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Abstract

Currently there are no viable treatment options for patients with debilitating inherited retinal 

degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has 

hampered the development of therapeutic interventions. Gene therapy is a logical approach, and 

recent work has focused on ways to optimize vector design and packaging to promote optimized 

expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing 

ocular clinical trials, which currently use viral gene delivery, but focus primarily on new 

advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral 

delivery systems are highly customizable, allowing functionalization to improve cellular and 

nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the 

nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, 

however their favorable safety/immune profiles and large DNA capacity (critical for the delivery 

of large ocular disease genes) make their further development a research priority. Recent work on 

particle coating and vector engineering present exciting ways to overcome limitations of 

transient/low gene expression levels, but also highlight the fact that further refinements are needed 

before use in the clinic.
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Introduction

Inherited retinal degeneration is a primary cause for debilitating impairments in vision 

among working age people in the developed world(1), and development of effective 

therapeutics for inherited retinal disease is a primary research goal. Retinal dystrophies are 

categorized roughly into two categories: 1) retinitis pigmentosa (RP), a broad term 

encompassing phenotypes that initially affect rod photoreceptors and peripheral vision, and 

may later be associated with cone cell death, and 2) macular dystrophy (MD), a term 

encompassing widely varying phenotypes in which macular or central vision is initially 

affected(2, 3). Though MD can be caused by defects in cone photoreceptors, it can also be 

caused by defects in the retinal pigment epithelium (RPE). For example, Stargardt's MD is 

associated with retinal pigment epithelium (RPE) atrophy (4) and subsequent degeneration 

of the cones in the macular region of the retina and leads to central vision loss. There are 

also various syndromic forms of inherited retinal diseases (particularly leading to RP) which 

exhibit degenerative processes not only in the eye but also in other organs (5). The most 

common form of syndromic RP is Usher syndrome which comprises hearing loss in addition 

to visual impairment (for review see(6)).

Inherited retinal diseases are complex. Causal mutations in more than a hundred genes have 

been identified for inherited retinal degeneration and there are still many unidentified (7). In 

addition, most disease genes contain multiple pathogenic mutations leading to a wide variety 

in the severity and age of onset of the disease (8, 9). Mutations in certain genes like the 

structural protein peripherin-2 can induce RP as well as MD, depending on the site of 

mutation involved (10, 11) and RP can be inherited in a dominant or recessive manner (5). 

There is also a large degree of intra- and inter-familial phenotypic heterogeneity and often 

incomplete penetrance even within groups of patients carrying the same mutation. This wide 

variability in phenotypes has led geneticists to look for modifiers or digenic/polygenic 

disease, topics that are still being explored (12-14). Many patients with RP develop 

symptoms in the third or fourth decade of life, however, there are more severe forms of 

retinal degeneration, such as Leber's congenital amaurosis (LCA), which can lead to 

complete loss of vision before patients reach puberty (for review see (15)). Gene therapy is a 

desirable treatment method, but the genetic and phenotypic heterogeneity in inherited retinal 
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degeneration makes the development of a single therapeutic approach a very challenging 

process.

Gene augmentation therapy is a theoretically straightforward option for the treatment of 

recessive disease (usually caused by loss-of-function mutations)or a dominant disease 

associated with haploinsufficiency phenotype (16, 17). In these cases, supplementation with 

a healthy copy of the gene should be effective, provided that the degeneration is not yet 

severe and that a sufficient amount of gene expression can be obtained from the therapeutic 

vector. More challenging is designing a treatment for dominantly inherited degenerations 

caused by gain-of-function mutations. Patients have one healthy and one mutated allele, and 

the mutant protein interrupts normal function leading to retinal degeneration. Multiple 

mechanisms (many as yet poorly understood) result in this degeneration, so many different 

treatment approaches must be considered. A common gain-of-function disease mechanism 

occurs when mutant proteins are misfolded/aggregated (18, 19)or are mislocalized (20) 

leading to endoplasmic reticulum (ER) stress, and ultimately cell death (21). Different 

pharmaceuticals can be used to alleviate ER stress and prolong the life of photoreceptors. 

Proof-of-principle for this therapeutic approach has been shown in multiple cases, for 

example, increasing the cellular unfolded protein response via pharmacological induction of 

the heat-shock protein rescued retinal function and morphology in a P23H rat model of 

rhodopsin-associated RP (22). Other dominant mutations cause cell death by other 

mechanisms, for example some mutations in guanylate cyclase lead to constitutive activity 

and overproduction of cGMP, causing LCA(23, 24). A key defining feature of these 

dominant diseases is that reintroduction of the WT allele is not sufficient to completely 

prevent retinal degeneration.

However, several gene therapy approaches have been tested for dominant diseases. For 

example, the administration of neurotrophic factors (either as purified proteins or as gene 

therapy vectors) has been beneficial in some cases (25), however, without the correction of 

the underlying disease mutations, these treatments merely delay the degenerative process. 

Thus other research has focused on ways to eliminate the undesirable transcript or mutation. 

Silencing RNA (siRNA) which is complementary to unwanted transcripts prevents their 

efficient translation,and knockdown approaches have been tested for dominant phenotypes 

(26). Geneknockdown in the retina has been tested using multiple modalities and multiple 

disease genes, including siRNA (rhodopsin, peripherin-2 and GCAP1) (27-30), and zinc-

finger nucleases (for rhodopsin and USH1C)(31, 32). The recent development of additional 

genome editing systems such as CRISPR/Cas9 that can be used to correct the disease-

causing mutation in the native allele also provide great hope for the development of 

effective treatments for dominant diseases (33). Preliminary results from the Bakondi group 

utilizing CRISPR/Cas9 genome editing to correct the RP phenotype in a rhodopsin mutant 

rat model (S334ter-3) are encouraging (Bakondi B, et al., Gene Editing Corrects The Retinal 

Dystrophy Phenotype in S334ter-3 Rats, ARVO2015, Abstract number 3183), and results 

from a complete study are highly anticipated. However, there are several limitations to 

knockdown technologies that remain to be overcome including the difficulty in designing a 

knockdown construct which can bind the mutated version but not the healthy sister allele, 

potential off-target effects, and concerns about delivery and expression levels which affect 
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all types of gene delivery strategies. The new technology is intensely studied right now and 

will hopefully lead to a major breakthrough in future therapy of retinal degeneration.

However, even with the new treatment possibilities, there are still obstacles for any type of 

gene therapy method including, 1) successful delivery of the therapeutic DNA to the 

affected tissue, 2) its uptake by the target cells and 3) efficient expression of the transfected 

vector. All three parts will be discussed in this review for non-viral vectors with a special 

emphasis on their applications in the eye.

1. Therapeutic approaches for ocular diseases with gene therapy: pre-

clinical testing and clinical trials

The retina is an excellent system to test newly emerging gene therapy vectors due to its 

relative immune-privilege, the plethora of non-invasive procedures available to assess 

functional and structural rescue, and the ability to deliver therapeutic agents directly to 

specific tissues of the eye. Thus gene supplementation therapy in the eye is a mature field 

and several clinical trials are either completed or underway. Thus far, the ocular gene 

therapy trials have used viral delivery systems, either adeno-associated virus (AAV) or 

lentivirus. However, concerns regarding the immune response to viral vectors, limitations in 

payload capacity, and production costs have spurred investigation of non-viral alternatives. 

Though these non-viral approaches have not yet been tested in ocular clinical trials,they 

have been under investigation in animal models for several years and may be poised to enter 

the clinical trial phase in the near future.

1.1. Current gene therapy clinical trials for retinal degeneration

So far, most clinical trials for gene therapy in inherited retinal degeneration are in phase I or 

II to test possible toxicity and adverse effects of the applied vectors and gather preliminary 

data on the efficacy(34). However, one of the earliest successful therapies which uses AAV 

to target LCAhas successfully completed phase I and II in several different clinical trials 

(NCT00481546/NCT01496040/NCT00749957/NCT01208389/NCT00643747/

NCT00516477) ((see(35, 36) for the most recent information) and is now in phase III 

(NCT00999609). In 1997, a mutation in the RPE-specific gene RPE65 was identified as 

causative agent for LCA in several patients with a very early onset vision loss (37). The 

identification of similar phenotypes in Swedish briard dogs (38), a naturally occurring 

mouse model of LCA (39) with RPE65 mutations, and an RPE65 knockout mouse line 

(40)have facilitated the development of a feasible gene therapy vector for RPE65-associated 

LCA by providing the means to test it. Delivery of the RPE65 gene to RPE cells in the retina 

of dogs (41, 42) and mice (43, 44) showed long-term improvement of retinal function and 

few adverse effects leading to the initiation ofthe different clinical trials. Patients were 

treated with AAV containing the RPE65 cDNA and either a ubiquitously expressed 

promoter or the native RPE65 promoter(45-48). None of the trials revealed any severe 

adverse effects, and reported moderate improvement of visual function in some of the 

patients. Long-term follow-up studies showed that the increase in visual acuity is stable for 

up to 3 years after treatment(49) despite a progressive retinal degeneration (36). However, 

recently released follow-up for up to six years has showed continued diminishment in the 
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areas of improvement (50, 51). Given the already modest nature of the improvement, these 

results highlight the need for further understanding of the mechanism underlying the disease 

defect in order to improve on the design of therapy.

