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Abstract

Background

Early initiation of anti-retroviral treatment (ART) decreases mortality as compared to

deferred treatment, but whether it preserves immune cells from early loss or promotes their

recovery remains undefined. Determination of complex immunological endpoints in infants

is often marred by missing data due to missed visits and/or inadequate sampling. Special-

ized methods are required to address missingness and facilitate data analysis.

Methods

We characterized the changes in cellular and humoral immune parameters over the first

year of life in 66 HIV-infected infants (0–1 year of age) enrolled in the CHER study starting

therapy within 12 weeks of birth (n = 42) or upon disease progression (n = 24). A conve-

nience cohort of 23 uninfected infants aged 0–6 months born to mothers with HIV-1 infection

was used as controls. Flow cytometry and ELISA were used to evaluate changes in natural

killer (NK) cells, plasmacytoid dendritic cells (pDC), and CD4+ or CD8+ T-cell frequencies.

Data missingness was assessed using Little's test. Complete datasets for analysis were

created using Multiple Imputation (MI) or Bayesian modeling and multivariate analysis was

conducted on the imputed datasets.

Results

HIV-1-infected infants had greater frequency of CD4+ T cells with naïve phenotype, as well

as higher serum IL-7 levels than HIV exposed/uninfected infants. The elevated data miss-

ingness was completely at random, allowing the use of both MI and Bayesian modeling.
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Both methods indicate that early ART initiation results in higher CD4+ T cell frequency,

lower expression of CD95 in CD8+ T cell, and preservation of naïve T cell subsets. In con-

trast, innate immune effectors appeared to be similar independently of the timing of ART

initiation.

Conclusions

Early ART initiation in infants with perinatal HIV infection reduces immune activation and

preserves an early expansion of naïve T-cells with undiminished innate cell numbers, giving

greater immune reconstitution than achieved with deferred ART. Both statistical

approaches concurred in this finding.

Introduction
Perinatal HIV-1 infection results in progressive immunodeficiency and death in absence of
early antiretroviral therapy (ART) [1]. Untreated HIV-infected children have high levels of
CD8+, low levels of CD4+ T cells with memory (CD45RA-) phenotypes [2], and reduced levels
of both naïve CD4+ and CD8+ T cells [2, 3]. Loss of naïve T cells in progressive pediatric infec-
tion has been attributed to both impairment of thymic function, as evidenced by decreased T-
cell receptor excision circles (TREC) detection (reviewed in [4]) and, at least in part, to
increased differentiation towards mature memory phenotypes [5].

Viremia in neonates coincides with early and sustained microbial translocation supporting
the role of ongoing immune activation in early disease if left untreated [6, 7]. Ongoing HIV
viremia and T-cell activation cause loss of peripheral naïve T cells, accompanied by homeo-
static alterations, aimed at increasing thymic output. These include increased circulating IL-7
that can be sustained until late disease stages [8, 9]. However, the prognostic value of IL-7 in
predicting immune recovery on treatment remains controversial [8–11]. It remains unknown
whether early ART initiation in infants (as compared to older children or adults) may cause
retention of IL-7 levels in conjunction with immune reconstitution. Regarding activation,
while the expression of CD38 is also considered a maturation marker [12, 13], CD38 expres-
sion on CD8+ T cells has predominantly been identified as a measure of immune activation
[14] that decreases in response to ART-mediated viral suppression [15].

Decreases in innate cell frequencies and function are associated with late stages of disease
progression in pediatric infection as observed in adults [16, 17], including decreased pDC and
reduced antibody dependent cytotoxicity (ADCC) capability to CD4+-infected targets [18].
How viremia and ART impact immune activation of innate and T-cell changes in perinatal
infected infants, and how these children compare to age-matched exposed uninfected controls
remains undetermined. We now address this question in infants from the “Children with HIV
Early antiretroviral (CHER) trial [19]. This study demonstrated that administration of ART
within the first 6–12 weeks of age results in higher survival than delaying therapy until infants
are symptomatic [20]. As a result, early treatment is now recommended for all perinatally
infected infants [20].

One of the issues encountered when studying infants is the high likelihood of missing data.
This is particularly true in the case of heavily sampled infants and young children, where blood
or tissue specimens are prioritized for safety assessments, leaving other assessments more likely
to be triaged at the sample allocation stage. Longitudinal studies with repeated sampling are
also likely to accumulate missingness due to skipped study visits, particularly in resource
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constrained settings where access to a central sampling location may present a difficulty. A
number of statistical methods have been proposed for handling missing data. Some approaches
have intrinsic problems: the last observation carried forward (LOCF) method may be appropri-
ate for some “intent to treat” analyses, but not for evaluating variables that are anticipated to
change over time. The Missing data Assumed to be Normal (MAN) method, which imputes
the population mean for missing variables, is also inappropriate as it artificially reduces the
standard error. Methods to overcome these limitations include mixed effect models and impu-
tation (MI)-based general estimating equations (MI-GEE), with mixed performance ratings
[21].

The Multiple Imputation (MI) method [22] imputes values for each missing cell in a data
matrix, creating multiple "completed" data sets. In this process, the observed values remain the
same, but the missing values are filled-in with different imputations to reflect uncertainty
about the missing data. The major benefit of the MI method is that it does not change any rela-
tionships in the data otherwise, enabling inclusion of all the observed data in the partially miss-
ing rows. While using data imputation in predictive models has been considered unfavorably
by some authors [23], it has been supported by others [24].

