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Abstract

Background—Psychometric tests predict conversion of Mild Cognitive Impairment (MCI) to 

probable Alzheimer's Disease (AD). Because the definition of clinical AD relies on those same 

psychometric tests, the ability of these tests to identify underlying AD pathology remains unclear.
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Objective—To determine the degree to which psychometric testing predicts molecular evidence 

of AD amyloid pathology, as indicated by CSF Aβ1–42, in patients with MCI, as compared to 

neuroimaging biomarkers.

Methods—We identified 408 MCI subjects with CSF Aβ levels, psychometric test data, FDG-

PET scans, and acceptable volumetric MR scans from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). We used psychometric tests and imaging biomarkers in univariate and 

multivariate models to predict Aβ status.

Results—The 30-minute delayed recall score of the Rey Auditory Verbal Learning Test (AVLT) 

was the best predictor of Aβ status among the psychometric tests, achieving an AUC of 0.67±0.02 

and odds ratio of 2.5±0.4. FDG-PET was the best imaging-based biomarker (AUC 0.67±0.03, OR 

3.2±1.2), followed by hippocampal volume (AUC 0.64±0.02,,OR 2.4±0.3). A multivariate 

analysis based on the psychometric tests improved on the univariate predictors, achieving an AUC 

of 0.68±0.03 (OR 3.38±1.2). Adding imaging biomarkers to the multivariate analysis did not 

improve the AUC.

Conclusion—Psychometric tests perform as well as imaging biomarkers to predict presence of 

molecular markers of AD pathology in MCI patients and should be considered in the 

determination of the likelihood that MCI is due to AD.

Search Terms
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INTRODUCTION

Recent guidelines for diagnosing mild cognitive impairment (MCI) due to Alzheimer’s 

Disease (AD) have emphasized the importance of psychometric testing for establishing the 

existence of MCI, and subsequently relying on biomarkers based on imaging and biofluids 

to assess the likelihood that the existing cognitive impairment is “due to AD” relative to a 

different cause[1]. In particular, cognitive testing is a component of the “core clinical 

criteria” for MCI, which requires that impairment greater than expected for age must be 

present in at least one cognitive domain. Once clinical categorization of MCI is established, 

the guidelines suggest that the likelihood that the cognitive phenotype is “due to AD” should 

rely on various imaging and molecular biomarkers (each classified as either a biomarker of 

neurodegeneration or cerebral amyloid), without specifically taking into account the severity 

of the cognitive deficit within the MCI category.

Although imaging-derived biomarkers for diagnosis of AD and prediction of conversion 

from MCI to AD have been the subject of intensive research[2–4], how these biomarkers 

can be used most effectively in the presence of alternative sources of clinical information 

about a subject’s status, such as cognitive testing, is still not settled. Several recent studies 

have examined the relative utility of cognitive testing, imaging, or molecular biomarkers for 

predicting conversion from MCI to AD [5–9], These studies have generally found that 

cognitive testing performs similarly to other biomarkers, but a potential criticism of these 

study designs is that using psychometric measurements to predict conversion to AD is 
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circular, as the diagnosis of AD is itself determined in large part based on psychometric tests 

that are the same as or similar to those used to predict conversion.

To avoid this circularity, we sought to determine if cognitive testing with standard 

psychometric measures can predict the presence of cerebral amyloid based on a well-

established CSF molecular biomarker, the detection of which is independent of cognitive 

scores, unlike clinical diagnosis of conversion to AD. Although post-mortem histology 

remains the gold standard for establishing AD pathology, measures of CSF Aβ1–42 and 

amyloid PET imaging are the closest currently available surrogate [10,11]. For the present 

study, we used CSF Aβ as a marker for AD pathology given its higher uniform availability 

in the studied cohort. We choose CSF Aβ in isolation, as opposed to τ/Aβ ratio, because we 

were specifically comparing the relationship between cognitive and neuroimaging 

neurodegenerative biomarkers and evidence of AD molecular pathology; thus, incorporating 

a molecular neurodegenerative marker like τ may confound the results. Moreover, we 

wanted to determine the relative and combined predictive value of psychometric testing with 

neuroimaging biomarkers of neuronal injury or neurodegeneration.

In particular, we examined several cognitive measures, including verbal memory, given their 

putative sensitivity to prodromal AD. We used diverse imaging-derived biomarkers to 

accurately represent both standard and developing measurement approaches. Further, we 

chose structural MRI and FDG PET measures given their emphasis in the MCI guidelines. 

For MRI data, we used an automated hippocampal volume measurement, several cortical-

thickness measurements including a summary measure of several regions associated with 

AD-related tissue loss [12,13], and multivariate analysis of voxelwise measurements of 

cortical thickness [14,15]. Hippocampal volume is considered to be one of the most 

established biomarkers of AD with numerous studies demonstrating its predictive value in 

MCI. We also used FDG-PET data from a set of regions (meta-ROI) previously determined 

to be sensitive to early AD and prediction of clinical conversion to AD in MCI cohorts [16]. 

To obtain such a wide variety of clinical data in a sufficiently large population, we utilized 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. If cognitive measures 

perform similarly to both more standard and developing imaging biomarkers in prediction of 

AD pathology with MCI patients, they can provide a cost-effective and easily accessible 

method for assessing the likelihood of prodromal AD in patients with MCI.

METHODS

Clinical Data

Subjects—This study was a retrospective analysis of data obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year public- private partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
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Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials.

