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Abstract

New and emerging mobile technologies are providing unprecedented possibilities for 

understanding and intervening on obesity-related behaviors in real time. However, the mobile 

health (mHealth) field has yet to catch up with the fast-paced development of technology. Current 

mHealth efforts in weight management still tend to focus mainly on short message systems (SMS) 

interventions, rather than taking advantage of real-time sensing to develop Just-In-Time, Adaptive 

Interventions (JITAIs). This paper will give an overview of the current technology landscape for 

sensing and intervening on three behaviors that are central to weight management; diet, physical 

activity, and sleep. Then five studies that really dig into the possibilities that these new 

technologies afford will be showcased. We conclude with a discussion of hurdles that mHealth 

obesity research has yet to overcome, and a future-facing discussion.
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Introduction

New mobile technologies, including wearable, deployable, and ingestible low-energy 

sensors, coupled with ever-improving, data-hungry and ubiquitous smart phones, are 

providing unprecedented opportunities for innovation in obesity prevention and 

treatment1–3. These mobile, digital, interactive (mHealth) technologies offer solutions that 

could significantly revolutionize current practice. For obesity research and interventions, 

mHealth offers new ways to track the three major obesity-related behaviors, i.e. diet, activity 

and sedentariness, and sleep4. Smartphone/watch interfaces provide avenues for acquiring 

Corresponding Author: Donna Spruijt-Metz, MFA, PhD, University of Southern California, dmetz@usc.edu, phone: 213 8211775, 
635 Downey Way, Suite 305, Los Angeles, CA, 90089-3332.
All authors are located at the University of Southern California, with the exceptions of 1) Adar B. Emken, who is currently self-
employed, and 2) Ming Li, who is currently at SYSU-CMU Joint Institute of Engineering, Sun Yat-sen University, China.

Conflict of Interest
D. Spruijt-Metz, C.K.F. Wen, G. O’Reilly, M. Li, S Lee, B.A. Emken, U. Mitra, M. Annavaram, G. Ragusa, and S. Narayanan declare 
that they have no conflict of interest.

Compliance with Ethics Guidelines
Human and Animal Rights and Informed Consent

HHS Public Access
Author manuscript
Curr Obes Rep. Author manuscript; available in PMC 2016 December 01.

Published in final edited form as:
Curr Obes Rep. 2015 December ; 4(4): 510–519. doi:10.1007/s13679-015-0183-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ecologically valid, momentary information on participant experience directly from 

participants via Ecological Momentary Assessment (EMA)5. Through wearable and 

deployable sensors, often linked wirelessly to a smartphone/watch, behaviors can now be 

tracked ubiquitously and continuously, with little or no effort from the user. These behaviors 

can also be tracked in context, with sensors continually gleaning information on 

environmental and social surroundings. The combination of sensors linked wirelessly to 

mobile computers (smartphones, smart watches, tablets) provides the interactivity needed to 

deliver Just-in-Time, Adaptive Interventions (JITAIs). JITAIs are ecologically sound 

because at least some elements are delivered ‘in the wild’, i.e. as people go about their daily 

lives. Intervention elements are adapted over time to an individual’s changing status and 

contexts. Because JITAIs can be delivered remotely, they can be delivered at the moment 

and in the context that the person needs it most and is most likely to be receptive. Using 

incoming sensor and EMA data, intervention dose and content can be regularly adapted 

according to participant data6. However, most mHealth interventions to date have focused 

on short message systems (SMS) interventions that may not be responsive to changes in 

participant behaviors7–9, and few have taken advantage of the possibilities that mHealth 

technologies have to offer2.

This review will give a brief overview of cutting edge mHealth technologies for obesity 

sensing and intervention, and highlight some of the capabilities that a combination of these 

approaches can provide. The purpose is not to exhaustively review all interactive 

interventions for obesity prevention and treatment, as several excellent recent reviews are 

available2, 7, 9, 10. Rather, five innovative mHealth studies that have employed multiple 

interconnected mHealth technologies to achieve obesity-related behavior change will be 

showcased. We conclude with some of the hurdles that mHealth obesity research has yet to 

overcome, and a future-facing discussion.