As noted by Weins and Moen [25], Bayesian simulations can accurately reconstruct highly
incomplete biological datasets. Rubin classified data missingness in three categories [26]: a)
missing completely at random (MCAR), where missingness is unassociated to any measured or
unmeasured variable, b) missing at random (MAR), where the pattern of missingness of a vari-
able is associated with the level of another measured independent variable, and c) missing not
at random (MNAR), where missingness of a variable is associated with the level of the depen-
dent variable. MCAR is considered the best possible type of missingness, because it does not
introduce bias in the dataset. Although censoring the records containing missing information
(complete case, listwise deletion) should not introduce bias [26, 27], MCAR, using robust
methods to handle data missingness without censoring, maintains the power of the analysis
[28].

Bayesian inference may be applied when the missingness is ignorable, i.e. either missing
completely at random (MCAR) or missing at random (MAR) [29]. The recent release of robust
software packages that simplify the simulation process and provide diagnostic capabilities for a
robust approximation of missing data (e.g.: WinBugs [30] or the arm package [31] in R 3.1.2
(https://cran.r-project.org/bin/windows/base/old/3.1.2) has made Bayesian simulation meth-
ods more accessible.

Here we use MI and Bayesian modeling to analyze the impact of timing of ART initiation
on innate and adaptive immune peripheral blood cell subsets in infants with perinatal HIV
infection observed through their first year of life, using a dataset with high missingness.

Material and Methods

Patient population
HIV-1-infected and HIV-negative infants from HIV-infected mothers (control) were recruited
at the Perinatal HIV Research Unit (PHRU), Chris Hani Baragwanath Hospital (Soweto, South
Africa). All HIV infected infants were enrolled in the CHER trial [19] which randomized 6–12
week old HIV infected infants to deferred ART until the CD4+ T cell count dropped below
20% (ART-Def) or to start ART at time of enrollment (i.e. 6–12 week-old, ART-Early). The
immune study described here was conducted in CHER participants and age-matched controls
of up to 1 year of age. Data was collected once per semester (defined as a 6 month period in the
year) in the following groups:
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1. Group 1 (ART-Def) includes 28 infants who completed visit 1 (first semester) of which 14
infants completed visit 2 (second semester). Antiretroviral treatment with Zidovudine,
Lamivudine, Lopinavir/Ritonavir) was initiated based on CD4+ T cell % or clinical criteria.

2. Group 2 (ART-Early) includes 42 infants who completed visit 1 (first semester) of which 29
infants completed visit 2 (second semester). Antiretroviral treatment with Zidovudine,
Lamivudine, Lopinavir/Ritonavir) was initiated at enrollment.

3. Group 3, (HIV exposed uninfected [HEU] controls) is a convenience cohort of 23 unin-
fected infants aged 0–6 months, born to mothers with HIV-1 infection. HIV negativity was
established at age 4–6 weeks using a single HIV DNA PCR test. In contrast to the HIV
infected infants, the HEU controls had a single visit only.

Two consecutive blood samples were collected for the reported analyses, one during the first
semester and one in the second semester. Due to the difficulty of obtaining sufficient blood vol-
umes from infants, the blood-draw schedule was flexible within each 6-month period. A single
sample was obtained from HIV exposed-uninfected infants in the control group, either in the
first or second semester. All HIV-infected infants initiated ART by end of year 1.

Participant consent and ethics oversight. Written informed consent was obtained from
parents or legal guardians of all participants. For infants enrolled in the CHER trial, a separate,
written informed consent for the participation in this sub-study was obtained.

Ethics Committees of the University of the Witwatersrand, Stellenbosch University and the
Wistar Institute Institutional Review Board approved consent forms, study protocols and rele-
vant ethical issues.

Flow Cytometry and serum IL-7 assessment
T lymphocyte and innate cell (DC, NK) subsets were evaluated using whole blood-based flow
cytometry, using the following mouse monoclonal antibody combinations supplied in lyophi-
lized 96-well plates (BD Biosciences, San José, CA): panel 1, T cells naïve/memory: CD45RA-
FITC, CD27-PE, CD3-PerCP, CD4-APC; panel 2: T cell activation: CD7-FITC, CD95-PE,
CD3-Per-CP, CD8-APC; panel 3: T cell activation: CD8-FITC, CD38-PE, CD3-PerCP,
CD28-APC; panel 4: NK subpopulations: CD56FITC, CD16-PE, CD3-PerCP, CD161-APC;
panel 5: pDC: Lin-1-FITC, CD123-PE, HLA-DR-PerCP, HLA-ABC-APC.

Flow cytometry was performed using a FACSCalibur Flow Cytometer using CellQuest soft-
ware (BD Biosciences). Isotype-matched control antibodies were used as negative controls for
gate positioning. Mean Fluorescence Intensity (MFI) of CD38 staining was assessed as
described previously [32]. A total of 13 variables representing target subsets were analyzed.

IL-7 was measured on cryopreserved plasma using ELISA kits from R&D, Minneapolis,
MN, following manufacturer’s directions, with a detection range of 0.25–16 pg/mL.

Statistical analysis
The overall statistical analysis approach is summarized in Fig 1.

Missingness analysis. In our longitudinal data set (HIV-infected infants), data for key var-
iables incomplete in> 40% of the participants. A map of the observed missingness for the
main variable categories is provided in Fig 2. We conducted two analyses to determine if the
missingness was informative and therefore non-ignorable. Of particular concern was the possi-
bility that missing data was due to poor health of the child, which could affect the treatment
outcome. Our field staff reviewed chart data and confirmed that the corresponding study visits
were not missed, but rather specimens were either not received at the laboratory, or were of
insufficient volume/quality.
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All subjects had a visit accession code and a CD4+ T cell % observation, which was obtained
as first priority, but overall up to 40% of observations were missing from additional immunol-
ogy variables (flow cytometry and/or ELISA data).

