in neurodegenerative disease46,153. Additionally, the use of previously 

published human data in many of these studies highlights the value of policies supporting 

data sharing, especially from patient cohorts. Finally, studies of the regulatory networks and 

targets of specific miRNAs such as miR-339-5p in dementia are in their early stages155–157 

but promise to reveal novel regulators of neurodegeneration.

Although transcriptomic studies have furthered our understanding of disease mechanisms 

beyond neuropathology and single genes, the effects of cell type loss have not been 

completely accounted for in most studies. Purifying cell populations or carrying out 

transcriptional analyses on single cells158–163 can identify important changes that are not 

apparent in whole-tissue transcriptomes141,142. Combining bioinformatics approaches with 

single-cell sequencing will increase the resolution at which regional vulnerability can be 

assessed and will enhance the ability of gene co-expression networks to identify key changes 

associated with dementia.

Protein interaction networks with known disease genes

The causal mutations for Huntington disease and many inherited ataxias have been known 

for more than a decade, and thus the focus of molecular investigations has been on 

understanding disease mechanisms and modifiers. Lim and colleagues164 used a seed-based 

approach based on a Y2H screen to identify interactors of the protein products of multiple 

causal and candidate genes in inherited ataxias. Analysis of the resultant PPI network 

identified an interconnected network of proteins related to inherited ataxias. Importantly, 

interactors in the network were potential modifiers of disease progression, and, in 

subsequent work, gain of function mediated by a newly identified protein complex was 

found to mediate disease pathogenesis165. This Y2H approach has also been used to identify 

potential modulators of Huntington disease166, in which it is thought that inter-actors of 

huntingtin (the causally mutated pathological protein) might modulate disease severity. 

Interestingly, in vivo PPI screening by large-scale co-immunoprecipitation and mass 

spectrometry provided tissue- and time-specific information that was not found by Y2H 

studies167. WGCNA identified spatially and temporally specific modules associated with 
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mutant Htt (which encodes huntingtin); and proteins with high intra-modular connectivity 

(hub proteins) modulated neurodegeneration in flies. This work further emphasizes the 

importance of considering tissue context in the studies examining disease-relevant protein 

associations.

Integrating genetic variation and transcriptome networks

The most ambitious and exciting goal in systems biology is to elucidate the functional 

genetic architecture of diseases by systematically identifying causal effects using genome-

wide variation to disambiguate primary and secondary changes that occur in disease168,169. 

A recent study shows that this goal is possible in the CNS by using genetic variation as a 

causal anchor to define genetically driven network-level changes in Alzheimer disease and 

to provide experimental validation for network predictions170. Zhang and colleagues170 

applied WGCNA to hundreds of post-mortem brain samples from individuals with 

Alzheimer disease, other neurodegenerative diseases and controls. They showed that 

multiple transcriptional modules were remodelled in Alzheimer disease: gain of connectivity 

was observed in immune and neurogenesis pathways, and loss of connectivity was 

predominant in pathways related to GABA signalling and myelination. An eQTL analysis 

followed by module-level genetic signal enrichment identified several modules in which 

genetic association signals were enriched. Given that gene expression changes are caused by 

genetic variation, this suggested these modules were causally involved171. The researchers 

then applied Bayesian network analysis to evaluate causal relationships in an Alzheimer 

disease-related microglial module, implicating TYROBP (TYRO protein tyrosine kinase-

binding protein) as a regulatory hub. The role of Tyrobp was experimentally validated in 

mice170, showing that network structure is predictive, as had previously been demonstrated 

with co-expression networks32. Overall, integrating genetics with co-expression networks 

using large sample sizes (with a minimum of 100 cases and controls) and establishing 

causality by evaluating genotype–phenotype relationships and eQTL is very promising.