Fast-paced development of mobile technologies for obesity prevention and 

treatment

Physical activity and sedentary behavior

Sensing for physical activity and sedentary behavior has become increasingly sophisticated. 

Some research grade accelerometers now provide streaming, blue-tooth enabled data, and 

researchers as well as industry are quickly developing mobile tools to facilitate their use11. 

These include combinations of smartphone applications (apps) that interact with a computer 

interface to allow researchers and health professionals to track accelerometer wear, check 

that it is providing good data, and receive and eventually react to the data in real time. These 

technologies and cut-points to determine energy expenditure have been rigorously validated 

in various populations12, 13. Pattern recognition techniques can be developed to recognize 

specific activities as they occur, such as sitting, standing or walking, using data from sensors 

and smartphones14–16. More recently, popular wearable devices and phone apps for 

capturing physical activity have also been tested for accuracy17, and depending upon the 

research question and main outcomes, these, too can be used to inform interventions. To 

intervene in the moment or ‘Just in Time’, researchers need to be able to obtain physical 

activity and sedentary data in real- or ‘near’-time. Many off-the-shelf accelerometers and 
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activity trackers do not yet provide streaming data and/or an open application programming 

interface (API), which allows researchers to access data and harmonize software and 

hardware. Therefore, some researchers continue to develop and test their own 

accelerometers18, or their own applications that can derive momentary physical activity 

estimates from the raw accelerometer data obtained by smartphones14, 19.

Diet and eating behaviors

Accurate measurement of diet remains the ‘wicked problem’ in obesity research, as well as 

in mobile health. Currently, the two avenues most explored in mobile health are the 

detection of nutrient intake using pictures, and the detection of eating episodes and/or 

caloric intake using sensed wrist20 or jaw21 movements. Pictures are either taken by the 

participant on a smartphone and uploaded to a server manually22, or acquired and uploaded 

automatically by a wearable device that takes pictures continually, for instance every 2 

seconds23. While the wearable device might be more likely to capture all eating events since 

it does not depend upon participants’ conscious effort to take and upload a picture, both 

technologies utilize image upload and analysis. The timespan between upload, analysis and 

report back to participant or health professional is not fully delineated, and the ongoing 

effort to validate pattern recognition for the major foods from various cultures is immense. 

One wrist-worn device can relatively accurately detect eating through wrist movements24, 

has shown some promise in assessing caloric intake ubiquitously25, and gives real-time 

feedback on amount eaten. A possible disadvantage of the wrist sensor discussed here is that 

it must be turned on by the participant prior to every eating event, and switched off 

afterwards.

Sleep

Sleep sensing and feedback has taken off in the last few years, using both wearable and 

deployable sensors. Sleep measures using wrist worn actigraphy have been validated using 

research-grade accelerometers26, 27, and some of these are beginning to provide streaming 

data that will allow for immediate data capture, analysis and real-time feedback. Several 

commercially available wrist- or chest-worn devices measure physical activity and sleep, 

provide some immediate feedback and some access to data through open APIs, although few 

have been validated for sleep measurement28. The Lullaby deployable bedroom sensor suite 

is an example of a research project that provided extensive sensing of the sleep environment 

(temperature, light, sound and motion) and immediate feedback29. There is a growing crop 

of commercially available bedroom sensors for placing under the mattress30, 31 or near/on 

the bedside table32, with varying degrees of real- or near-time feedback, validation, and 

open APIs. However, the field is progressing rapidly, with an increasing focus on open 

source coding33.

Physical environment and social context

All obesity-related behaviors take place in context, and context impacts behavior34. One of 

the great strengths of mobile technologies is the ability to capture data on behavioral 

environments and contexts in an ongoing fashion. King, Glanz, and Patrick recently outlined 

some of the major advances in environmental context-based sensing and intervention35. 