To assess whether the missingness was significantly related to either the dependent or inde-
pendent variables (and therefore non-ignorable), we examined the structure of missing data by
using Little’s Missing Completely at Random Test (MCAR) [33] using code developed for SAS
software.

Multiple imputation (MI). Software: we applied Multiple MI using the Amelia II package
in R software [34]. We analyzed all records where the same child had both clinic visits docu-
mented (n = 34), but were missing flow cytometry and/or ELISA data (Fig 3).

We set the program at the recommended five imputations per dataset, which were then
combined to a single imputed dataset. This was accomplished using the “mi” function in the
Zelig add-on package in R [35, 36]. Zelig combined the five imputed dataset using Rubin’s rule
[37] that accounts for both the ‘within’ and ‘between’ standard error of the imputed estimates
before they are averaged.

Analysis assumptions: the Amelia II program assumes that the structure of the missingness
is either MCAR or MAR [34].

Performance monitoring: the Amelia II package contains a number of algorithms to moni-
tor performance of the Multiple Imputation process. Of the available metrics, we implemented
the “overimputation” and “disperse” functions. Graphical representations that indicate the dif-
ferences between observed (known) and imputed values were used to assess the performance.
The results of this process for a representative variable (naïve CD27+/CD4+ T cells) are illus-
trated. (S1 Fig) We achieved normal Expectation—Maximization (EM) convergence. To assure
EM convergence, we used the visual diagnostic “disperse” function from multiple over-dis-
persed starting values for output from Amelia.

Multivariate analysis: for multivariate analysis we combined the five imputed datasets using
the Zelig [35] package version 4.1–3 in R (http://cran.r-project.org/web/packages/Zelig/index.
html) which has a specific multiple imputation function “mi” to combine imputed data. The
effect of arm assignment on the levels of all variables was assessed applying logistic regressions

Fig 1. Statistical analysis summary. The tree represents the statistical analyses applied in the order in
which they were performed. Distribution assumptions are indicated. Statistical packages are listed; where not
specified, tests were conducted using R.

doi:10.1371/journal.pone.0145320.g001
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Fig 2. Missingnessmap.Data missingness across all observation for infants with data available for both
visit 1 and 2 (visit record). All infants had CD4+ T cell % assessments at each recorded visit (CD4;
missingness = 0%). IL-7 ELISA assessments were missing for 20% of the recorded visits; flow cytometry
assessments were missing for a median of 31% (min 31%, max 34%) of the recorded visits.

doi:10.1371/journal.pone.0145320.g002
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to the imputed data set using Zelig, using the AIC and “step “function in R for backward step-
wise model selection.

Bayesian modeling. Software: to further explore the relationships suggested by analyses of
the imputed dataset, we created Bayesian Simulations using two software packages. The initial
simulations were performed using winBUGS [30] (version 1.4.3) with the BugsXLA interface
[38, 39] to take advantage of its extensive diagnostic tools. The final analysis was performed
with the recently released “arm” package in R [31] (version 1.6). In both packages the Bayesian
analysis is based on Markov Chain Monte Carlo sampling, allowing us to implement an algo-
rithm of 50,000 (winBUGS) or 100,000 (arm) simulations in the models presented here. In all
of the simulations, the first 4000 initial MCMC samples were discarded (“burn-in”) under an
assumption of convergence past this point [39].

Analysis assumptions: all priors were derived from observed data. We initially assumed a
normal distribution for the independent effects and covariate regression coefficients as prior
distributions. We excluded other prior distributions using the Deviance Information Criterion
(DIC) in winBUGS that is reported in the BugsXLA output and as implemented in the “arm”

package. We re-ran the simulations and models using a Poisson distribution in both software
packages, which appeared closer to the observed distribution.

Assumptions on distributions and data transformation: The selection of the Poisson distri-
bution is consistent with using proportional data in some instances [40]. The author suggests
that in some instances a Poisson distribution might be an appropriate distribution for propor-
tional data if not clustered at either bound of 0 or 1. We note that none of the proportional
data of immunological factors presented in this study clustered at either 0 or 1, but were mostly
ranged between 0.2 to 0.8.

Model selection: as suggested by Spiegelhalter et Al. [41], we chose the model with the low-
est DIC value, which indicates that the model best predicts a replicate dataset which has the
same structure as that currently observed.

Performance monitoring: to assess the model performance we monitored the Gelman and
Rubin convergence statistics [42, 43] using winBUGS. This metric uses multiple simulated
MCMC chains and then compares the variances within each chain and the variance between
chains. The authors noted that a large deviation between these two variances indicates non-

Fig 3. Data point availability. Subjects are grouped according to study visit (dark grey boxes; visit 1 = 1st

semester, visit 2 = 2nd semester), and according to study group (light grey boxes; ART-Def = deferred
treatment; ART-Early = early treatment). For each group, the number of tests available for analysis type is
indicated (open boxes).

doi:10.1371/journal.pone.0145320.g003
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convergence. As illustrated in S2 Fig (representative variable CD27+/CD4+ T cells), our model
resulted in good convergence, as diagnosed by the Gelman Rubin statistic approaching a value
of 1.

Multivariate analysis: finally, to evaluate the effect of arm assignment and time on the vari-
ables at visit 2, we used the Bayesian estimated regression parameters and the estimates of the
standard error and confidence limits to derive a multivariate Generalized Linear Model, with a
significance level of p = 0.05.