Three other retinal disease genes are currently being delivered by AAV in clinical trials. 

Choroideremia is an X-linked retinal degenerative disease with a prevalence of 1 in 50,000 

and is associated with early onset photoreceptor and RPE degeneration and a marked 

choroidal atrophy (for review see (52)). Mutations in the Rab escort protein-1 (REP-1) are 

responsible for this disease (53) and cause a defect in membrane association of Rab 

GTPases which are crucial for proper protein trafficking inside the cell (54). Two different 

approaches were tested in a mouse model for choroideremia: a lentiviral vector carrying the 

elongation factor 1 promoter known to express in ocular cells and the REP-1 cDNA(55) and 

an AAV2 vector with a ubiquitously expressed promoter and the REP-1 cDNA(56). Both 

vectors showed successful transfection of RPE cells in mouse models, but AAV2 was 

chosen for the phase I/II clinical trial (NCT01461213). Though the trial is ongoing, the 6 

patients with advanced retinal degeneration who were initially enrolled showed increased 

visual acuity after treatment, and the subretinal injection did not cause any detectable 

damage at 6 months post-treatment, the latest time point assessed so far (57). Clinical trials 

for Leber hereditary optic atrophy (LHOA) caused by mutations in the mitochondrial ND4 

gene (NCT02161380) (58) and for autosomal-recessive RP caused by mutations in the RPE-

specific MERTK gene (NCT01482195) (59) have just been started and are currently 

recruiting patients. Both trials use AAV2 to subretinally deliver the wildtype version of their 

respective mutated genes, and results will be eagerly anticipated. AAVs are also being used 

in clinical trials for nonmonogenic disease. There are currently at least two open trials for 

the treatment of exudative age-related macular degeneration with AAV carrying a VEGF 

scavenger receptor (NCT01024998/NCT014948050) as an attempt to replace the costly anti-

VEGF antibody injections which are currently in use.

Although AAV has been the viral vector of choice for retinal gene therapy clinical trials thus 

far due to its high transfection rate and its tropism toward RPE and photoreceptor cells (60), 

it cannot efficiently package more than 5 kb (61), a limitation when considering large 

disease genes. In contrast, lentiviruses have a packing capability between 8 to 10 kb (62), 

and have also been demonstrated to transfect the RPE cell layer with high efficiency after 

subretinal injection (63), though most serotypes do not transfect photoreceptors cells well 

(64). However, the equine infectious anemia virus (EIAV) shows modest transgene 

expression in rods and cones especially with the addition of photoreceptor-specific 

promoters (65). Two mouse models of retinal degeneration were treated effectively with 

EIAV-delivered transgenes: an Usher syndrome model showed rescue of light-induced 

photoreceptor cell death (66) and a Stargardt's disease model demonstrated a reversal in the 

degeneration (67). The former led to development of a drug named UshStat which is 

presently under investigation in a phase I/II clinical trial currently recruiting study subjects 

(NCT01505062). The latter showed a favorable safety profile in extensive studies in rabbits 

and macaques (68) and is currently in a phase I/II clinical trial in patients with Stargardt's 

disease under the brand name StarGen (NCT01367444) and results are pending.
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1.2. Therapeutic benefits of non-viral ocular gene therapies in pre-clinical testing

As clinical trials with viral vectors are progressing, there are still concerns regarding their 

safety and efficacy in human patients sparking interest in non-viral gene delivery 

approaches. Presently, nonviral gene therapy vectorsare not part of any active clinical trials 

for retinal degeneration but have been tested for other diseases. For example delivery of the 

p53 gene with liposomal nanoparticles (NPs) showed a favorable safety profile and 

appreciable transgene expression in solid tumors (NCT00470613) (69). Similarly, several 

different types of non-viral gene delivery, including cationic liposomes(NCT00470613) (70) 

and polylysine compacted NPs (71) have been tested for their ability to mediate 

improvements in cystic fibrosis patients.

Although no ocular gene therapy trials have yet used non-viral vectors, their therapeutic 

benefits have been achieved in animal models. For example, polyethylene glycol-substituted 

polylysine (CK30PEG) NPs (further discussed below) have been used in several disease 

models (for review see (72)). These NPs are non-toxic, non-immunogenic and have no 

adverse effects on the retina after subretinal injection in wildtype mice or mice with retinal 

degeneration (73, 74), and importantly have a large carrying capacity (tested up to 14 kbp in 

the eye (75) and up to 20 kbp in the lung (76)). When subretinally delivered to neonatal or 

adult mice, CK30PEG NPs were capable of mediating structural and functional 

improvements in several different mouse models carrying mutations in photoreceptor 

specific genes, the rds+/− model of RP(74, 77), the Abca4−/− model of Stargardt disease 

(75), and the rho−/− and P23H models of rhodopsin-associated RP ((78) and Naash MI, 

Nanoparticle-based gene therapy for ocular diseases: an update, ARVO 2015 Abstract 

#3185). They have also been used to mediate improvements in the rpe65−/− LCA model 

(79, 80), indicating that they are suitable for both photoreceptors and RPE targeting. In each 

case, the improvement persisted anywhere from 8 months to 2.5 years (depending on the 

ages assessed). In spite of these positive outcomes, levels of gene expression from subretinal 

injection of NPs have yet to meet wildtype levels and drop over time. As a result they have 

provided incomplete rescue, highlighting the need for further refinements in nanoparticle 

formulation, vector content and delivery approach.

In addition to CK30PEG NPs, various other non-viral ocular gene delivery strategies have 

been explored. One of the latest developments in this field, and one of the few non-viral 

vectors to extend testing into therapeutic animal models as opposed to just expression of 

reporter constructs, is the use of liposome-protamine-DNA complexes (LPD) to deliver the 

RPE65 gene(81). These liposomes incorporate cell penetrating and nuclear targeting 

peptides to improve gene expression/delivery compared to untargeted liposomes and carry 

an RPE-specific promoter to limit ectopic expression(81). Subretinal injection of LPDs into 

RPE65 knockout mice at five days of age (P5) led to improvements in cone ERG function 

and increased cone survival. Though extensive safety studies will have to follow before a 

clinical trial (81), this technology represents an additional promising approach.

In the remainder of this review, we will focus on strategies that are being employed to 

improve the efficacy of non-viral gene therapy in the eye, including delivery approaches, 

vector modifications, and non-viral packaging methods.
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As comparison of clinical trials applying viral versus non-viral vectors clearly shows, non-

viral gene therapy vectors are still far behind their viral counterparts. Their improved safety 

profile gives them a huge advantage however for future applications. As the efforts into the 

non-viral DNA compaction methods are intensified, we can be sure that these will soon 

catch up in terms of transgene expression levels and transfection efficiency with the AAV 

vectors currently in clinical trials.

2. Delivery strategies for non-viral gene therapy in the retina

The delivery route for non-viral gene therapy vectors is crucial for the success of the 

treatment and should lead to the highest transfection rate for the targeted cell type and the 

least risk for severe adverse effects (for a summary see Table 1).

2.1. Topical administration

Topical administration of therapeutics is by far the least invasive form of delivery, and is 

routinely used for pharmacological treatment of anterior segment diseases such as glaucoma. 

However, it is also the least efficient for retinal targeting due to the many barriers 

surrounding the eye. After corneal application of liposome-compacted DNA, transgene 

expression is scarce and only detectable in the iris, limbus and conjunctiva (82). 

Internalization of drugs into the corneal epithelium can be achieved (83) as well as 

transfection of corneal cells with AVV with therapeutic transgenes (84), but gene delivery to 

the retina via the topical administration route is not currently effective.

2.2 Intravenous injection

The delivery of therapeutic compounds directly into the eye is always associated with the 

risk of damaging the fragile structure of the retina or inducing a detrimental inflammatory 

reaction. To avoid any unnecessary adverse effects caused by the delivery route, compounds 

can be administered directly to the bloodstream. The main barrier for drugs to reach the 

retina after intravascular delivery is the blood-retina barrier, a structure much like the blood-

brain barrier (99) which prevents diffusion of most large compounds into the retina (86). 