Built environmental sensing at the individual level is based on the use of global positioning 
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systems (GPS) that can track personal location. Most smartphones can now track location 

quite adequately. To contextualize behavior, GPS data is often integrated with geographic 

information systems (GIS) data, i.e. layers of maps that provide information on various 

components of the physical environment. Other wearable and deployable sensors, such as 

cameras36, Radio Frequency Identification (RFID)-type tags, light and sound sensors (many 

integrated into smartphones) can gather data that can improve insight into obesity-related 

behaviors such as sleep (ambient noise), diet (food purchases) and physical activity (air 

quality, weather). Many of these have been integrated with smartphones.

Obesity-related behaviors are also influenced by social context. Important advances are 

being made in sensed social contexts that go beyond Facebook, Twitter and other rich 

sources of social network data. A combination of sensors and smartphone applications allow 

automated recognition, so that time spent in proximity to another specific person can be 

quantified and reciprocal influences on behavior can be observed and modified37. A great 

deal of progress has also been made in sensing length and quality of social interactions using 

ambient sounds via smartphones or other wearable technologies38. Research has repeatedly 

shown that sensed and perceived environments do not necessarily overlap, and both have 

impact upon behavior39. Furthermore, behaviors tend to cluster and mutually impact each 

other, suggesting that multiple behavior change models might be the most parsimonious. 

Therefore, integrated systems40 that take advantage of multiple sensors and analytic 

methods to understand obesity-related behaviors in context provide the most compelling 

tools data to support contextualized JITAIs.

The central role of the smartphone: Sensing and integration

At the center of this transformation in mHealth is the ever-evolving computer that we carry 

in our pockets and purses, i.e. the mobile phone. As of January 2014, 90% of American 

adults owned mobile phones, and as of October 2014, 64% owned smartphones41. African 

Americans (70%) and Hispanics (71%) are more likely than whites (60%) to own a 

smartphone. There are no differences in mobile phone ownership between these groups. 

Worldwide, in 2014 there was a 96% penetration of mobile cellular subscriptions, with 59% 

coverage in least developed countries (LDCs). Smartphone ownership is also increasing 

worldwide42. Smartphones provide a hub for the Internet of Things (IoT)43. Relatively low-

cost Bluetooth enabled digital scales can provide fairly accurate weight, BMI and body fat 

data to smartphones and back-end servers44. Data from the phone and its sensors (calls, 

SMS, email, pictures, accelometry, GIS, ambient sound, apps, etc.) as well as data from 

connected wearable and deployable sensors can be gathered, stored, analyzed, and sent to 

the cloud or backend severs for storage and analysis. EMA responses and Ecological 

Momentary Interventions (EMI) can be delivered in text format on mobile phones as well as 

smartphones. The smartphone also has capacities for providing feedback using sounds, 

haptics and/or visualizations45. The smartphone is poised to assume an even more critical 

role in health research, promotion and care with the development of tools such as 

ResearchKit46. Research Kit was developed for the iPhone, and currently comprises 3 

customizable modules: informed consent forms, surveys, and real-time active tasks (these 

include gait and motor activities, walk tests of fitness, spatial memory tests of cognition, and 

phonation voice tests). New modules will likely be developed and integrated with iPhone’s 
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health and fitness data collection capabilities (such as step counts, data from incorporated 

apps, sleep-wake cycles, and more). Smart watches with embedded sensors, watch-to-phone 

connectivity, communication options and burgeoning capabilities are poised to augment 

smartphones as hubs for mHealth research, intervention and prevention.

Some interim conclusions regarding fast-paced mHealth technology development: 
Challenges and opportunities

Challenges—The previous section has provided an overview of some new technologies 

for sensing behavior and environment as they relate to obesity. The fast-paced development 

of mHealth-relevant technologies poses several challenges. Technology turnover is one such 

challenge. Technologies might become obsolete or be discontinued during a project that 

relies upon them, or they can be upgraded, rebranded or replaced with superior technologies. 