As noted by Mason et Al. [44], the Full Bayesian Model that we have applied is a one-step
procedure where imputation and analysis models are fitted simultaneously and the imputation
model uses the joint distribution of all missing variables and applies the full posterior distribu-
tion of missing values in building a statistical model. In contrast MI is a two-step process with
separate imputation and analysis models where the imputation model is based on a set of uni-
variate conditional distributions.

Results

Infants with perinatal HIV-1 infection have higher IL-7, higher frequency
of naïve CD4+ T cells and retained innate effectors
We sought to evaluate effects of perinatal HIV replication by evaluating changes in T-cell fre-
quencies, immune activation and innate effectors. We first compared our cohort of 66 HIV-
infected infants at visit 1 with a convenience cohort of 23 HEU infants. At the time of sampling,
the ART-mediated suppression rate was 44% (29 of 66). As indicated in Table 1, after adjust-
ment for multiple testing HIV-infected infants had a significantly lower % of total CD4+ T cells
and higher % of activated (HLA-DR+) CD8+ T cells than HEU infants of comparable age, in

Table 1. Baseline values in HIV-infected infants compared to a convenience cohort of HIV-exposed, uninfected (HEU) infants.

HEU HIV-infected1 T-test

Variable mean SD n mean SD n p

Visit age 129.7 54.7 23 112.7 35.9 66 0.1756

Birth weight 2573 703 23 2942 455 66 0.0257

CD4+ (%) 42.5 6.8 23 36.0 8.5 66 0.0005 *

CD38+ (% of CD8+) 97.8 2.2 20 98.2 1.8 48 0.5214

HLA-DR+ (% of CD8+) 8.0 8.8 20 20.9 18.3 49 0.0002 *

CD95+ (% of CD8+) 84.3 19.4 20 77.1 25.5 49 0.2105

CD161+/56+/16+ (% of NK) 60.3 15.7 20 53.5 16.4 49 0.1136

CD161+/56-/16- (% of NK) 3.2 2.3 20 4.5 4.9 49 0.118

pDC 0.2 0.3 20 0.3 0.1 46 0.1957

CD28+ naïve (% of CD4+) 67.4 10.2 20 75.9 8.9 49 0.0027 *

CD27+ naïve (% of CD4+) 74.8 11.3 20 82.4 9.0 49 0.011

CD28+ naïve (% of CD8+) 51.4 18.1 20 50.9 20.7 49 0.9182

CD27+ naïve (% of CD8+) 76.8 12.7 20 66.9 19.9 49 0.0168

Central Memory (% CD4+) 22.7 8.0 20 20.6 8.5 49 0.3226

Central Memory (% CD8+) 13.0 5.2 20 15.9 10.3 49 0.1366

CD38 MFI (in CD8+) 526.9 278.2 20 870.6 657.3 48 0.0035

IL7 (pg/ml) 2.4 1.9 21 5.4 4.3 50 0.0002 *

* Significant after Bonferroni adjustment for multiple testing.
1 Documented viral suppression (HIV VL < 400) = 44% (29 of 66).

doi:10.1371/journal.pone.0145320.t001
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keeping established observations in African children [14, 45]. An elevated expression (MFI) of
CD38 was also observed on CD8+ T cells from the HIV-infected group, but the result was not
significant after adjustment for multiple testing. HIV-infected infants also showed higher fre-
quency of IL-7 and of CD4+ T cells with naïve phenotype (i.e.: CD45RA+/CD28+), suggesting a
possible compensatory enhancement of thymic output activity as a result of HIV infection
and/or CD4+ T cell depletion. NK and pDC frequencies were retained at control levels. Specifi-
cally, baseline levels of mature CD161+/56+/16+ and immature CD161+/56-/16- NK cells, as
well as pDC were similar in HIV infected and control infants (Table 1) suggesting that viremia
in infants does not result in loss of innate cell subsets as observed in adults with acute or
chronic infection [46–48] or infants with poorly controlled chronic infection [49].

Addressing MCAR data missingness in follow-up visit by imputation and
Bayesian model approaches
As illustrated in Fig 3, of the 66 infants completing a sub-study visit in the first semester (Visit
1, 24 in ART-Def, 42 in ART-Early), only 34 (12 and 22, respectively) had data for a study visit
in the second semester. While CD4+ T cell % was assessed for all infants, assessments for flow
cytometry (13 variables) and serum-based ELISA (one variable, IL-7) were not completed for
all subjects. The distribution of the observed values for each variable assessed at visit 1 and 2 is
summarized in Table 2. For a more complete breakdown of the observed values, please refer to
S1a Table (all infants, by visit) and S1b Table (all infants by study arm and by visit).

To assess whether the missing data were likely to bias the analysis, we applied Little’s test
[33] to determine if the missingness was completely at random (i.e.: unrelated to measured or
unmeasured characteristics, MCAR [40]), at random (i.e.: associated with another variable’s

Table 2. Observed values.