Specificity and convergence across CNS disorders

Many of the most influential studies using gene networks to probe neuropsychiatric disease 

mechanisms integrate multiple data types (for example, RNA expression, GWAS signals 

and PPI) or data sets (for example, human post-mortem, mouse and in vitro), emphasizing 

the value of publicly available data sets. The further availability of raw molecular profiling 

data with necessary metadata amplifies the value of individual studies. In addition to 

generating new hypotheses, molecular systems approaches integrating data from diverse 

studies can reveal unexpected and distinct relationships that are common to different CNS 

disorders. FIGURE 3 describes an example of a network-based meta-analysis of brain 

transcriptional profiles from publicly available data in ASD, schizophrenia and Alzheimer 

disease, which identifies shared and distinct biological processes across disorders. Several 

modules are shared by two of the three disorders, including the red module (ASD and 

schizophrenia), which contains voltage-gated calcium channels, and the green module (ASD 

and Alzheimer disease), which contains microglial markers (FIG. 3b–d). This demonstrates 

how cross-disorder analyses can systematically reveal shared and distinct biological 

processes among disorders, even when the data are from different studies (see 
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Supplementary information S1 (box)). It will be fruitful to combine more CNS disorders and 

diseases and to integrate GWASs and rare mutations to identify which variants affect gene 

expression across diagnostic boundaries and which are more specific. Prioritizing the 

disease-specific genes for further investigation may also aid in clarifying the molecular 

processes that lead to behavioural and cognitive alterations that are specific to a particular 

disease.

Guidelines for transcriptomic and network studies

Given the promise of molecular systems and integrative network approaches, it is perhaps 

surprising that there are few universally agreed on metrics, power analysis tools or 

methodological comparisons to guide experimental design, execution and analysis, such as 

there are for genetic association studies172. For DGE and network analysis, there are many 

studies with guidelines that are based on theoretical models and empirical 

assessments40,173–176, but most studies use data from experiments that do not have the 

spatial, temporal or disease-relevant complexities that occur in studies of the CNS or post-

mortem tissue. There is no experimental design that suits all aims, but we suggest criteria for 

initial experimental design, ensuring reproducibility and improving biological 

interpretability for transcriptomic analyses in BOX 3.

In general, it is helpful to think of all variation in gene expression or other molecular 

profiling data as a consequence of technical, biological and unmeasured factors177, rather 

than assuming that differences are due to experimental interventions or disease status41. 

Optimal methodological choices and study designs ensure that the biological signals from 

the main factors are not confounded by variation from unwanted factors178. Notably, 

molecular profiles in post-mortem gene expression studies are affected by RNA degradation 

and post-mortem intervals179, but other technical factors including library preparation and 

sequencing depth in RNA-seq analysis should also be carefully evaluated180,181.

Additionally, we note two important points about studies that construct predictive models 

and studies that make causal claims. For studies that develop predictive models, such as 

disease classifiers, experimental design should include the estimation of a model on initial 

data followed by evaluation of accuracy in held out or, preferably, independent data182. As 

far as causality is concerned, most molecular profiling studies, especially those using post-

mortem tissue, cannot show causality without follow-up controlled experiments or genetic 

evidence169–171. We also strongly suggest the experimental validation of key network 

predictions, as this provides avenues for refinement and biological grounding of the 

network30,32,153,170.

Gene set enrichment with networks

As shown by multiple studies, gene network analyses can aid in understanding genetic 

association studies. Grouping genetic findings using disease- and tissue-relevant modules 

can increase the power to detect genetic associations with disease by combining signals that 

reflect similar underlying biology while simultaneously informing biological mechanism by 

functionally annotating genetic findings30,109,122,183. Enrichment for genetic variants in a 

module can be evaluated using gene set enrichment methods, which rely on comparing 
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enrichment in a module relative to a control gene set. However, studies have demonstrated 

biases in gene length, gene mutability and other factors that can drive gene set enrichment 

instead of a true biological signal. For example, longer genes are more likely to be 

implicated by CNVs and SNVs87,184,185, and genes highly expressed in the brain, 

particularly those involved in synaptic function, are longer on average than other genes186. 

These biases inflate enrichment results and can result in false positives, so it is important to 

identify appropriate control sets or to apply the correct statistical methods (permutation tests 

or covariate modelling187). We note that each of the points discussed here and in BOX 3 is 

applicable to many other types of high-throughput data and that there are many valid 

variations to FIG. 2a.