This technology turnover makes it difficult to identify and maintain mobile technologies for 

longitudinal intervention studies. Upgrades and new software can disrupt an intervention 

and require new programming. Therefore, the field is moving towards new, more agile 

research designs47, 48 that support ongoing personalization and optimization, as well as the 

adoption of new technologies where necessary or advisable. Other major challenges include 

privacy, security, confidentiality, and the problem of ‘secondary’ or ‘unintended’ 

participants, whose data might be collected unintentionally and without their consent by 

wearable or deployable sensors49.

Opportunities—Because the mobile phone is so ubiquitous, mHealth has the potential to 

improve access, understanding and services for hard-to-reach populations. Ubiquitous 

mHealth technologies are also providing unprecedented opportunities to understand 

behavior in place, time and context through ongoing access to temporally dense, highly 

contextualized data50. Interactive technologies for real-time, contextualized obesity 

monitoring and interventions provide a level of ecological validity only attainable through 

observation and intervention ‘in the wild’51. Methods that sample experiences in everyday 

environments and circumstances may be much more representative of people’s everyday 

lives than more traditional laboratory observations. Methods that intervene in everyday 

circumstances may provide more useful and effective ways of helping people to change their 

lives in the moment than more traditional interventions that occur outside daily, lived 

experience. mHealth technologies currently offer six different modalities for real-time data 

collection and JITAI intervention delivery: Signal-contingent, time-based, event-based, 

location-based and sensor-based. Data can be collected or people can receive interventions 

based on a certain time schedule, for instance at predicted mealtimes, or every two hours, or 

at random signals (signal-contingent). Event-based data collection is when a participant 

reports specific occurrences, for instance temptation to drink52. Using GPS, data collection 

and/or JITAIs can be contingent on sensed location53. Using streaming sensor data, 

interventions, EMAs or other data collection can be contingent on sensed behavior, such as a 

certain amount of time spent in sedentary behavior54. These modalities can be combined in 

many ways, for instance a sensor-based plus time-based intervention that only intervenes on 

sedentary behavior in children after school. Finally, interactive mHealth technologies 

provide streaming data that can be used to adapt the intervention to the needs of the 

participant, according, for instance, to momentary availability to be able to react to 
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prompts55, or changes in participant behaviors56. For instance, if an intervention to reduce 

sugar intake focuses on reduction of sugar sweetened beverage intake, and one participant is 

quickly successful while another still struggles, intervention goals can be personalized and 

adjusted on a momentary basis to fit the needs of each individual participant according to 

available data in real- or near-time.

JITAI Case studies

As mentioned in the introduction, few mHealth obesity-related prevention or treatment 

programs have made creative use of the possibilities that fast-paced technology development 

has to offer. Several have pioneered developments of innovative technologies to intervene in 

real time57–59, (or see 2, 60), few have made it past the design stage into interventions. There 

are some notable exceptions. Five true Just-In-Time, Adaptive, obesity-related mHealth 

interventions are highlighted here.

JITAIs in adults

The Engaged Trial 61–63—The E-Networks Guiding Adherence to Goals in Exercise and 

Diet (ENGAGED) study was a randomized controlled trial (RCT) that used a theory-guided, 

technology-supported weight loss program. Engaged was based on lessons learned from the 

Diabetes Prevention Program64, social networks theory, and the control systems theory of 

self regulation65. This theory posits that self-regulation can be understood in terms of 

feedback loops, where people set a goal, self-monitor their behavior, and then modify their 

behavior to reduce perceived discrepancy between their behavior and their goals. Engaged 

was a 6-month, two-armed RCT. Sixty-nine adults (aged 28–86 years, 85.5% men, 30.4% 

minority) were randomized to Intervention or Intervention + mobile. Both groups attended 

biweekly 1.5-hour sessions led by dieticians, psychologists, or physicians. Intervention + 

mobile participants received a personal digital assistant (PDA) loaded with an interactive 

study app and a study accelerometer which they were asked to wear. The diet section of the 