While the non-specific transport across the blood retina barrier is rather inefficient in 

general, particle size seems to be of minor importance, at least for diameters up to 460 nm 

(100). To overcome this and allow non-viral NPs to penetrate the retina after systemic 

administration, particles have been targeted with an antibody against the transferrin receptor 

present in retinal vascular cells. This strategy led to widespread expression of the transgene 

in ocular tissues, namely in the inner retina and the RPE (87). Though this approach is less 

invasive, one of the main disadvantages of delivery of genetic therapies in the blood stream 

is that serum proteins tend to cause opsonization and swift removal of particles from 

circulation (85). This massively decreases bioavailability, but can be ameliorated by 

chemical modification of the particle as discussed in section 5. Another concern is the 

volume of therapeutic needed to achieve efficacious concentrations in the eye (given the 

volume of the systemic circulation and potential unavoidable uptake into other tissues), but 

with proper targeting and vector specificity (to prevent ectopic expression) intravenous 

delivery could be considered.
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2.3 Periocular injections

In addition to the more invasive but more common subretinal and intravitreal injections 

(discussed below), researchers have also developed other routes for injection of drugs into 

the eye. The injection of non-viral RNA particles in the subconjunctival space showed 

appreciable transfection of cells in the retina, but the majority of the particles migrated 

towards the cornea (88). It is therefore not surprising, that this method has been mainly used 

in the delivery of gene therapy vectors for the cornea (101, 102), especially as only very 

small particles (20 nm diameter) seem to be able to successfully penetrate into the inner 

ocular tissue (103).

2.4 Intravitreal injection

Though intraocular (intravitreal and subretinal) injections are significantly more invasive 

than other delivery methods, they are currently the most widely used for delivery of genetic 

therapies, largely due to the increased efficacy with which they are associated. The main 

barrier for therapeutic compounds after intravitreal injection is the vitreous itself. Despite its 

clear appearance, the vitreous contains a 3D meshwork of connected fibers of collagen, 

hyaluronan and other proteoglycans like heparin and chondroitin sulfate which gives it its 

jelly-like texture (104-106). This structure caninterfere with diffusion of particles both by 

steric hindrance and also because charged delivery vehicles can interact with the charged 

proteins in the vitreous. It has been shown that polystyrene nanospheres are completely 

immobilized in the vitreous humor and DNA-compacting lipoplexes aggregate immediately 

upon contact with the vitreal meshwork (91). The charge of a NP is crucial for this process, 

as experiments have demonstrated that cationic serum albumin particles do not show any 

vitreal penetration, while anionic particles of the same kind penetrate well (107). Penetration 

through the vitreous can be altered by coating the particles, a topic which will be discussed 

later.

In addition to charge, particle size also has a large influence on diffusion rates. Studies with 

fluorescently labelled polystyrene nanoparticles showed an average pore size in the vitreal 

mesh of around 550 nm, allowing particles of up to 500 nm in diameter almost uninhibited 

diffusion (108). Rare pores can show sizes up to 1000 nm, which also explains the ability of 

larger, uncharged particles to diffuse through the vitreous(94, 108). The diffusion paths and 

rates of various particles in the vitreous have been extensively studied with single-particle 

tracking (SPT) microscopy. This method allows the tracking of single particles and therefore 

also the description of specific paths instead of overall distribution (109). By teaming up 

SPT with an ex vivo model of intact bovine vitreous, the behavior of nanoparticles can be 

described in detail in relation to size and charge which is demonstrated with polystyrene 

beads (94). In addition, DNA compacted with polylysine or synthetic polymers like 

poly(amide amine) (CBA-ABOL) into nanoparticles analyzed with the same method showed 

unhindered passage through the vitreal meshwork when their charge was neutralized by the 

addition of PEG (see section 5 below) (94, 108). Intravitreal delivery of NPscan be effective 

for gene delivery in the retina with many different particles including liposomes or PLGA 

particles (110, 111). Successful diffusion of particles from 350 to 600 nm in diameter 

through the whole retina with subsequent transfection of photoreceptors and RPE cells was 

observed after intravitreal application(112, 113).However, studies show a much higher 
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transfection rate for cells in the inner retina after intravitreal delivery, with only inefficient 

transfection of outer retinal cells using this method (90, 92). Delivery to the inner retina, can 

be beneficial, for example for the treatment of glaucomatous optic neuropathy (82), but the 

lack of penetration to the outer retina means that intravitreal injection has largely been 

avoided in favor of subretinal injection for photoreceptor and RPE delivery. Since 

intravitreal injections are already routinely used for ocular drug delivery and are less 

invasive than subretinal delivery, there is great interest in improving outer retinal targeting 

of genetic therapies after intravitreal delivery. Nevertheless, risks are associated with the 

intravitreal application including possible retinal detachment and endophthalmitis which 

occur, though with low incidence (93, 114).

2.5 Subretinal injection

While the risk of retinal detachment after intravitreal injection is low, detachment is a 

routine feature after subretinal injections, as the introduction of therapeutic liquid induces 

the separation of the photoreceptor from the RPE cell layer (95, 98). This process is 

damaging to the retina, as the photoreceptors rely on the structural support and the nutrients 

from the RPE cell layer especially for regeneration of photopigments (115). It is therefore 

not surprising that detachment of the retina is associated with photoreceptor cell death and 

loss of visual function (96-98), a pathology which can also be observed in patients with 

retinal detachment due to other reasons (116). Though the retina typically reattaches, this 

detachment is a critical limitation and one that is a great concern clinically. In addition to 

detachment, subretinal injection can also be associated with inflammatory response and 

recruitment of immune cells into the subretinal space. For example, one of the viral vectors 

currently in use in gene therapy trials, StarGen, causes a cellular inflammatory response 

after subretinal injections in macaque and a certain amount of retinal degeneration and 

atrophy is detectable (68). The first data about the safety of subretinal injections in the 

RPE65 clinical trials show that retinal detachment occurred in the study participants and was 

associated with some minor adverse effects. Nevertheless, results thus far from the clinical 

trials (choroideremia NCT01461213 and LCA NCT00999609) indicate thatthe 

improvements in function in the treated eyes seem to outweigh the detrimental effects of the 

delivery in most patients (57, 117). There are currently no data available on the impact of 

repeated injections in human eyes, which may have more severe consequences, thus 

underscoring the need for long-lasting therapeutics. Studies in mice have shown that 

subretinal delivery is by far the most efficacious for the transfection of photoreceptor and 

RPE cells with non-viral vectors and yields the highest transgene expression in the outer 

retina (74, 90). This route of application is therefore chosen for most applications in 

inherited retinal disease in spite of its invasiveness.

2.6 Suprachoroidal injection

An additional option is delivery to the suprachoroidal space, between choroid and sclera, 

which prevents the detrimental detachment seen in subretinal injections while still delivering 

the therapeutic compound close to the RPE. With this method, widespread transfection of 

RPE cells with naked DNA can be achieved, but only with the aid of electroporation (89). 

Suprachoroidal injections have a very beneficial safety profile, as they do not induce any 

retinal detachment or bleeding and with proper DNA packaging, it might be possible to 
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overcome the scleral barrier without electroporation to make this delivery method more 

clinically viable (118). However, the transcleral diffusion rate of nanoparticles is very low 

even for small particles up to 20 nm in diameter, while larger particles (200 nm) do not 

diffuse across the sclera at all (119).

From a clinical point of view, the only currently feasible application methods for future 

ocular gene therapy in human patients are the intravitreal and the intravenous approach. The 

other applications are either too invasive or have been shown to be little effective. While 

intravitreal injections still bear a certain risk of adverse effects, intravenous applications 

generally have a higher toxicity profile due to the widespread distribution of the therapeutic 

compound and the larger doses needed to reach a significant concentration of drugs in the 

target tissue. Nevertheless, if the efforts for the search of tissue-specific, targeted particles 

(see section 3) are successful, this issuewill be reduced and intravenous injections may 

become the method of choice.

3. Improvement of cellular and nuclear uptake of non-viral vectors

Efficient uptake of therapeutic vectors in the target cell is crucial for the success of the 

treatment. The requirements in this process depend very much on the nature of the vector, 

but in this case, we solely focus on DNA plasmids for the delivery of transgenes. Once the 

particle has reached the cell membrane, there are several obstacles it has to overcome to 

reach the nucleus and achieve expression. Modifications on the particle and the vector 

described in this section are designed to facilitate this process (see Figure 1).

3.1. Cellular uptake

Once delivered to the site of interest, the plasma membrane is the first barrier for effective 

gene therapy. RPE cells have a high rate of phagocytosis due to their involvement in 

photoreceptor disc renewal and can readily take up particles in their environment (120). Due 

to this activity, RPE cells can be easily transfected, even with naked (i.e. uncompacted) 

plasmid DNA(80), which partially explains the success of RPE-targeting gene therapy trials. 