Future directions

In this Review, we have discussed how transcriptomic and integrative network approaches 

have been applied to provide a systems-level understanding of CNS disorders in an unbiased 

and reproducible manner. Mapping genetic variants to gene expression and PPI networks 

has been fruitful, but most disease-associated variation in complex diseases lies in the 

noncoding regulatory regions of the genome188. The next crucial step for high-throughput 

molecular studies in the brain will be to understand regulatory alterations and interactions 

during development with histone mark profiling and chromosome conformation capture 

approaches189,190. Additionally, understanding transcriptomic and epigenetic changes in 

more homogeneous cellular populations, or at a single-cell resolution, will greatly improve 

our mechanistic understanding of normal human brain development. Initial maps of these 

neurobiologically relevant epigenetic landscapes and cell type differences, mostly at the 

tissue level, are under construction by the PsychENCODE consortium.

As noted throughout this Review, studies of proteomic data are highly complementary to co-

expression data and have revealed a crucial level of organization and regulation at the 

translational and post-translational levels. A particularly salient example is the synaptic 

signalling apparatus, more specifically the postsynaptic density (PSD), which has been 

extensively characterized at the protein level in humans and mice, showing key areas of 

overlap and divergence191,192. However, developmental and cell subtype differences in the 

PSD are not well understood, so obtaining PSD co-expression and PPI networks in relevant 

neural tissue and time points, similar to what BrainSpan has done for gene expression, will 

be invaluable. Currently, high-throughput, high dynamic range spatial and temporal data 

from minute sample quantities with proteomics are not available, so creative integration of 

cell type-specific transcriptional data with more generic PPI data may provide an 

approximation of the regional or cellular differences in synaptic structure in the near future. 

The development of methods, including benchmarking and refining methods for the 

integration of different forms of data (for example, PPI and gene expression data), 

developing tools for exploring network structure at a more fine-grained level, and 

empirically defining the most sensitive and robust network approaches, will also be crucial.

One of the greatest challenges is to systematically infer causality in molecular networks with 

a systems genetics approach168,169. This will necessitate more comprehensive eQTL studies, 

particularly in early brain development and disease170. Core molecular pathways that are 

Parikshak et al. Page 20

Nat Rev Genet. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confirmed to be perturbed in disease can then be interrogated with drug or environment 

perturbation data193,194 to identify interventions that will perturb networks from a disease 

state into a healthy state. This area of in silico drug screening based on DGE or network 

modules has barely been explored in the CNS, but it has considerable promise193. 

Additionally, with the advent of mandatory electronic medical records, population-level 

studies, including longitudinal data for many simple phenotypes, coupled with biobanking, 

can provide the scale needed to more fully understand genetic contributions to disease risk 

as well as disease relationships across the lifespan195–197.

Even once we have the information from thousands of genomes, biological insights into the 

CNS require the assessment of relevant behavioural and cognitive phenotypes, which are not 

well defined for most neuropsychiatric diseases198,199 and are rarely collected in large 

populations. Genome-wide transcriptomic approaches provide a quantitative endophenotype, 

or a biomarker, that genetic association studies can use to further refine the measurement of 

disease states. Transcriptomic and other molecular systems measurements can also be 

correlated with systems neuroscience phenotypes, such as MRI and functional MRI 

measurements, or behavioural phenotypes to identify non-invasive indicators of disease 

state4 (FIG. 1a).

Conclusions

Currently, much basic and translational neuroscience research is still focused on candidate 

genes and candidate hypotheses, so sceptics may question the value of measuring entire 

systems. However, biological complexity cannot be ignored; genome-wide measurements, 

in conjunction with studying individual genes and pathways, are essential to address the true 

underlying mechanisms of neurodevelopmental and neurodegenerative disorders. Well-

designed, reproducible molecular profiling studies allow biologists to simultaneously 

evaluate hypotheses in an unbiased manner and to generate new hypotheses. Although 

certainly vast and seemingly complex, gene networks provide an organizational framework 

that simplifies the process of hypothesis generation and testing. The general paradigm of 

using correlational and physical interaction molecular networks in neurobiology to 

understand molecular systems changes can be applied across methodologies and enables the 

investigation of relationships that span multiple levels of analysis. The results of high-

quality genome-wide studies will be essential to develop and test hypotheses that look 

beyond where our current knowledge ends to develop a more encompassing view of the 

problems posed by neurodevelopmental and neurodegenerative disorders, and their potential 

solutions.
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Glossary

Genetic 
architecture

For genetic variants, the relationship among allele frequency, 

effect size, number of contributing variants and how they 

quantitatively influence a given trait

Molecular systems 
or integrative 
network approach

Systems biology methods that use high-throughput quantification, 

analysis and interpretation of the molecular relationships within 

and across molecular levels, including the genome, transcriptome, 

epigenome, proteome and other ‘omes’