Engaged app required self-entry of dietary intake. Fans were coded in traffic light colors that 

showed how many calories and how much fat participants had eaten during the day relative 

to the dietary allowances set up with interventionists. Green signified that the participant 

could still eat some calories or fat during the day, red indicated that the calorie or fat 

allowance had been exceeded. The app was also equipped with a physical activity 

thermometer that automatically accrued data from the study accelerometer but also allowed 

for manual entry. The green physical activity thermometer showed how may minutes of 

moderate intensity exercise the participant had reached towards their weekly goal. 

Participants were also put into teams, and teams competed against one another. Color-coded 

information was shown about team members weight loss and diet and activity behaviors. 

Team members could use a private message board to support one another, offer help and 

cheer each other on. Data were sent to an interventionist who monitored recording 

compliance and behavior, and then provided personalized coaching by telephone. The 

intervention + mobile group lost 3.9 kg more that the intervention only group (95% CI, 2.2–

5.5 kg), representing 3.1% more weight loss.
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Mobile Motivational Frame Testing 45—In this study, three different smartphone apps 

to promote regular physical activity and reduce sedentary behavior were developed. Each 

app was based on distinct motivational frameworks from behavioral science. One app was 

based on an “analytic” framework, using principles from the Social Cognitive Theory 66 and 

self-regulation theories67. The analytic app showed two dials that quantified amounts of 

time spent in moderate-to-vigorous physical activity and time spent sitting, and how close 

the person was to reaching their preset goals. The analytic app also provided some problem 

solving around barriers to behavior change, informational tips or advice for behavior 

change, text-based reinforcement when a participant reached their goals, and a graphic 

display of past physical activity and sitting time. The second app was based on a “social” 

framework. A second physical activity app applied a social influence framework68. The 

social app showed a live wallpaper display of individual avatars representing the user and 

other study participants randomized to use this app who had been assigned to the user’s 

“virtual group” as well as the members of a second “virtual group” that did not include the 

user. Each of the avatars was shown in activities (like lying down, or running) that reflected 

how active the person had been up to that moment in the day. Feedback on activity levels of 

the user was displayed along with cumulative feedback on the user’s group and feedback 

about the other virtual group. (i.e., social norm comparisons and contextualization). Similar 

to the analytic app, a history tab was available to show a visual summary of their overall 

activity history, but this history tab always referenced the group averages. A participant 

electronic “message board” was available for participants to post information or comments 

to their virtual group in real-time. The third app used an “affective” motivational framework 

based on operant conditioning principles69 and the idea of emotional transference to an 

avatar. The avatar appeared in the glanceable display as a bird was used to reflect how 

active/sedentary the user was throughout the day. The bird changed behavior, posture and 

position depending upon how active the user was up to that point in the day, and only 

appeared happy if the participant reached at least 30 minutes per day of moderate-to-

vigorous physical activity or less that 8 hours of sitting. As the participant got more active, 

the bird might engage in other behaviors, like moving toward and following the person’s 

touch on the screen. There was also a screen where participants could play games with the 

bird. The three apps were further integrated with a fourth app that compiled and analyzed 

the built-in accelerometer data collected on a continuous basis from the project smartphones. 

This app was programmed to provide “just-in-time” feedback to users of all three of the 

behavior change apps using validated algorithms based on the national recommendations for 

physical activity (i.e., 150 minutes or more per week of moderate-intensity physical 

activities such as walking). Participants (68 adults aged 45–81 years, mean age 59.1 years, 

69% white), were randomized to one of the three apps to participate in an 8-week trial. All 

but one participant used the smartphone and app for at least 5 weeks. All three groups 

increased weekly minutes of brisk walking (Mean minutes/week increase ± SD: 

Analytic=71.1 ± 147.3; Social=122.9 ± 153.3; Affect=105.7 ± 187.2). Self-reported minutes 

of television viewing decreased across all three apps on an average of 29.1 ± 84.5 

minutes/day with no statistically significant differences across apps.