Photoreceptors on the other hand, the main site of expression of many retinal disease genes, 

do not exhibit phagocytosis and are notoriously hard to transfect. Nevertheless, even non-

phagocytic cells take in many different proteins to maintain their function and these 

endocytic systems can be taken advantage of. The first system discovered for receptor-

mediated endocytosis involves clathrin-coated pits which form at the plasma membrane 

upon binding of the ligand to its receptor. The receptor-ligand complex is then internalized 

and ultimately fuses with protein-processing organelles in the cytoplasm (121). 

Subsequently, many clathrin-independent endocytic pathways have been described (122, 

123), and this knowledge has been used to increase specificity and uptake of non-viral 

vectors by modifying particle envelopes to target receptors on the cell surface.

Significant progress in this direction has been made by coating drug carriers with antibodies 

specific for receptors on target cells. Cancer cells, for example, are known to express high 

levels of certain integrins and by covalently linking an anti-integrin antibody to NPs, 

cytotoxic compounds can be delivered specifically to target cells thus minimizing adverse 

effects (124). This method has also proven valuable for the delivery of therapeutic DNA in 
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hard to transfect neurons. An antibody specific for the neurotrophin receptor p75NTR (125) 

was coupled to polyethylenimine NPs carrying a reporter plasmid. Neonatal rats were 

injected with these particles and GFP expression was reported exclusively in motor neurons 

expressing p75NTR while non-targeted particles yielded very little expression. These are 

exciting results, as the p75NTR receptors becomes highly upregulated in disease damaged 

motor neurons and could therefore be used as a feasible therapeutic vector (125). 

Incorporating such antibody-targeting into ocular therapeutics may help increase cellular 

uptake in hard to transfect cells like photoreceptors.

In addition to antibodies, small receptor ligands have also been shown to enhance the uptake 

rate of NPs. Many tumor cells express large amounts of growth factor receptors such as the 

EGF receptor (126). Delivering chemotherapeutic drugs like cisplatin (127) or doxorubicin 

(128) in EGF targeted NPs largely decreases their toxic side effects. Similarly, folate and 

transferrin may be useful for NP targeting to malignant tumors even after systemic 

administration (129, 130). Transferrin-mediated uptake has also been explored as a way to 

facilitate uptake from the vasculature into the retina (87). As mentioned above, intravenous 

delivery of transferrin-targeted particles led to transgene expression in RPE cells, as well as 

in neurons in the inner retina (87). An alternative approach is the use of hyaluronic acid in 

NPs which targets the CD44 receptor widely expressed in retinal glia cells (131) and the 

RPE cell layer (110). The incorporated hyaluronic acid increases the transfection efficiency 

in RPE cells in vitro (132) as well as in vivo in the rat eye (110). The use of the CD44 

pathway not only significantly increases the efficiency of the uptake of the particles, but also 

decreases the intracellular degradation rate of the particles which is associated with other 

uptake pathways (133).

Instead of using cell-surface receptors to increase uptake rates, cell-penetrating peptides 

(CPP) can also be used. These peptides are coated on the outer shell of the particles and 

originally take their sequence from various viruses. One of the earliest CPP's identified is 

the Tat protein of human immunodeficiency virus 1 (HIV-1), which mediates entry into the 

cell without interacting with a specific receptor (134). Similarly, the structural VP22 protein 

from the herpes simplex virus is able to enter cells without any external aid (135). The Tat 

protein has been successfully incorporated into lipid NPs and used for the delivery of 

transgenes to retinal cells (81). However, not all of the CPPs work in vivo in the retina (136, 

137), so recent studies have used synthetic peptides which were specifically engineered for 

ocular tissue and yielded much higher success rates (138).

3.2. Nuclear entry

After successfully entering the cell, the transgenic DNA has to reach the nucleus to escape 

cytoplasmic degradation and to be transcribed effectively. Nuclear delivery in actively 

dividing cells is straightforward, as the nuclear envelope breaks down during mitosis 

allowing plasmids to enter (139). However, in post-mitotic cells like photoreceptors the 

nucleus is only accessible via the nuclear pores, which have an opening of 9 nm in diameter 

allowing ions and smaller proteins to diffuse freely, but excluding molecules larger than ~50 

kDa (140). Larger molecules can enter the nucleus by active transport, which depends on the 

presence of a nuclear localization signal (NLS) (140). Many viruses have evolved these 
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targeting sequences, and the minimal sequence was identified from SV40 as a single seven 

amino acid stretch (PKKKKRKV) (141). These NLS sequences can interact with different 

proteins inside the cell like nuclear pore transport proteins or transcription factors which 

lead to active translocation into the nucleus (140, 142). Inclusion of NLSs on the envelope 

of the particle can be used to directly target non-viral vectors to the nucleus, an approach 

that has been tested successfully in the eye(81). Studies have shown that the inclusion of 

such a sequence can increase nuclear accumulation tremendously, while plasmids without 

such a signal barely enter the nucleus at all (142-144). The peptide protamine also contains a 

NLS and its addition to compacted DNA increases the transgene expression in cultured 

ARPE-19 cells by more than 6-fold (145). Another way to target non-virally delivered DNA 

or NPs to the nucleus is to take advantage of other cytoplasmic proteins that have the 

tendency to translocate to the nucleus. For example, CK30PEG NPs have been shown to 

traffic to the nucleus of airway epithelial cells by associating with nucleolin and 

glucocorticoid receptor, and stimulation of nuclear translocation of the glucocorticoid 

receptor with cortisone improves transfection efficiency (146).

In addition to the peptide/protein based approaches, early research with plasmids based on 

SV40 indicated a region of the viral genome around the origin of replication 

enhancingnuclear uptake of the plasmid in non-dividing cells (147). Further investigation 

narrowed down the necessary sequence for this process to a 72 bp repeat (148). Introduction 

of this sequenceinto a CMV-driven expression vector showed a 20-fold increase in 

transgene expression after delivery to skeletal muscles of mice (149). In addition, some 

plasmids can interact with transcription factors via binding sites in their promoters leading to 

increased rates of movement across the cytoplasm to the nucleus. This often takes advantage 

of the microtubule cytoskeleton and can be beneficial for effective gene transfer (142).

Another approach to increasing nuclear localization is to decrease the size of the delivered 

vector. Minicircle DNA (see description below) was developed to prevent gene silencing 

caused by the bacterial backbone, but experiments in vitro revealed that the smaller size 

resulting from the excision of the backbone also increases the transfection efficiency (150). 

To decrease the size of the DNA plasmid even further, it has been suggested that type II 

topoisomerase can be used to tighten the DNA into a so-called miniknot which would be 

unwound inside the nucleus by the host's topoisomerase enzymes (151). Similarly, the 

ability of CK30PEG NPs to transfect non-dividing cells has been in part attributed to their 

small size; CK30PEG NPs compacted with acetate as the lysine counterion are rod shaped 

with a minor diameter of 8-11 nm (76, 152). In the meantime, CK30PEG particles have been 

successfully used to transfect photoreceptor cells in the retina (75, 153).

As mentioned at the beginning of this section, we mainly discuss DNA plasmid vectors in 

this review.For vectors containing mRNA instead of the corresponding DNA sequence, 

nuclear entry is not necessary and therefore not an issue. Successful transgene expression 

with compacted RNA nanoparticles has been shown with high expression levels, but due to 

the unstable nature of RNA only for short time periods(154, 155).

Recent research has clearly shown that targeted nanoparticles have a clear advantage over 

their non-targeted counterparts with higher transfections efficiencies and a far better safety 
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profile. The ability to target one specific set of cells or maybe even only diseased cells is 

likely to reduce the issue of off-target toxicity and will also decrease the costs of treatment 

by limiting the amount of therapeutic particles needed. Nuclear entry is a topic that has been 

addressed only minimally in retinal gene therapy so far. It is however immensely important 

to do so in the future, as the post-mitotic status of photoreceptors naturally has a negative 

effect on the transgene expression efficiency in the retina.

4. Vector engineering

Non-viral gene therapy is a desirable approach because of its safety profile, ease of 

production, and large payload capabilities. However, even after reaching the nucleus 

effective therapy requires persistent, elevated transgene expression. Coupled with 

insufficient transfection rates, weak transgene expression and rapid downregulation have 

thus far impeded successful clinical application of non-viral therapies in the eye. To improve 

the expression levels and longevity of these vectors, proper design of the expression vector 

is extremely important and has been anactive research field in recent years (see Figure 
1B,C). Luckily, the availability of non-viral packaging methods which can deliver larger 

DNA payloads (76) has made inclusion and testing of additional DNA regulatory elements 

easier.

4.1. S/MARs

A number of different factors can lead to loss of gene expression over time including loss of 

vector DNA and silencing of the vector due to epigenetic or transcriptional changes. 

Transgene loss can occur due to the non-integrated state of non-virally delivered DNA. 