Systems 
neuroscience

An area of neuroscience that focuses on short- and long-range 

circuits that are usually related to specific behavioral or cognitive 

functions (vision, motor function, attention and so on)

Gene network A graph consisting of genes as nodes connected by edges that 

represent relationships between genes

Differential gene 
expression analysis 
(DGE analysis)

An approach commonly used in transcriptomic studies that serially 

compares thousands of genes between groups (for example, 

disease and controls) to evaluate the mean difference and its 

significance for each gene independently

Modules Also known as clusters, cliques and communities. Highly 

interconnected subsets of genes in a gene network; for example, 

genes in a transcriptomic network sharing highly similar patterns 

of gene expression

Nodes Molecular entities that constitute a network; for example, genes in 

a gene network or proteins in a protein interaction network

Edges The relationships between nodes in a network delineating some 

measure of shared function; for example, correlations or physical 

interactions

Mutual 
information

A measure of dependence between two variables that can capture 

complex relationships, including nonlinear and nonmonotonic 

patterns, that could be missed by linear correlation measures

Hubs Genes in a network or module that are highly connected; that is, 

they have a relatively high number of edges compared with other 

genes

RNA sequencing 
(RNA-seq)

An assay for measuring RNA transcript levels in a genome-wide 

manner that involves the extraction of RNA followed by 

construction of cDNA libraries that undergo high-throughput 

sequencing
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Weighted networks Networks in which the edges have continuous values, with higher 

values reflecting an increased strength or probability of 

connectivity

Binary networks Networks in which the edges are all or nothing, either because this 

is inherent to the edge measurement (for example, physically 

interacting or not) or because a cut-off or threshold has been 

applied to a continuous measurement (for example, by applying a 

rule that all correlation values≥0.7 are 1, all others are 0)

Signed networks Networks in which the direction of association is taken into 

consideration in addition to the magnitude of the correlation; for 

example, in a signed correlation network, high positive 

correlations are assigned high edge values, but high negative 

correlations are assigned low edge values

Unsigned networks Networks in which any high magnitude association is assigned a 

high edge value regardless of the direction of the association

Topological overlap A computation on direct edge relationships in a network that 

transforms them into indirect edge values that reflect the sharing of 

neighbourhoods between genes

Seeded (prior-
based) networks

Network analysis approaches in which edges are ‘grown’ around 

‘seed’ genes that are selected on the basis of previous experiments 

or prior hypotheses, and the network structure is dependent on 

these seed genes

Unseeded (genome-
wide) networks

Network analysis approaches in which edges are evaluated in a 

genome-wide manner, and network structure is not dependent on 

prior knowledge of a particular set of genes

Adjacency matrix A matrix of pairwise node–node relationships that quantifies all 

possible edges in a network. Edge relationships may be determined 

from one data type or by weighting the contribution from multiple 

types of data

CLIP-seq An assay for measuring the binding sites of a protein on RNA 

transcripts in a genome-wide manner that involves crosslinking 

immunoprecipitation followed by high-throughput sequencing

ChIP-seq An assay for measuring the binding sites of a protein on DNA 

across the genome that involves chromatin immunoprecipitation 

followed by high-throughput sequencing

DNase 
hypersensitivity or 
ATAC-seq

Sequencing methods that infer regions of the genome in a 

particular cell or tissue with open chromatin by exploiting the fact 

that these regions are preferentially accessible to the DNase I 

enzyme or a transposase
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Eigengenes Module-level summaries of expression utilized in co-expression 

networks calculated by taking the first principal component of the 

expression levels of genes in a module

Psychosis A mental state defined by a loss of contact with reality and 

characterized by exaggerations or distortions of normal perception

Negative symptoms Symptoms involving a loss of normal emotional responses, 

including a lack of motivation, an inability to experience pleasure 

and reduced expression through speech

Unsupervised 
methods

Analysis approaches that use the intrinsic variation in data to 

define shared patterns without explicit prior knowledge of how the 

data should be grouped (for example, hierarchical clustering). This 

can identify novel clusters or groupings of data points

Expression 
quantitative trait 
locus analysis 
(eQTL analysis)