Visit 1 (3–6 months) Visit 2 (6–12 months)

ART-Def ART-Early ART-Def ART-Early

Variable mean SD n mean SD n mean SD n mean SD n

Visit age 102.6 33.9 24 118.4 36.2 42 263.0 57.2 12 265.2 71.5 22

Birth weight 2962.9 551.7 24 2930.2 396.3 42 2727.1 390.4 12 2895.5 405.9 22

CD4+ (%) 32.9 7.9 24 37.7 8.4 42 34.5 7.6 12 37.9 6.0 22

CD38+ (% of CD8+) 99.1 0.8 18 97.6 2.0 30 97.8 3.8 8 97.7 2.5 12

HLA-DR+ (% of CD8+) 38.0 17.6 18 10.9 8.8 31 22.9 19.7 7 21.9 16.7 12

CD95+ (% of CD8+) 93.4 7.7 18 67.7 27.5 31 87.0 11.5 7 73.4 22.3 12

CD161+/56+/16+ (% of NK) 55.4 16.5 18 52.4 16.5 31 62.4 7.7 8 60.7 16.9 12

CD161+/56-/16- (% of NK) 3.1 3.4 18 5.4 5.4 31 2.8 1.9 8 4.4 5.8 12

pDC 0.3 0.1 17 0.3 0.2 29 0.4 0.7 8 0.4 0.4 11

CD28+ naïve (% of CD4+) 76.1 9.5 18 75.7 8.7 31 69.7 7.4 8 70.3 11.3 12

CD27+ naïve (% of CD4+) 80.5 8.5 18 83.6 9.3 31 78.4 10.4 8 80.7 5.7 12

CD28+ naïve (% of CD8+) 40.8 20.5 18 56.7 18.7 31 36.7 18.7 8 49.6 18.4 12

CD27+ naïve (% of CD8+) 53.7 18.1 18 74.5 16.8 31 54.5 16.2 8 67.8 14.2 12

Central Memory (% CD4+) 19.7 8.3 18 21.1 8.7 31 17.7 11.2 8 22.6 8.4 12

Central Memory (% CD8+) 22.9 12.5 18 11.8 5.7 31 20.9 4.0 8 16.9 6.1 12

CD38 MFI (on CD8+) 1402.0 790.9 18 551.8 230.5 30 658.6 390.8 8 830.6 355.9 12

IL7 (pg/ml) 4.1 3.7 16 5.4 4.4 28 4.0 3.6 11 4.9 3.4 21

Log10VL 5.9 0.8 14 3.1 0.6 22 5.0 1.6 4 3.0 1.0 16

VL > 400 - - 14 - - 15 - - 3 - - 4

doi:10.1371/journal.pone.0145320.t002
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value, MAR) or not at random (i.e.: associated with the value of the missing variable itself). The
results of Little’s test were not significant for any variable used in the analysis, indicating the
missingness is consistent with an MCAR pattern [50]. Based on this and additional confirma-
tion by clinical sites, we established with reasonable certainty that the missing data were related
to reasons unrelated to the clinical or immunological condition of the infants, but were rather
attributable to missed visits, insufficient or inadequate blood draws or laboratory errors. These
findings supported our conclusion that data missingness was MCAR, thus not informative and
ignorable.

The observed data approximated a normal distribution for most variables. To assess the
effect of distribution assumptions on the analysis, we also proceeded with a simple data trans-
formation [loge (var x 100)] allowing us to approximate a Poisson distribution. To compare the
datasets created with MI and Bayesian modeling approaches, we first compared the means of
the estimates obtained with the MI versus Bayesian modeling approaches for each variable.
There was an overall good correlation between the estimates provided by both the Bayesian
model approach and MI, under both a normal distribution assumption (Pearson P< 0.0001; R2

= 0.95; Fig 4A) and Poisson distribution assumption (Pearson P< 0,0001; R2 = 0.79; Fig 4B).
The distributions of MI and Bayesian modeling estimates for each variable are provided in
Tables 2 and 3, respectively. For a more comprehensive summary, please refer to S2 and S3
Tables.

Within the same method, the effect of the distribution assumption was greater for the MI
approach, as evidenced by the poorer linear fit between estimates across all variables
(p = 0.0013; R2 = 0.59; Fig 5A). The correlation between estimates with normal and Poisson
distribution assumption was slightly better for the Bayesian model (p< 0.0001; R2 = 0.78;
Fig 5B).

Analysis of variables from visit 1 to visit 2 (detailed below) based on MI or Bayesian models
showed that using a Poisson distribution assumption (with the required data transformations)
yielded a larger number of significant comparisons (MI: 2 significant estimates for normal dis-
tribution vs. 5 with Poisson; Bayesian modeling: 1 significant estimates with Normal distribu-
tion vs. 7 with Poisson), supporting that an assessment of various distribution assumptions
may be required to select the most appropriate method for any particular dataset.

Early ART initiation results in greater CD4+ T-cell recovery and lower T-
cell activation
We assessed the effects of early ART administration on CD4+ T cell % and T cell activation in
both groups (Table 2). Median ART initiation was at 54 days (IQR 46; 61, n = 42) ART-Early
and 220 days (IQR = 171; 341) for ART-Def. Of 21 infants in ART-Def group initiating ART
after 180 day of age; 7 were not yet on ART by visit 2.

In our MI dataset (Table 3), the mean CD4+ T cell % of the early treatment group at the sec-
ond semester visit (mean = 38.27% ± SD = 1.28) was significantly higher (difference
estimate = 4.337 ± SE = 2.2, p = 0.049) than that of the ART-Def group under a normality
assumption. This result was supported upon loge transformation to approximate a Poisson dis-
tribution (difference estimate = 0.12 ± SE = 2.2, p = 0.028).

Similar results were also obtained with the Bayesian model (Table 4) with both normal (dif-
ference estimate = 4.337 ± SE = 2.152, p = 0.05) and Poisson (difference
estimate = 0.12 ± SE = 0.054, p = 0.028) distributions.