B-MOBILE 54—The B-MOBILE study was designed to intervene on sedentary behavior in 

real time. Participants received a study mobile phone loaded with the B-MOBILE app. The 
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app used real-time accelerometry data from the smartphone and validated algorithms to 

estimate sedentary time. It included sedentary behavior goal-setting, prompting, and 

feedback using an automobile dashboard that was visible when the smartphone display was 

active. The dashboard included a fuel gage that showed the number of sedentary minutes 

remaining until the next activity break, two odometers that tracked total number of sedentary 

and active minutes accumulated during that day. If a participant reached the preset limit of 

minutes spent in sedentary behaviors, the app beeped and an on screen message appeared 

reminding the participant to take an activity break. Participants could respond to the prompt 

by being active, silencing the prompt, or delaying the prompt for 30 minutes. Real-time 

accelerometry from the phone was used to determine when a participant was compliant to 

the prompt. If a participant successfully complied by performing physical activity for the 

recommended duration, they received a praising message, a bright green light appeared on 

the dashboard and the fuel gauge on the screen was updated. Because so little is known 

about how best to intervene on sedentary behavior in real time, the B-MOBILE study 

compared 3 different conditions, each followed for a 7-day period and presented in a 

counterbalanced order: (1) 3-min break prompt after 30 continuous sedentary minutes; (2) 6-

min break prompt after 60 continuous sedentary minutes; and (3) 12-min break prompt after 

120 continuous sedentary minutes. Participants were 30 overweight/obese adults (mean age 

47.5 ± 13.5, 83.3% female, 66.7% white). Percent time spent in sedentary behavior 

decreased significantly in all 3 conditions relative to baseline (p =.005). Pairwise 

comparisons showed that the 3-min physical activity break condition produced significantly 

greater reductions in percent time spent sedentary compared to the 12-min physical activity 

break condition (p=0.04).

Within-Person Variance-Based Adaptive Intervention 56—This adaptive 

intervention harnessed within-person variance in physical activity to adjust individuals’ 

goals and feedback over time. The intervention was based on principles from Behavioral 

Economics70 and Operant Shaping71. Participants received a pedometer and were instructed 

on how to upload their pedometer data on a daily basis. They participated in a 10-day run-in 

phase to allow participant reactivity to the pedometer to subside, collect of baseline physical 

activity data, and determine whether participants were willing and able to upload their 

pedometer data to the Microsoft’s HealthVault. Those who successfully uploaded their data 

(n=20 inactive overweight adults, 85% women, mean age= 36.9±9.2 years, 35% non-white) 

were randomized to one of two conditions: 1) Static Intervention (SI), or 2) Adaptive 

Intervention (AI) intervention. Participants in both groups received health information and 

one brief message prompt (#160 characters) every 9 days to encourage physical activity. On 

the first day of the interventions, the Static Intervention group received the goal of 10, 000 

steps per day at least 5 days a week. They were reminded of this goal on a monthly basis. 

The adaptive intervention group was prescribed new, personalized goals every day that 

adapted to their physical activity levels. To calculate these goals, the participants needed to 

send their cumulative pedometer step count to the research team every evening or early 

morning. Once the data was sent, the new goal, good for only one day, was sent back. The 

personalized, adaptive goal was calculated by taking the 60th percentile of that person’s 

physical activity data from the previous 9 days, using a moving window. SI participants 

received encouraging social feedback. AI participants received differential feedback 
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messages depending on whether or not they met their daily goal. AI Participants who did not 

meet the goal received a simple confirmation that steps were entered correctly and were 

provided their next day’s goal. AI participants who met their goals received positive 

feedback in the form of encouragement and praise messages. SI participants received 

encouraging escalating financial incentives in the form of gift cards each month for 

uploading their pedometer steps to Microsoft HealthVault. AI participants received 

encouraging feedback and one point worth $1 for accomplishing each step goal. Points were 

not lost for missing a daily goal or failing to report step counts. Points were exchanged for e-

gift cards to non-food retailers. Cumulative award amounts for both groups were similar. 