Some viruses like SV40 have the ability to replicate episomally inside the nucleus of an 

infected cell without integration into the host genome (156). The virus achieves this by 

producing the T antigen, which has the ability to transform and immortalize infected cells, 

which unfortunately makes it unfit for the use in human gene therapy (157). Piechaczek et 

al. overcame this limitation by replacing the sequence for the T antigen in the vector with 

the sequence for a scaffold/matrix attached region (S/MAR) of the human interferon β-gene 

to create the now extensively used pEPI plasmid vector (158). The S/MAR sequence has 

been shown to interact with proteins in the nuclear matrix thereby stabilizing the vector 

inside the nucleus for episomal replication in dividing cells (159). Vectors with this S/MAR 

sequence do not show any signs of integration, but can stay inside dividing cells for more 

than 100 generations (158). S/MARs can also promote increased transgene expression (80, 

160, 161) apart from benefits conferred by self-replication, indicating that they can also be 

useful in post-mitotic cells.However, this increased expression depends on the vector and 

system used and is not always detectable (162). In vivo studies using the pEPI vector have 

shown transgene expression in the RPE cell layer of the retina up to two years after 

injection(80), even though decreased expression over time is still a problem(75, 80).

4.2 Epigenetic regulation

In addition to vector loss, gene silencing is often associated with the methylation of CpG 

islands (cluster of C and G nucleotide pairs) in the promoter region (163), and with the 

presence of heterochromatin. In recent years, several options have been investigated to 
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improve the transcription rate in plasmids after transfection. The discovery of the high 

activity of the cytomegalovirus (CMV) promoter in mammalian cells raised hopes for swift 

development of effective gene therapy vectors (164), but this promoter is silenced quickly in 

vivo due to extensive methylation (165). Bacterial backbones are necessary for the efficient 

production of plasmids, however, delivering bacterial backbones in vivo can lead to 

silencing, both due to methylation and due to heterochromatin associations(166, 167). 

Several options are available to limit the adverse effects of the backbone. One is to deliver 

linearized DNA fragments that have been removed from the backbone. An alternative is to 

place phage-integrase specific recombination sites on both sides of the eukaryotic expression 

cassette in a plasmid which also carries the integrase gene. When expression of the integrase 

is induced in bacteria, the bacterial backbone is excised leaving behind a circular 

miniplasmid ready for delivery (150). Recent work has shown that minicircles can lead to 

sustained gene expression, are less susceptible to methylation, and retain an active 

chromatin conformation (168).The production of minicircle DNA is rather inefficient and 

contamination with parental plasmids and circular backbone have prevented large-scale use 

of this technology, but improvements like the inclusion of restriction sites leading to the 

degradation of the bacterial backbone have helped make the approach more practical(169). 

Recently, minicircles have been used to successfully deliver shRNA and rescue the 

phenotype in a myocardial infarct model(170). A final option for minimizing methylation is 

to construct CpG depleted vectors. For example, a newer version of pEPI was constructed 

with a CpG-depleted backbone, called pEPito (171). Experiments have shown that pEPito 

can drive stable transgene expression at higher levels and for a longer time period than its 

successor pEPI in vitro and in vivo especially in the retina (171, 172). This has the added 

benefit of a minimized inflammatory response (173), which is often associated with typical 

CpG patterns in bacterial backbones (174).

In addition to methylation, other factors can influence chromatin structure. Chromatin 

structure is extremely important for transcription initiation, as the proteins in the 

transcription complex need access to specific sites in the DNA. Studies have shown that the 

curvature of the DNA helix plays a major role in the accessibility of the promoter and that 

left-handedly curved DNA is more efficiently transcribed than right-handedly curved DNA 

(175). This phenomenon can be partially explained by the fact that curved DNA allows 

nucleosomes, which organize the chromatin into functional sections, to slide more easily 

along the helix and therefore can open up access to specific binding sites like the TATA box 

(176). The sequences causing the helix to bend are mostly A- and T-rich and have been 

tightly conserved among species (177), but in recent years, artificial versions have also been 

used to enhance vector expression in vitro and in vivo. The shortest effective sequence has 

been identified as a quadruple repeat of five thymidines connected by a four base pair linker 

aptly named T4 (178). The addition of T4 in front of the promoter sequence increases 

transcription rates up to ten-fold in vitro (175), but even higher rates can be achieved by 

increasing the repeat number (178). The magnitude of the effect is less in vivo, nevertheless, 

a T36 repeat addition was able to increase the transgene expression levels after transfection 

of a mouse liver by eight times (179). These curved sequences are fairly short even with a 

higher number of repeats, and the fact that the expression levels can be modulated by 
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changing the number of repeats, makes the curved DNA sequence an excellent candidate for 

vector engineering strategies to enhance gene expression.

Other sequences, termed insulators, can also help prevent the plasmid DNA from adopting 

the detrimental heterochromatin structure(180). These sequences keep heterochromatin from 

forming around adjacent expression cassettes by recruiting histone acetyltransferases which 

prevent the methylation of lysine 9 on histone 3, a hallmark process in heterochromatin 

formation (181). An insulator sequence identified in the chicken genome has demonstrated 

great potential in inhibiting vector silencing in lentiviral transfection, but occupies a 

considerable amount of space in the viral genome with its 400 bp (182). However, a recent 

study identified several very potent and short (between 100 and 300 bp) insulators in a 

genome-wide search, providing potential candidates for future investigations into this topic 

(183) and inclusion of these sequences into ocular gene delivery vehicles may be beneficial.

4.3 Addition of intronic sequences

Due to capacity constraints for the packaging approach (e.g. ~5kb for AAV), many gene 

therapy vectors only contain the coding sequence of the transgene without any regulatory 

sequences or introns. This can have detrimental effects on the protein level of the expressed 

gene as research has shown that inclusion of regulatory elements in the native gene can have 

positive effects on expression.Introns in particular can improve gene expression by multiple 

mechanisms including altering transcription, translational yield, polyadenylation, etc. 

(184-186). These effects are highly variable, dependent on the gene, intron content, and 

intron position (185). The inclusion of intron A of CMV increases the expression levels of 

transgenic proteins in cultured mammalian cells when placed inside the coding sequence, a 

phenomenon named intron-mediated enhancement which was originally described in plants 

(187). The ability to enhance the expression can be independent of the actual intron 

sequence, as introns can sometimes be substituted between genes, even though there are 

differences in the magnitude of expression enhancement from gene to gene(188). The 

presence of untranslated sequences in the mRNA seems to stabilize it (189) and enhance the 

rate of maturation, for example by augmenting the polyadenylation of the transcript (190). 

Several different introns have been tested for intron mediated enhancement in gene therapy 

vectors so far and the results show a clear benefit from the additional sequences. Transgenic 

mice have shown an almost 5-fold increase in the production of human thrombopoietin upon 

inclusion of only a single intron of the same gene (191) and introns of mouse, rabbit and 

human β-globin have been shown to be potent enhancer elements (192, 193). Several viral 

introns including SV40 (194) or CMV (195) have also been tested in vitro and in vivo more 

or less successfully.

Since some non-viral NPs can deliver large genetic sequences, it has recently become 

possible to directly compare the expression efficiency of genomic DNA (i.e. including 

introns) with that of the cDNA. We have shown that in one case at least, that of NP-

mediated rhodopsin gene delivery, inclusion of genomic sequences significantly improves 

expression levels and phenotypic rescue of the rho−/− mouse model of RP. Though the 

mechanism of this improvement is unknown, mRNA levels were the same for genomic and 

cDNA, while protein levels were improved in genomic vs. cDNA suggesting the benefits 
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were on protein translation(153). Introns have demonstrated their ability to increase mRNA 

stability and enhance translation, but in many cases, even large capacity packaging methods 

cannot deliver the full genomic sequence in any practically applicable way as the genes are 

just too large (e.g. the Usher syndrome type 2A gene that spans 800 kbp). As a result, 

consideration must be given to inclusion of heterologous introns, or only a select number of 

native introns, and the relative contributions of any given intron to the overall expression 

level can be evaluated.

4.4 Other Enhancer Elements

Though the CMV promoter is rapidly silenced and therefore not clinically useful, in 1985 it 

was discovered that a small part of the promoter acts as an enhancer (196) and when added 

to almost any promoter, greatly increases the transcription rate (194, 197). Inclusion of this 

enhancer can be used to improve the expression of normally weak but tissue-specific 

promoters without compromising the specificity of the promoter (198), and has been 

implemented in the eye with the RPE65 promoter (172). This enhancer effect has also been 

demonstrated for regions from other promoters such as the photoreceptor-specific 

interphotoreceptor retinoid binding protein (IRBP), even though the effect is much less 

potent than in the case of CMV (65). Subsequently, a genome-wide search for enhancing 

elements via in vitro analysis yielded thousands of possible candidates for enhancement 

(199). One 37-bp leader sequence was analyzed in-depth and demonstrated an ability to 

increase mRNA levels of the transgene by more than ten-fold (200). Sequences of this sort 

are valuable because of their small size and high activity, but will have to be tested in vivo 

extensively to assess their capabilities. In addition, the effects of enhancer sequences can 

vary based on target tissue and gene/promoter so individual testing for any given application 

will likely be required.