Viral replication is associated with elevated cellular activation, particularly in the CD8+ T
cell compartment. Surprisingly, neither expression level nor frequency of CD38+/CD8+ T cells
was significantly lower using the MI data whereas the Bayesian model approach (Poisson
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distribution, Table 4) did detect a change in CD38 MFI in CD8+ T cells as expected. This was
further corroborated by a significant drop after ART in CD8+ T-cell frequencies expressing
two other long-term activation or apoptosis-inducing proteins, HLA-DR or CD95, respec-
tively. These results indicate that after addressing data missingness in visit 2 we could confirm
the anticipated changes in infants receiving early ART where a higher CD4+ T cell immune
recovery and lower expression of activation or pro-apoptotic molecules was significant.

Fig 4. Method comparison. The means of the estimates for each variable obtained from Bayesian modeling
(vertical axis) and Multiple Imputation (horizontal axis, transformed as indicated) were tested using Pearson’s
linear regression. The slope estimate, R2 and p are indicated in the insets. Panel A: Normal distribution
assumption; Panel B: Poisson distribution.

doi:10.1371/journal.pone.0145320.g004

Early ART Immunological Outcomes in HIV+ Infants

PLOS ONE | DOI:10.1371/journal.pone.0145320 December 15, 2015 11 / 20



Early ART initiation results in the preservation of the Naïve T cell
memory compartment and retention of T cell effector frequencies
Based on the higher CD4+ T cell recovery observed in ART-Early and to determine if early
treatment has long-term effects on memory subset development or distribution, we assessed
the frequency of naïve, central memory, intermediate memory and effector terminal CD4+ and
CD8+ T cells. No significant difference was observed for CD4+ naïve T cell subsets in both MI
and Bayesian sets. However, analysis of MI datasets (Table 3) indicated that at the second
semester visit infants in ART-Early had a higher frequency of naïve (CD45RA+/CD27+) CD8
+ T cells than infants in ART-Def (Normal distribution difference estimate = -13.889 ± SE =
5.809, p = 0.017. Poisson distribution difference estimate = 0.240 ± SE = 0.057, p< 0.001). This
result was also supported by one of the Bayesian models (Poisson distribution difference
estimate = 0.14573 ± SE = 0.05384, p = 0.007). When a Poisson distribution assumption was
made, the same result was observed for the alternative naïve CD8+ phenotype (CD45RA
+/CD28+) with both multiple imputation (Table 3. Difference estimate = 0.286 ± SE = 0.052,
p<0.001) and Bayesian model (Table 4. Difference estimate = 0.25 ± SE = 0.06548, p<0.001).

Using a Poisson distribution assumption, CD45RA-/CD28+ CD4+ central memory T cells
were higher in ART-Early at the second visit with both multiple imputation (Table 3. Differ-
ence estimate = 0.296 ± SE = 0.133, p = 0.053) and Bayesian models (Table 4. Difference
estimate = 0.28129 ± SE = 0.09367, p = 0.003). Central memory CD8+ T cells were not signifi-
cantly different between groups, independent of the method or distribution assumption. Inter-
estingly, although baseline IL-7 levels were significantly higher in HIV-infected infants as
compared to HEU controls (Table 1, p = 0.0002), and despite the increased frequency of naïve
CD8+ T cells in ART-Early, serum levels of IL-7 at visit 2 were not significantly different

Table 3. Multiple Imputation: univariate analysis with continuous variables imputed with treatment group as the independent variable.

ART-Def ART-Early—ART-Def Normal
distribution

Lg(ART-Early)–Lg(ART-Def) Poisson
distribution

Response 1 Mean St.Dev. Estimate SE p Estimate SE p

CD4+ (%) 38.27 1.28 4.337 2.204 0.049** 0.120 0.055 0.028**

CD38+ (% of CD8+) 97.52 0.47 0.023 0.837 0.979 0.001 0.033 0.972

HLA-DR+ (% of CD8+) 21.92 3.87 -8.373 7.732 0.283 -0.002 0.009 0.795

CD95+ (% of CD8+) 76.21 3.26 -12.651 6.239 0.044** -0.154 0.046 0.003**

CD161+/56+/16+ (% of NK) 57.93 2.72 -1.085 5.430 0.842 -0.018 0.062 0.781

CD161+/56-/16- (% of NK) 4.80 0.91 -0.172 1.658 0.917 -0.030 0.178 0.866

pDC 0.38 0.07 0.050 0.134 0.708 0.370 0.798 0.643

CD28+ naïve (% of CD4+) 71.34 1.71 -2.092 3.139 0.505 -0.028 0.040 0.480

CD27+ naïve (% of CD4+) 80.07 1.64 0.318 2.895 0.912 0.005 0.038 0.897

CD28+ naïve (% of CD8+) 46.11 3.42 10.620 7.524 0.165 0.286 0.052 0.000**

CD27+ naïve (% of CD8+) 65.76 3.16 13.889 5.809 0.017* 0.240 0.057 0.000**

Central Memory (% CD4+) 21.98 1.71 5.614 3.422 0.106 0.296 0.133 0.053*

Central Memory (% CD8+) 17.87 2.20 -2.732 4.176 0.513 -0.140 0.099 0.171

CD38 MFI (in CD8+) 808 1061 -88.02 242.318 0.719 -0.098 0.175 0.606

IL7 (pg/ml) 4.84 0.69 0.865 1.275 0.498 0.115 0.148 0.440

1 Predicted mean response with imputed data for early treatment group.

** Significant (p value < 0.05);

* Trend (p value < 0.1).

doi:10.1371/journal.pone.0145320.t003
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Fig 5. Effects of distribution assumptions on estimates. The means of the estimates for each variable
obtained fromMultiple Imputation (Panel A) or Bayesian modeling (Panel B) under a normal distribution
assumption (assumption (vertical axis, transformed as indicated) or a Poisson distribution assumption
(horizontal axis) were tested using Pearson’s linear regression. The slope estimate, R2 and p are indicated in
the insets.

doi:10.1371/journal.pone.0145320.g005
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between ART-Early and ART-Def, suggesting that its levels do not directly track the change in
naïve T-cell frequencies observed in this cohort.