After adjusting for covariates, significant increases in physical activity were shown relative 

to baseline (p<.001), with a significant group interaction (p = .017). The SI group increased 

steps by an average of 1,598 steps/day between baseline and end of treatment. The AI group 

increased steps by an average of 2,728 steps/day between baseline and end of treatment, 

with a significant difference between groups of 1,130 steps/day.

JITAIs in children

Utilization of interactive technologies in mHealth studies in children and adolescent is 

limited despite reported acceptability and efficacy2. Aside from some very innovative early 

developmental work72, to our knowledge KNOWME Networks is the first JITAI to be 

delivered in children. The KNOWME Networks system integrates off-the-shelf sensors with 

a mobile phone and a secured website to reduce sedentary behavior (lying down, sitting, 

standing) and promote physical activity in overweight Hispanic adolescents. Development 

of the system was conducted using a three-session iterative user-centered design approach, 

which yielded a suite of interactive technologies that consisted of:

• a wearable body area network (WBAN) with 2 Alive Technologies73 Bluetooth-

enabled wireless combined heart rate/activity monitors,

• a mobile phone app developed in-house74 that collected, analyzed, and displayed 

visualizations of participants’ physical activity and sedentary behavior based on 

personalized algorithms,

• and a secure server and web-based dashboard that received & analyzed data 

transmitted from the mobile phone app every 10 minutes (near-time).

The development of the KNOWME system and the personalized physical activity 

algorithms that were used to detect specific activities has been detailed earlier14, 74, 75.

The KNOWME Networks pilot study aimed to decrease minutes spent in sedentary 

behaviors in overweight Hispanic youth. Ten Hispanic adolescents (mean age 16.3 ± 1.7, 

mean BMI percentile 97.2 ± 4.4, 50% female) completed a comprehensive intake interview 

and wore an Actigraph accelerometer from Friday after school to Sunday bedtime in order to 

collect baseline physical activity data. Within two weeks of baseline measurement, 

participants wore the KNOWME sensors, an Actigraph accelerometer, and carried a study 

phone equipped with the KNOWME ‘sedentary analyzer’ app (Figure 1) from Friday after 

school to Sunday bedtime for this pilot study. The KNOWME app transmitted the data from 

the heart rate/activity monitors to a secure backend server and website display that allowed 
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researchers to monitor sensor status (wear and function) and cumulative minutes of physical 

activity and sedentary behavior throughout the day. Minutes of time spent in sedentary 

activities were also displayed to the participants in near-time on the KNOWME smartphone 

app (Figure 1). If a participant reached two hours of consecutive sedentary behavior, the 

phone automatically ‘beeped’ them with a ‘MOVE’ message and alerted researchers on the 

back end. If participants did not respond to the ‘MOVE’ message within 10 minutes, 

researchers initiated an SMS conversation aimed at immediately motivating the child to get 

some minutes of physical activity. Researchers were trained to provide timely feedback 

based on MI principles, and tailored precisely to the participant through use of the intake 

data about their home and neighborhood environments. Participants were able to reset the 

sedentary analyzer and avoid being alerted by being physically active for 10 consecutive 

minutes. Participants could also alert the researchers that they were unavailable to respond 

(for instance “I am having dinner at my grandmother’s”).