Viruses like herpes simplex have evolved short sequences to boost the translation of their 

intronless genes in the host cell, which can be utilized in plasmids in lieu of introns(201). 

One of those sequences was identified in the human hepatitis B virus (HBV) and aptly 

named the post transcriptional regulatory element (PRE) (202). The PRE sequence does not 

increase the transcription rate of the gene nor does it have an influence on the mRNA 

stability in the cytoplasm, but rather enhances the nuclear export of the mRNA which in turn 

greatly improves translation rates (202). It was later discovered that a close relative of HBV, 

the woodchuck hepatitis virus, contains an even more potent PRE labelled WPRE (203). The 

HBV PRE consists of only two subelements, while the WPRE is a tripartite enhancer 

element which explains the difference in strength (203). The full WPRE sequence is only 

600 bp in size, but in vitro transfection experiments in neurons showed that it can be 

shortened to 247 bp without impeding its translation enhancing ability (204). Since its 

discovery the WPRE sequence has been demonstrated to be one of the most successful 

enhancer elements and is currently under investigation for in vitro production of therapeutic 

proteins (205) and for gene therapy in AAV vectors ((206, 207) as examples) because of its 

small size and its ability to significantly increase transgene expression. The WPRE sequence 

has also been used as part of an AAV vector containing the cDNA for brain-derived 

neurotrophic factor (BDNF) which induced transgene expression and phenotypic 

improvement in a rodent model of glaucoma (208).
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4.5 Influence of polyadenylation site on protein expression

Efficient protein translation is not possible without a proper polyadenylation signal added to 

the mRNA and mutations in the poly A signal sequence quickly lead to aberrant gene 

expression and disease (209). A short sequence (AATAAA) is the consensus signal for the 

polyadenylation of mRNAs, but deletion experiments have shown that additional 

recognition sites are necessary for the successful addition of poly A but are not conserved 

between genes (210). Different poly A signals can influence protein levels of transgenes 

very differently, as shown by the direct comparison of the signals of SV40 and the bovine 

growth hormone (BGH) gene. Expression of luciferase was increased two- to ten-fold with 

the BGH poly A sequence over the SV40 in different cell lines in vitro and in multiple 

tissues in vivo including kidney, lung or heart (194, 195). The differences in efficiency of 

the poly A signal between different genes may be an evolved mechanism to control the level 

of innate gene expression. Varying the polyA signal may be used as an advantage in gene 

therapy vectors, though such alternate polyA signals have not yet been tested in ocular gene 

delivery plasmids.

The discovery of countless DNA and RNA regulatory mechanisms in the last several years 

shows how little we actually know about regulation of gene expression in mammalian cells. 

These new regulatory elements will certainly pave the way for better transgenic expression 

vectors, even though the process is must still be evaluated using a largely trial and error 

approach untilwe gain a deeper understanding of the processes involved. The lack of 

appropriate transgene expression is one of the main issues in non-viral gene therapy and can 

hopefully be resolved by the insertion of a combination of any of the enhancers mentioned 

above.

5. NP formulations for gene therapy

Non-viral gene packaging is an active research topic, as it is considered a safer alternative to 

viral gene delivery. The concerns about the safety of viral vectors are based on two major 

incidents: in 1999, a participant of a gene therapy study died of an acute immune response 

after the injection of a therapeutic adenovirus (211, 212) and in 2002, children treated for 

severe inherited immunodeficiency with a retrovirus developed leukemia (213, 214). These 

two cases illustrate the two main issues with viral gene therapy: recognition of the vector by 

the immune system and random insertion of retroviral vectors causing mutagenesis. The use 

of non-integrating AAV has so far not caused any severe adverse effects; nevertheless, the 

development of an alternative is desirable particularly because traditional AVV cannot 

deliver DNA molecules larger than 5 kb (61). In addition, though AAVs are safer than older 

viral vectors such as adenoviruses, they can induce an immune response, in particular the 

production of neutralizing antibodies against the viral capsid (215, 216). This is particularly 

true after intravitreal delivery (217, 218), but can also occur after subretinal injection (219). 

Non-viral vectors show generally a very low immunogenicity, especially when DNA is 

compacted with innate proteins like human albumin (see below). Plasmids delivered via 

non-viral gene therapy can be maintained episomally (158) which removes the risk of 

insertional mutagenesis, but can also lead to transient instead of stable transfection. In direct 

comparison with AAV, most non-viral gene delivery vectors show inferior transfection 
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efficiency and do not lead to sufficient transgene expression (220). Improvements can be 

achieved on the DNA level as described previously, but the formulation of the particle or 

packaging method itself can also be optimized.

Non-viral particles for gene therapy can be broadly divided into two groups, lipoplex 

particles containing lipid molecules and polyplex particles, which are based on polycations 

from chemical groups such as polysaccharides and proteins. Particles from both groups have 

been shown to benefit in some way from the modification with polyethylene glycol (PEG), 

therefore this very common modification and its consequences will be discussed separately 

(for a summary of this chapter see Table 2).

5.1. Lipoplex NPs

Lipid-based delivery systems have been widely utilized as a non-viral method to carry DNA 

molecules across the hydrophobic lipid bilayer of the plasma membrane and therefore 

increase the transfection efficiency immensely compared to naked DNA (233). The 

compaction is mediated by the interaction of the positively charged cationic head groups of 

the lipids and the negatively charged base pairs of the DNA leading to a small particle with a 

diameter of around 50nmor larger with a slightly positive charge (234). Early clinical trials 

in cancer patients showed no toxic adverse effects and transgene expression in tumor cells, 

demonstrating the viability of the approach (235). Different lipid formulations have been 

used for the compaction of DNA into liposomes allowing adaption of the particle to specific 

requirements. Phospholipids like DOPE, DOTAP and DSPE are widely used andparticles 

made with combinations of these lipids show no toxicity and moderate transfection 

efficiency in vivo (236).

Solid lipid particles consisting of DNA complexed with protamine and dextran and 

compacted into cationic lipids with DOTAP to a size of around 250nm showed high 

transfection rates in vitro in transformed RPE cells (ARPE-19),and also the ability to 

transfect retinal cells after intravitreal or subretinal delivery and corneal cells after topical 

application (90). The addition of protamine, which is a mixture of small basic peptides, can 

produce particles with higher transfection efficiency (237) and dextran inhibits the 

interaction of the particles with erythrocytes, a beneficial characteristic for intravenous 

applications, as it prevents fatal blood clots (238). These particles show potentialfor the 

efficient transfection of retinal cells and are currently under investigation for gene therapy in 

a mouse model of retinoschisis(223). Protamine was also used as a transfection enhancer in 

modified targeted liposomes formulated with a mixture of DOTAP, DOPE and cholesterol 

(81). The introduction of cholesterol into the outer layer of the liposomes has been shown to 

increase transfections rates in vitro (239). These particles were able to successfully transfect 

RPE and photoreceptor cells and to mediate appreciable rescue in a mouse model of LCA 

(81). Though several liposome formulations are effective in vitro, (e.g (132, 222)), the in 

vivo environment is very different making in vivo testing of potential formulations essential. 

One of the major drawbacks of liposome formulations is their tendency to aggregate when in 

contact with serum proteins which largely decreases bioavailability after intravenous 

administration (240). Nevertheless, with the appropriate modifications, liposomes can be 

delivered intravenously and lead to successful transgene expression in retinal cells (87).
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5.2. Polyplex NPs

5.2.1. Peptide and protein-based NPs—Proteins and peptides can be used as an 

alternative to phospholipids for compaction of DNA and some formulations have shown 

promising results. Human serum albumin can compact DNA into particles of 150 to 280 nm 

via a cost-effective and highly reproducible process (241). Human albumin as a major serum 

component is non-immunogenic, biodegradable and easily prepared in large amounts as an 

ultrapure recombinant protein (242) and the safety of albumin in the retina after intravitreal 

application has been established (243). Compaction with albumin effectively protects the 

plasmid against degradation and imparts a transfection rate higher than lipofectamine in 

vitro in the ARPE-19 cell line (224). Cytotoxicity was detected neither in vitro nor in vivo 

after intravitreal injection in the mouse eye and protein expression was detectable in retinal 

extracts even though the exact location of expression was not established (224). Further 

investigations into the mobility of these particles in the vitreous revealed aggregation of 

positively charged formulations probably due to interaction with abundant negatively 

charged proteins in the vitreous humor, but altering the surface charge of the particles can 

resolve this issue (107). However, the influence of altering the charge on the transfection 

efficiency of the particles will need to be determined. Gelatin-compaction is another attempt 

at using innate proteins as a nonimmunogenic drug delivery vector which shows no adverse 

effects in the eye after intravitreal injection (232). Gelatin can also compact DNA 

effectively (244, 245), but it has so far not been tested in retinal gene therapy despite its 

potential.