A specific case of genotype-to-phenotype association that uses 

RNA transcript levels as the phenotype in order to identify genetic 

loci that regulate RNA levels

Selective 
vulnerability

The relative susceptibility of specific brain regions, cell 

populations or time points to genetic or environmental insults that 

result in disease

Causal anchor A causal factor, such as genetic variation, that can be used to 

orient edges to transform an undirected correlational network to a 

directed causal network

Gene set 
enrichment

An analysis approach that assesses the statistical significance of 

the overlap between two gene sets, one set is usually an annotated 

reference set, and the other is an unannotated set of interest
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Figure 1. Molecular systems and the neurobiological hierarchy
a | Genetic variants exert their effects on cognitive and behavioural phenotypes associated 

with neurodevelopmental or neurodegenerative disease through a neurobiological hierarchy 

that includes multiple molecular levels (transcriptomic, proteomic and epigenomic) that can 

be modelled as networks on the basis of physical interactions and correlations within and 

across multiple molecular levels (BOX 2). These molecular levels of organization can vary 

at multiple neurobiological phenotypic levels (cells, circuits, and cognition and behaviour) 

across the lifespan. b | Gene expression levels vary dramatically across development and 

ageing, brain regions and cell types, as illustrated by three genes: SMARCC2, which is a 

pan-regional neurodevelopmental gene; MET, a regionally patterned adult neuronal gene; 

and OLIG1, a gene most highly expressed in white matter and oligodendrocytes. 

Development and ageing data are from BrainCloud17, regional data are from Braineac16 and 

cell type expression data are from fluorescent-activated cell sorted transcriptomes from 

mouse cortex162 (http://web.stanford.edu/group/barreslab/brainrnaseq.html). c | Both the 

molecular and phenotypic levels exhibit a typical trajectory with normal variation during 

development and ageing that can be altered in disease, resulting in abnormal temporal 

trajectories. The x axis on this plot reflects the progression of time, and the y axis reflects 

theoretical deviation from the normal trajectory for any molecular or phenotypic 

measurement. CPi, inner cortical plate; CPo, outer cortical plate; CRBL, cerebellum; FCTX, 

frontal cortex; HIPP, hippocampus; ISVZ, inner subventricular zone; IZ, intermediate zone; 

lncRNA, long noncoding RNA; MEDU, brainstem medulla; miRNA, microRNA; OCTX, 

occipital cortex; OSVZ, outer subventricular zone; PUTM, putamen; SNIG, substantia nigra; 

SP, subplate; TCTX, temporal cortex; THAL, thalamus; VZ, ventricular zone; WHMT, 

subcortical white matter.
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Figure 2. Flowchart of transcriptomic analysis and illustration of seeded and genome-wide 
approaches to network analysis
A flowchart demonstrating the general approach to a transcriptomic study that uses 

differential gene expression (DGE) and network analysis (part a). Network-level features, 

such as connectivity ranking and module-level enrichment, allow the integration of many 

external data sources and experiments. Network analysis involves first (part b) connecting 

genetic or molecular nodes with information about pairwise relationships, which may be one 

or more of the following: statistical associations relating molecular patterns measured across 

experiments, such as variation in gene expression levels across brain regions; physical 

interaction data from experiments or curated from the literature such as transcription factor 

(TF) or RNA-binding protein (RNABP) binding or protein–protein interactions (PPIs); or 

computational predictions about TF or RNABP binding using motif enrichment analysis 

(here, U on the RNA motif is depicted as T). Next, the structure of the network is used to 

(part c) define modules using a seed-based or genome-wide approach, which groups together 

the genes that share similar edge-level properties. The seeded (prior-based) approach is 

shown on the left-hand side, and the unseeded (genome-wide) approach on the right-hand 

side. The seeded approach involves starting with genes of interest, expanding edges to bring 

in additional (unannotated) genes and identifying highly connected components as modules. 