Results of the pilot study showed that participants accrued 170.8 minutes (p<0.1) less 

sedentary minutes using KNOWME as compared to baseline data, which is highly clinically 

significant. During the 2.5 day KNOWME wear weekend, an average of 43.1 ± 15.9 SMS 

were sent to participants by the research team. Lagged mixed regression analysis was 

completed using a subset of data (consisting of ten-minute time intervals from a mean of 10 

hours of data per day) to determine if texts sent to participants were associated with an 

increase in physical activity in the following ten-minute period. Physical activity as 

measured by accelerometer counts was significantly higher (β=1046.44, p<0.01) after SMS 

messages from the research team were received compared to when no SMS messages were 

received.

We hypothesized that only MI-adherent message content would be related to changes in 

activity behaviors. SMS messages sent to participants were coded post-hoc using a scheme 

adopted from Motivational Interviewing framework (MI) 76. Messages sent by the 

researchers were categorized as 1) prompts (MI adherent): questions that asked participants 

think about what they could do to be physically active, 2) affirmations (MI adherent): 

commending participants for engaging in physical activity, 3) suggestions (non MI-

adherent): suggesting specific activities, or 4) housekeeping (unrelated to MI): logistic 

messages about KNOWME wear, messages such as ‘good morning’, informal conversations 

about what the participant’s day was like, etc. Lagged mixed regression analyses showed 

that accelerometer counts were 2411.18 higher in the 10-minute period (p<0.001) after a 

prompt was sent, and 3183.61 counts higher in the 10-minute period (p<0.001) after an 

affirmation was sent relative to when no messages or other types of messages were sent.

Conclusion

Each of the studies showcased here has strengths and weaknesses. Most importantly, as 

technology moves forward, one can imagine each study adapting to incorporate these 

advances. For instance, in the Engaged Trial, data from the apps had to be manually 

uploaded in order for the interventionists to access. Now, that upload could be automated 

and continuous, allowing for the interventionists to give more personalized real-time 

feedback and adapting goals in a more agile fashion. In the Mobile Motivational Frame 
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Testing study, a combination of an updated interface that collected, transmitted and analyzed 

participant progress in an ongoing fashion with a SMART research design77 could be used 

to determine which of the apps works best for which person, and adapt their group 

assignment accordingly. For the B-MOBILE and Within-Person Variance-Based Adaptive 

Intervention studies, more sophisticated wearable sensors and a study dashboard that 

showed ongoing physical activity status could enable combination of the two approaches. In 

combination with a MOST study design77 an adaptive study could be developed that did not 

rely on participant data upload and could test the various conditions for different 

participants. For the KNOWME study, advances in Natural Language Processing78 might be 

used to help automate some of the intervention, rather than relying on constant humans-in-

the-loop. As to other possibilities, for instance, while these studies were all innovative, none 

took advantage of GPS, GIS, microphone or other types of data to understand and intervene 

on behavior taking social and environmental context into account.

Two recent articles have outlined hurdles facing the mHealth community50, 79. The fact that 

the field changes so quickly is one of the major challenges. Technical innovation and 

clinical discoveries can make new interventions outdated before they are published. The 

rush to market of untested apps and gadgets can lead consumers and providers to use 

interventions that do not have proven efficacy. The transdisciplinary teams have yet to 

overcome the Tower of Babel problem and learn to understand each other’s jargon and basic 

assumptions. Behavioral theories or models that can guide JITAIs have yet to be developed, 

and we have yet to develop best practices to utilize (in real time) the vast amount of real-

time data that we are receiving from sensors and EMA. These two articles also provide some 

strategies for increasing the speed and usefulness of mHealth research. These involve (but 

are not limited to) using efficient study designs, enhancing transdisciplinary 

communications, and the development of new gold standard measures and new behavioral 

models. Future mHealth obesity-related research and interventions will have increasingly 

sophisticated technologies to work with, and hopefully they will take full advantage of these 

fast-paced developments.
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Figure 1. 
Display of ‘sedentary analyzer’ KNOWME app that appears on the study phone. The app 

collects data from KNOWME’s Bluetooth enabled wearable sensors, analyses the data on 

the fly, and sends it to the secure KNOWME website and dashboard.
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