Finally, pre-ART levels of mature CD161+/56+/16+ and immature CD161+/56-/16- NK
cells, as well as Plasmacytoid Dendritic cells remained stable, with change in both groups not
significantly different after ART, independent of assessment method or the distribution
assumptions (Tables 3 and 4).

Discussion
We document for the first time that early ART initiation is associated with a greater recovery
of CD4+ T-cells together with expanded CD4+ naïve T-cells. Elevated IL-7 during perinatal
viremia was associated with greater expansion of CD8+ naïve T cells and retention of innate
effector frequencies. Our findings were supported by statistical methods addressing elevated
(> 40% for selected variables) MCAR data missingness. Addressing missing data was critical as
the sample cohort provides the first large-scale assessment of immune benefits linked to the
clinical benefits reported for the entire CHER cohort [51]. Comparison of multiple methods
and distribution assumptions further largely confirmed the direction of the estimates, assisting
interpretation of results and allowing inspection of concordance of the estimates values and
direction as corroborative evidence.

In HIV-uninfected infants and young children, naïve T cells are the largest memory subset
(reviewed in [52]). This subset is depleted in perinatally-infected infants with advanced disease.
Here ART initiation results in a slow recovery of both CD8+ and CD4+ naïve T cells, with con-
comitant reduction of the effector memory T subsets and CD38+/HLA-DR+ activated T cells
[53]. Early ART initiation preserves memory T and B compartment in pediatric cohorts [54,

Table 4. Bayesianmodel: univariate analysis with continuous variables Bayesianmodel without imputed data, with treatment group as the inde-
pendent variable.

ART-Def ART-Early—ART-Def Normal
distribution

Lg(ART-Early)–Lg(ART-Def) Poisson
distribution

Response 1 Mean St.Dev. Estimate SE p Estimate SE p

CD4+ (%) 38.260 1.283 4.337 2.152 0.050* 0.12026 0.05477 0.028**

CD38+ (% of CD8+) 97.760 0.706 -0.242 1.124 0.831 -0.001702 0.041251 0.967

HLA-DR+ (% of CD8+) 22.100 5.555 -4.814 9.718 0.624 -0.17789 0.07987 0.026**

CD95+ (% of CD8+) 83.170 5.324 -9.350 7.749 0.238 -0.11352 0.04619 0.014**

CD161+/56+/16+ (% of NK) 57.350 4.283 -0.676 6.323 0.916 -0.01152 0.05361 0.830

CD161+/56-/16- (% of NK) 4.536 1.341 -0.260 2.138 0.904 -0.03551 0.18789 0.850

pDC 0.276 0.053 -0.001 0.173 0.996 0.05716 0.86602 0.947

CD28+ naïve (% of CD4+) 70.630 2.602 -0.823 4.014 0.839 -0.01018 0.04842 0.834

CD27+ naïve (% of CD4+) 79.810 2.396 -1.209 3.818 0.754 -0.01328 0.04575 0.772

CD28+ naïve (% of CD8+) 45.880 5.455 10.145 8.166 0.225 0.24994 0.06548 0.000**

CD27+ naïve (% of CD8+) 64.560 4.617 8.486 7.356 0.259 0.14573 0.05384 0.007**

Central Memory (% CD4+) 22.990 2.535 5.728 3.940 0.158 0.28129 0.09367 0.003**

Central Memory (% CD8+) 18.830 3.422 -2.431 5.457 0.659 -0.11942 0.09047 0.187

CD38 MFI (in CD8+) 887 164 36.430 261.810 0.890 0.04207 0.01389 0.002**

IL7 (pg/ml) 4.698 0.692 0.443 1.151 0.702 0.09913 0.1612 0.539

1 Bayesian Model Predicting Mean Response for Early Treatment Group.

** Significant (p value < 0.05);

* Trend (p value < 0.1)

doi:10.1371/journal.pone.0145320.t004
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55]. In infants from the parent CHER study, timing of ART initiation had no effect on quanti-
tative humoral immune responses to a variety of vaccines [56]. However, qualitative responses
to conjugated pneumococcal vaccine were significantly better in infants receiving early ART
[57].

Our analysis shows a sustained elevation of IL-7 levels (no significant change over time),
together with an increased frequency of CD4+ T cells with a naïve phenotype, in early treated
HIV-infected infants. This suggests that early ART may promote the retention of an increase
in thymic output during perinatal viremia. While the true level of thymic output in relation to
the timing of ART in HIV-infected infants is still being evaluated in a CHER sub-study (e.g. via
evaluation of TRECs), we interpret that the early increase in IL-7, supporting high thymic out-
put, contributed to a rapid and higher recovery of the CD4+ T-cells, possibly contributing to
the observed clinical benefits of early treatment (lower mortality and morbidity, [19]). We also
document a rise in CD4+ T cell %, and a lower expression of activation and pro-apoptotic
CD95 on CD8+ T cells upon viral suppression as expected. Interestingly, early treatment also
resulted in greater proportion of CD8+ T cells with naïve phenotypes. These memory subsets
are specifically affected during untreated HIV viremia; their sustained impairment in infants
where ART is delayed may contribute to the worse clinical outcomes observed in ART-Def
[19]. The observed increase in naïve CD8+ T cells associated with early treatment is also consis-
tent with an increase in thymic output. While we cannot exclude that the lack of detection of
significant differences in IL-7 levels after ART may be due to the limited sample size and lack
of statistical power, it is interesting to speculate that retention of CD8+ naïve T cells, as
observed with innate effectors, may contribute to greater T cell recovery in infants than adults
receiving ART after acute infection. In this sense, retention of IL-7 levels after ART could be a
positive prognostic factor in infants despite of viremia in contrast to HIV-infected adults [58,
59]. The interpretation that early ART in infants may result in greater benefits in immune
reconstitution than adults is also supported by the fact that both NK cells and pDC subsets
were retained irrespective of treatment strategy.