NP compaction can also be achieved by peptides instead of whole proteins. The positively 

charged amino acid lysine is a perfect candidate for this and early experiments demonstrated 

high transfection efficiency for DNA compacted with polylysine (246). Since then, the 

compaction procedure has been refined and used in different tissues for transgene 

delivery(247-249). With the addition of PEG (see discussion below), polylysine NPs can 

effectively transfect lung epithelial cells and induce minimal immune response even when 

administered at high dosage (250). CK30PEG NPs can also transfect postmitotic cells, 

something which has historically proven difficult with non-viral delivery methods (74). 

These particles have been widely used in the eye to provide therapeutic improvement as 

described above and do not show any adverse effects after delivery to the eye even after 

repeated treatment (225), nor any extraocular gene expression after subretinal delivery 

(251). The efficiency of polylysine particles can be altered by adjusting the lysine 

counterion used during the compaction process. For example, switching from acetate to 

trifluoroacetate can change the shape of the particle form rod to sphere and influence the 

transfection rate both in the eye and in the lung (76, 252). Likewise, the addition of 

histidines to the polylysine compaction agent can increase the efficiency of the gene transfer 

up to 20-fold (tested in vitro). This ‘proton sponge’ effect is due to the amino nitrogens in 

the histidine which are able to accept protons (253). This immense buffering capability 

prevents the acidic degradation of the particle in the endosome after uptake and leads to 

rupture of the organelle and escape of the DNA into the cytoplasm (247). Polylysine can 

also be engineered into branched dendrimers before compaction, increasing its buffering 

capacity and thereby its gene delivery capabilities (254). This type of particle is still 

completely biodegradable and therefore exhibits much less toxicity than other dendrimer 
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polymers like PAMAM described below. These examples show how versatile the polylysine 

particles are and a change of certain amino acids or the content of lysine could have 

immense influence on the transfection efficiency of the final particle.

5.2.2. Polysaccharide-based particles—Polysaccharides are well suited for use as 

drug delivery agents due to their non-immunogenic and biodegradable properties, 

inexpensive production and ease of modification. Hyaluronic acid can be used to target lipid 

NPs to the CD44 receptor as described above, but can also be used to deliver drugs on its 

own. Hyaluronic acid is present in large amounts in the interphotoreceptor matrix of the 

retina and is highly biocompatible and non-immunogenic (255). Compaction of 

chemotherapy drugs with hyaluronic acid has been successfully achieved (256), however, 

for gene therapy, a mixture of hyaluronic acid and chitosan is more generally in use as the 

overall negative charge of hyaluronic acid interferes with productive DNA compaction. In 

combination with chitosan, a cationic polysaccharide harvested from shellfish, hyaluronic 

acid can form small particles (100-200 nm in size) which protect DNA from degradation and 

can effectively transfect cells in vitro (257). These particles are also able to successfully 

transfect corneal epithelium cells, become internalized efficiently,and induce transgene 

expression (258). During production, the size and surface charge of the particles can be 

easily manipulated by changing the ratio of chitosan to hyaluronic acid which has a distinct 

influence on transfection efficiency and transgene persistence (257). Chitosan can also be 

used without hyaluronic acid to compact DNA and deliver NPs, either unmodified or with 

various alternate functional groups. The interaction of chitosan with plasma membrane 

proteins has been discussed as a factor for the transfection abilities of chitosanNPs though 

the precise uptake mechanisms are not clear (259). Whatever the mechanism, 

chitosanparticles can deliver plasmid DNA to a variety of different cells including intestinal 

and corneal epithelial cells (227, 260). In vitro transfection is inefficient without additives, 

but in vivo, transgene expression was observed in RPE cells (92, 226) and photoreceptors 

(92) after subretinal injections without any notable cytotoxicity. Together with the highly 

efficient compaction process (261), these results show the potential of chitosan as a non-

viral gene packaging method, but no therapeutic efficacy studies have been published as yet.

Other polysaccharides like cyclodextrin or dextran have also been shown to facilitate 

cellular uptake of nucleic acids(262). Dextran has been tested as a carrier for siRNA and 

exhibits considerable transfection efficiency in vivo in lung tissue when formulated as a 

nanogel (263). For plasmid transfection, dextran is mostly used in combination with other 

polymers, but not as a compaction agent alone. Dextran can increase the transfection rate of 

lipid NPs after intravenous delivery (238)and decrease the cytotoxicity associated with some 

polymer-based particles (264). For the use in ocular gene therapy, a combination of dextran, 

gelatin and chondroitin has been used to condense DNA and transfect corneal cells in vitro. 

This approach could be developed into a topical application of therapeutic DNA for the 

cornea (228) but has not yet been evaluated in the retina.

5.2.3. Polymer-based NPs—There are many different compounds neither peptide- nor 

polysaccharide-based which have been tested for compaction of drugs, siRNA and DNA 

into nanoscale particles for delivery and here we briefly discuss some of the most successful 

Zulliger et al. Page 20

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ones.One of the most efficient transfection agents, polyethylenimine (PEI), was discovered 

in 1995 and has since been tested in many applications. The transfective quality of PEI is 

linked to the high amount of amino nitrogens in the macromolecule which confer the 

abovementioned ‘proton sponge’ effect(253) and promote endosomal release. PEI condenses 

into small particles (100-1000 nm) upon combination with DNA, a process which is highly 

dependent on pH and ionic strength of the reaction solution (253). PEI-compacted DNA has 

emerged as a powerful tool for non-viral transfection in notoriously hardtotransfect neurons, 

especially when coupled with a cell-specific receptor ligand like mannose (265, 266). The 

feasibility of this approach has been shown in the retina; PEI NPs successfully 

transfectedRPE and Müller glia cells in vitro and in vivo (229, 230), but these experiments 

also showed fairly high acute cytotoxicity of native PEI in vitro in differentiated and 

undifferentiated epithelium cells(231, 267) and ARPE-19 cells (231). This toxicity can be 

alleviated by the addition of PEG to the PEI particles, as described below (268), and PEI 

remains of great interest as a non-viral delivery strategy.

Another ‘proton sponge’ compound is polyamidoamine (PAMAM), which is synthesized as 

a repetitively branched dendrimer and can compact DNA into small particles (around 130 

nm) (269). Successful transgene expression has been shown after in vivo deliveryof the 

PAMAM-DNA particles to tumors and cardiac grafts (270, 271), but the compound was 

associated with relatively high toxicity levels in vitro in Y79 cells and moderate pathology 

in mice 30 days after systemic administration from the beginning, which explains why it is 

not more broadly in use for gene therapy applications (272). Again, studies as recent as 2014 

with PEGylated dendrimers have demonstrated reduced induction of cell death in vitro in 

HEK293T cells compared to unmodified PAMAM, however in this case, the PEGylation led 

to loss of transfection efficiency, a phenomenon described in more detail below (273). The 

‘proton sponge’ effect is naturally of interest for the development of better non-viral vectors 

and is therefore subject of serious research. The imidazole ring of the amino acid histidine 

can serve the same purpose and actually shows appreciable gene transfer in vitro without 

associated toxicity (274).

Other polymers have also had noteworthy success for gene transfer. The use of poly(lactic 

acid) (PLA) as a DNA-compacting agent is quite common, as the compound is simple to 

synthesize and releases its cargo easily (275). The particles features very low short-term 

toxicity levels in vitro in liver carcinoma cells(276) and high stability in the presence of 

serum when PEGylated (277). Poly(D,L-lactide-co-glycolide) (PLGA), a derivative of PLA, 

forms stable nanospheres of less than 200 nm together with DNA (278). The particles 

achieve rapid endosomal escape (279) and can efficiently induce transgene expression in 

RPE cells and ganglion cells in vivo upon intravitreal administration(111, 112). Cationic 

hyperbranched poly(amino ester) (PAGA) was described as a possible non-toxic DNA 

carrier as well (280), but the transfection efficiency is clearly inferior to other particles 

compacted with PAMAM or PEI (281).

It is conceivable due to their large variety that there are many more possible synthetic, 

degradable polymers which could provide non-toxic, highly efficient non-viral gene 

delivery. In an early study, a high-throughput approach used to test the transfection qualities 
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of a library of polymers yielded 140 possible candidates (282) and experiments like this 

could lead to the next-generation of polymer vectors.