The unseeded approach (right-hand side) involves starting with unannotated genes, using 

edges to identify interconnected components as modules and then evaluating where genes of 
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interest fall in the resultant network structure. Modules from either approach can be further 

annotated with external information such as genetic associations and known pathways, 

integrated with additional data or used to prioritize targets for experimental validation (see 

BOX 2 and TABLE 1 for more details). Alternative depictions of the network analysis 

process are also available elsewhere28,41,169. GO, Gene Ontology; KEGG, Kyoto 

Encyclopaedia of Genes and Genome Elements.
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Figure 3. Transcriptomic convergence and divergence across central nervous system disorders
Transcriptomics can systematically compare genes and pathways across neurobiological 

disorders. To provide a simple example, we compare genome-wide expression patterns in 

the cerebral cortex across published microarray studies of autism spectrum disorder 

(ASD)30, schizophrenia (SCZ)225 and Alzheimer disease (AD)226 (part a). We applied 

differential gene expression (DGE) analysis across these disorders in a pairwise manner and 

performed a meta-analysis with weighted gene co-expression network analysis (WGCNA). 

Please see Supplementary information S1 (box) for details. The bottom-left half of the 
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comparisons shows pairwise comparison of DGE across conditions. ASD–SCZ and ASD–

AD are significantly correlated in DGE changes, as demonstrated by Spearman correlations 

(ρ values) between genome-wide DGE effect sizes in each disorder. On the upper-right half 

of the comparisons, Gene Ontology (GO) term enrichment of pairwise shared upregulated 

and downregulated changes demonstrates that upregulated inflammation and downregulated 

synaptic function and oxidative phosphorylation are common to all three disorders. Results 

are shown as enrichment Z scores for pathway enrichment, Z > 2 suggests enrichment227. 

WGCNA across these three conditions identified five modules (labelled with different 

colours) that are perturbed across at least one condition, as demonstrated by differences in 

eigengene expression (*p < 0.05,**p < 0.01,***p < 0.001, two-tailed t-test) (part b). The top 

ten interconnected (hub) genes in each module with edges reflecting the strength of 

correlation between genes reveals (part c) and GO term enrichment for each module (part d). 

MHC, major histocompatibility complex.
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Table 1

Different edge types in gene networks: practical and theoretical considerations.

Gene co-expression Protein-protein interaction Motif enrichment for 
transcription factors

Edge relationships Statistical association (correlation 
or mutual information)

Physical binding (interacting or not 
interacting)

Computational inference 
(motif binding scores)

Main advantages Indirectly predicts co-regulation, 
physical interactions and cell type 
specificity; easiest to measure 
from tissue of interest

Based on direct physical interactions; 
predicts protein complexes and 
signalling pathways

Identifies putative co-
regulatory relationships 
without needing to carry 
out new experiments

Completeness of data across 
the genome

Most genes are similarly covered 
genome-wide

Incomplete assessment for most 
interactions; biased towards most well-
studied molecules

Predictions restricted to 
availability and accuracy 
of available motif 
information

Tissue specificity Primary data are often tissue 
specific

Primary data are rarely tissue specific Primary data not usually 
tissue specific

Module-level interpretation Reflects cell types and 
transcriptionally co-regulated 
biological processes

Protein complexes; signalling cascades; 
subcellular structures

Groups of transcriptionally 
co-regulated genes

Interpretation of hubs Cell type-specific markers; 
molecular regulators such as 
transcription factors or RNA-
binding proteins

Key proteins in complexes; converging 
points of signalling cascades

Gene to which many 
transcription factors bind, 
perhaps under more 
complex regulation

Sources of bias Technical artefacts (RNA quality 
and batch effects); biological 
confounders (age and sex); post-
mortem artefacts (cause of death)

Literature-curated data contain biases 
towards more well-studied interactions, 
which tend to be non-neuronal

Unlikely to reflect tissue-
specific interactions or 
regulation without 
additional data

Examples of bioinformatic 
validation

Preservation of co-expression in 
independent data; enrichment of 
physical interactions in modules

Enrichment of co-expression from 
independent data

Enrichment of predicted 
binding sites from 
independent ChIP–seq data

Examples of experimental 
validation

Showing cell type specificity of 
hubs by in situ hybridization; 
demonstrating regulatory potential 
of hubs by hub gene knockdown

Co-immunoprecipitation of proteins of 
interest; disruption of protein 
complexes when hubs are targeted

Showing changes in 
transcription of targets on 
perturbation of regulators
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