Analysis of longitudinal data after ART was dependent on addressing data missingness by
Multiple Imputation and Bayesian Modeling. We elected not to censor incomplete records in
order to retain power for detecting differences even though removing random missingness
should not introduce analytical bias [28]. While a number of authors [22, 27, 60] have noted
the superiority of both Multiple Imputation and Bayesian Modeling compared to complete
case analysis or list-wise deletion, where missing data is simply eliminated, there remain sub-
stantial differences between the two methods. The multiple imputations approach allows us to
address the question of likelihood of a dataset in the absence of missing data. The Bayesian
modeling approach allows the creation of a large number of instances of datasets modeled on
the observed data, thus increasing the power of the analysis. Of the two methods, using guide-
lines developed by these authors, both MI and Bayesian modeling are indicated when the data-
set is small and the number of covariates with missingness is low. Both approaches have been
successfully used in pediatric cohorts (examples in [61–64]), but not, to our knowledge, to sup-
port interpretation of prospective datasets with high missingness or to address immune vari-
ables in observational studies.

An important limitation of this work includes the small sample size and the relatively high
missingness levels, suggesting a need to further validate our findings. Unlike the parent study,
the work presented here is essentially observational, and thus is not adequately powered to
draw conclusions on negative results. Therefore, any negative conclusion (e.g. lack of change in
IL-7 levels over time etc.) should be interpreted with caution and confirmed in larger cohorts.
Secondly, we did not study the functionality of immune subsets. Future work should determine
if retained innate cell subsets undergo a functional change after ART as both IFN-α production
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by pDC [47] and IFN-γ production by NK cells [65] are impaired by viremia in HIV-infected
adults independently of the relative cell frequency.

Another potential weakness of our approach is the influence of the data distribution
assumptions on the analysis performance: in addition to the effects on the significance of the
findings, the change in one variable (CD123+ pDC frequency) had a different direction
depending on the distribution assumption (-0.001 for normal distribution vs. 0.058 for Pois-
son). Since this change was not significant under either assumption (p = 0.947), the significance
of this divergence remains to be explored. Our data overall suggest that overall the Bayesian
model may be less sensitive to distribution assumptions than the MI approach.

Lastly, our data does not address the long-term effects of ART, whether early or deferred,
but rather focuses on early immune changes at 1 year of age.

In conclusion, despite its limitations, our analysis highlights the value of using statistical
methods to work with high missingness dataset, particularly when extracting biological infor-
mation from irreplaceable sample collections such as the CHER study analyzed here. Impor-
tantly, immune changes described after early ART ultimately highlight a limited window of
opportunity following birth where ART can potentially preserve early immune compensatory
mechanism during perinatal viremia to result in a more robust and clinically significant recov-
ery of immune function during the first year of life.

Supporting Information
S1 Fig. Overimputation diagnostics (example): observed vs. imputed values of CD27+ naïve
CD4+ T cells. Example of overimputation diagnostic (Amelia II package) showing the observed
and imputed values of CD27+ CD4+ naïve T cells. As outlined by Honaker et al. [34], ninety per-
cent confidence intervals are constructed that detail where an observed value would have been
imputed had it been missing from the dataset, given the imputation model (i.e: how well would
the model have predicted the known values had they been missing). The dots represent the mean
imputation and the blue lines the confidence interval. Around ninety percent of these confidence
intervals contain the y = x line, indicating that the true observed value falls within this range.
(TIF)

S2 Fig. Convergence plots diagnostics (example).WinBUGS offers the Gelman-Rubin statistic
for assessing convergence. In our example for values of CD4+/CD28+ Naïve T cells. This statis-
tic assesses the variability within parallel chains (blue line) as compared to variability between
parallel chains (green line). The model is judged to have converged if the ratio of between to
within variability (red line) is close to 1. In our example convergence is indicated by the red line
being close to 1 on the y-axis and by the blue and green lines being stable (horizontal) across the
width of the plot for both runs (presented as separate panels). We used a conservative “burn in”
where the first 4000 simulations were discarded. Parameter values that have been sampled at the
beginning of the simulation are typically discarded so that the chain can converge to its station-
ary distribution. Large, conservative burn-in periods (as we applied) are generally preferable to
shorter burn-in periods as noted by Merkle and Van Zandt [WinBUGS Tutorial Outline August
4, 2005 (http://www.stat.ubc.ca/lib/FCKuserfiles/WinBUGSforbeginners.pdf)]
(TIF)

S1 Table. 1A. Observed values by visit. 1B. Observed values by visit and treatment arm.
(DOCX)

S2 Table. Univariate analysis with continuous variables imputed (MI) and with treatment
Group as the independent variable.
(DOCX)
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S3 Table. Univariate analysis with continuous variables estimated using Bayesian Model
and treatment Group as the independent variable.
(DOCX)
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