5.3. Modification of NPs with polyethylene glycol (PEG)

All the NP formulations described above have distinct transfection efficiency, toxicity and 

bioavailability profiles and they have virtually all been conjugated with PEG to help 

overcome some of their deficiencies. Hydrophobic and electrostatic interactions of NPs with 

serum proteins in the blood, a process called opsonization, leads to a swift removal of 

particles from the circulation by phagocytic cells (85, 283). For intravenous delivery this is 

an issue, as it decreases the availability of the therapeutic compound at the target location. 

One way to decrease the opsonization rate of particles by serum proteins is the addition of 

PEG to the outer shell. The PEG molecules form a hydrophilic, neutral cover around the 

particle which creates a protein-rejecting buffer, also called stealth coating, preventing 

opsonization, increasing the half-life of the particles in the bloodstream, and decreasing 

macrophage uptake significantly (284-286). Plasmid DNA compacted with polylysine 

showed an increased stability in the presence of serum proteins when the particles were 

PEGylated (287) and siRNA compacted into liposomes demonstrated much better tissue 

delivery with the addition of PEG after intravenous application (288). This can lead to 

significantly higher transgene expression rates in the target tissue as shown with PEGylated 

polylysine particles in the lung (250). The modification of gelatin-based nanovectors with 

PEG also showed a significant increase of tissue accumulation of plasmid DNA after 

systemic administration which is due to the increased stability of the particles in the blood 

stream (289). The effect of PEGylation on macrophage uptake can be quite dramatic, a 

decrease up to three-fold, as research on drug-carriers formulated with PLGA has shown 

(290). This leads to a prolonged circulation time of up to 72 hours while non-conjugated 

drugs are cleared within 6 hours (290). There is also evidence of increased stability of PLA-

PEG particles in the digestive tract after oral administration (291) and reduced aggregation 

of PEGylated liposomes in the vitreous (222).Another issue for many NP formulations is 

their considerable cytotoxicity. The addition of PEG can be beneficial in this respect as well, 

decreasing the negative effect of compounds like the PAMAM dendrimer (292), dextran 

(293), and PEI (268) and therefore increasing their potential feasibility for clinical 

application.

Despite all the positive results on the use of PEG for NP formulations, there is a huge 

disadvantage. PEGylation masks the positive charge on NPs, so it can also decrease the 

transfection efficiency since that depends on the same cationic charge (294). The added 

stability of PEGylated particles can also interfere with the endosomal escape of particles 

after uptake and can therefore lead to rapid degradation of the carrier and its cargo in the 

endosome (295). This issue has been described by many researchers in the field and is 

commonly called the ‘PEG dilemma’, as the increased stability of the particles is desirable 

for delivery, but comes at the cost of hugely decreased transfection rates (222, 293, 296). 

Different solutions to this problem have been proposed, one suggestion is the post-

PEGylation of particles with PEG-ceramide which would dissociate from the inner particle 

upon contact with the target cell membrane or in the endosomal compartment. This would 

increase the mobility of the particles in the vitreous just like covalently linked PEG without 
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hampering the transfection (222). Another approach takes advantage of the specific 

environment found in target tissues, in one case cancer cells. Tumors have a slightly acidic 

pH due to their high metabolic rate which can be used to cleave off the PEG coating after 

delivery to the site of interest if pH-sensitive hydrazine bonds were used to link the PEG to 

the particle (297). As an alternative to PEG, particles can also be stealth coated with 

peptides changing charge from negative to positive upon encountering low pH values (298). 

Another approach which may be more valuable for gene therapy vectors in the eye is the use 

of chemical bonds cleavable by matrix-metalloproteinases (MMP) abundant in the 

extracellular matrix of certain cells (299). This is particularly applicable since the retinal 

detachment that occurs during subretinal injection leads to upregulation of MMP-12 and 

MMP-13 (300). In any case, the “PEG dilemma”remains to be fully resolved and remains a 

topic of interest to researchers.

Liposome-mediated transfection of cells was initially described over 30 years ago and 

researchers have discovered many other compounds suitable for compaction of DNA in 

small particles capable of penetrating the cell membrane in the meantime. Unfortunately for 

the whole field of non-viral gene therapy, compounds with very high transfection efficiency 

like PEI are also the ones with the highest toxicity levels and are therefore unsuitable for 

application in patients. The toxicity issue is partially alleviated with the addition of PEG, but 

that also reduces the transfection efficiency to a level comparable with the non-toxic 

compounds. This predicament needs to be resolved before successful non-viral gene therapy 

in patients can become a reality, but high-throughput synthesis and testing of new 

compounds for example described by Lynn et al. 2001 will certainly accelerate the process.

6. Conclusions

Since the development of liposomes in the 1980 as transfection agents, non-viral vectors 

have come a long way. Recent breakthroughs in particle compaction, surface coating and 

vector engineering have shown that these vectors have large potential in the future of gene 

therapy. The introduction of peptides like polylysine which are more biocompatible and less 

toxic (75) make the delivery of larger, therapeutically relevant doses possible. The advent of 

intravitreal injections of anti-angiogenic drugs in the past decades has also led to improved 

surgical techniques and reduced the probability of injection-related adverse effects (114). 

The intravitreal method of delivery is also gaining traction with the invention of stealth 

coating with PEG or hyaluronic acid as the bioavailability of intravitreally delivered 

particles in the retina increases (222, 301). When coupled with receptor-targeting of 

particles, this may lead to vectors which can be injected intravenously or intravitreally with 

high efficacy and with minimal risk of off-target adverse effects (87). Together with the 

advances in vector engineering, non-viral vectors have the capability to be a clinically 

relevant complement to viral vectors in gene therapy, particularly for the delivery of large or 

precisely engineered genes.

Since viral vectors have already been used in clinical trials in the eye, there arenow data 

available on human efficacy and limitations for ocular gene therapy, which are informing 

the next generation of viral trials. Though much of what has been learned from early ocular 

viral gene therapy trials can be applied to non-viral gene delivery as well (namely the 
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dangers associated with subretinal injection, the need for higher levels of expression and 

improved distribution), non-viral gene delivery still has a long way to go reach to wide 

application in patients.However, with the innovations seen in the last couple of years and the 

fast evolution of gene therapy vectors, both viral and non-viral, there is hope that a viable 

treatment optionat least for some patients with retinal degeneration will be available in the 

next decade.
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Figure 1. 
Diagram illustrating some of the ways that non-viral therapies can be taken up and 

expressed in cells. Bulleted lists indicate places/methods where modifications to the particle 

or vector can be used to improve transfection efficiency or expression. Question marks 

indicate trafficking pathways that remain to be elucidated.
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Table 1

Non-viral therapeutic delivery methods can dictate the transduction efficiency of different ocular cell types

Delivery Method Target cells Pro Con Ref.

Topical Cornea No injection Inefficient penetration (82-84)

Intravenous Mostly inner retina No adverse effects due to injection 
at the eye

Opsonization and phagocytosis of particles
Off-target delivery to other tissues

(85-87)

Periocular Corneal epithelium
Photoreceptors RPE

Non-invasive Low transfection rates for retina and RPE (88, 89)

Intravitreal Inner retina Non-invasive Adverse effects rare Vitreous humour aggregates particles.
Ocular infections and retinal detachment can 
occur

(90-94)

Subretinal Photoreceptors RPE Highest transfection rate Invasive
Retinal detachment can cause cell death

(95-98)

Suprachoroidal Photoreceptors RPE No retinal detachment Very inefficient transcleral transport (89)
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Table 2

Packaging methods.

Compaction agents Target cells Retinal model Ref.

DOTAP Neural retina/RPE/cornea Wistar rats
ARPE-19 (in vitro)

(221-223)

DOTAP/DOPE RPE
RPE

RPE65−/− mouse (LCA)
ARPE-19 (in vitro)

(81)
(132)

DSPE Inner retina/RPE/Cornea Balb/c albino mouse (87)

Albumin RPE ARPE-19 (in vitro) (107, 224)

Polylysine RPE Balb/c albino mouse
RPE65−/− (LCA)

(80, 225)

Outer retina
Outer retina

Rho−/− mouse (RP)
ABCA4−/− mouse(Stargardt's disease)

(153)
(75)

Chitosan Inner retina/outer retina RPE Sprague Dawley rat
Balb/c albino mouse

(92)
(226)

Chitosan/hyaluronic acid Cornea Human corneal epithelium (in vitro) (227)

Dextran/chondroitin sulfate Cornea Human corneal epithelium (in vitro) (228)

PEI Retinal Muller Glia
Glia and ganglion cells
Retina

Lewis rat
Human retinal cells (in vitro)
White Japanese rabbit

(229)
(230)
(231)

PLGA Inner retina/RPE Lewis rat (112)

Gelatin
* Outer nuclear layer RCS Rats (232)

*
Thus far these particles have only been used to deliver drugs, not genetic material, to the eye.
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