Data used in this article were downloaded from the ADNI website in January 2014. We 

included only MCI subjects with complete datasets for the current analysis, including CSF 

Aβ levels, all neuropsychological tests examined, and FDG-PET. Only those subjects with 

Freesurfer cortical and hippocampal segmentations of acceptable quality, as determined by 

the publicly available Freesurfer dataset available through ADNI, were included.

In the ADNI study, MCI is split into two groups, early MCI (EMCI) and late MCI (LMCI). 

Diagnostic criteria for both EMCI and LMCI subjects were as follows: MMSE scores 

between 24–30 (inclusive), a subjective memory concern reported by subject, informant, or 

clinician,, a CDR of 0.5, absence of significant levels of impairment in other cognitive 

domains, essentially preserved activities of daily living, and an absence of dementia. They 

also were required to have objective memory loss measured by education adjusted scores on 

delayed recall of one paragraph from Wechsler Memory Scale Logical Memory II, which 

further determined EMCI (≥16 years: 9–11; 8–15 years: 5–9; 0–7 years: 3–6) or LMCI (≥16 

years: ≤8; 8–15 years: ≤4; 0–7 years: ≤2) status. In this manuscript, MCI refers to both 

EMCI and LMCI.

The ADNI study includes a variety of collection sites around the United States and Canada, 

and a full list is available at http://adni.loni.usc.edu/about/centers-cores/study-sites/. 

Recruitment for the ADNI study aimed to achieve a balance of normal controls, MCI, and 

AD subjects. For ADNI 1, a random subsample of subjects was selected for FDG imaging; 

in ADNI 2/GO, all subjects enrolled received FDG imaging. For up-to-date information on 

specific inclusion and exclusion criteria, please see www.adni-info.org.

Psychometric Testing

We aimed to include a battery of psychometric tests that would cover a broad range of 

cognitive domains, with special focus on memory due to its importance in AD. For memory, 

we included components of the Rey Auditory Verbal Learning Test (AVLT) [17] given its 

richness of measures for various aspects of mnemonic processing (e.g. immediate versus 

delayed recall versus delayed recognition); for assessment of cognitive speed, sequencing, 

and executive function, the Trail Making Test [18] [Trails A and Trails B] was used; for 

language/semantics, category fluency [19] [Animals] and the Boston Naming Test [20] were 

examined; and as a measure of global cognition, the Mini-Mental State Examination was 

utilized [21]. We examined several of the AVLT measures, which depend on differential 

aspects of episodic and working memory [22]. The AVLT consists of five learning trials in 

which a list of 15 words is read and the subject is asked to immediately recall as many items 

as possible. After an interference list of 15 novel words is read and recalled, subjects are 

then asked to recall words from the initial list (5-min delayed recall). A 30-min delayed 

recall trial and recognition test follow. For the recognition test, subjects are presented with a 

list of the 15 studied words and 15 nonstudied foils and are asked to circle all words 

previously studied. To account for false alarms (FA) to nonstudied items, we calculated a 

measure of discriminability, d-prime (d'), in a standard fashion based on classic signal 
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detection theory [23]. Because d' is undefined when either proportion is 0 or 1, we used 

standard formulas to convert these values: Hits = (no. of hits + 0.5)/(no. of studied items + 

1) and FA = (no. of FA + 0.5)/(no. of unstudied items + 1). For the current study, we 

analyzed performance on the fifth immediate memory trial (AVLT Trial 5 Recall), 5- and 

30-minute delayed recall (AVLT 5-min Recall, AVLT 30-min Recall), and recognition 

memory discrimination (AVLT Recognition Discrimination). In addition, we calculated a 

retention score, which is the number of items remembered after a 30-minute delay (AVLT 

30-min Recall) divided by the number of items remembered during the last immediate 

memory trial (AVLT Trial 5 Recall).

Determination of Amyloid and ApoE Status

Cerebrospinal fluid (CSF)-based molecular biomarkers were processed by the University of 

Pennsylvania/ADNI Biomarker Core Laboratory as previously described [10,24]. An Aβ1–42 

value of less than or equal to 191 pg/ml was considered to be “positive” for the presence of 

amyloid pathology based on a prior autopsy-based study performed at the University of 

Pennsylvania [10]. For analyses involving ApoE status, subjects were dichotomized into 

ApoE ε4 positive and negative groups. ApoE ε4 positive status is defined as having at least 

one ApoE ε4 allele.

Neuroimaging Measures

Processing of neuroimaging data included both analyses made publicly available by ADNI 

and in-house image processing. The following analyses were based on preprocessed data 

downloaded from the ADNI website: FDG-PET scans were acquired and analyzed in 

accordance with a standard protocol [16]. Mean FDG uptake was averaged over 5 ROI’s that 

are sensitive to AD-related changes in metabolism, including right and left angular gyri, 

right and left inferior temporal regions, and bilateral posterior cingulate. These regions were 

averaged into a meta-ROI and normalized to an ROI focused on the pons and cerebellar 

vermis to give a summary FDG PET measure. Cortical thickness and hippocampal 

measurement of the MRI scans were performed according to the standard ADNI Freesurfer 

[25] processing pipeline, and downloaded from the ADNI website. Only images that passed 

ADNI quality control for the temporal, occipital, temporal, and parietal lobe were included. 

Cortical thickness in the caudal portion of the middle frontal gyrus, medial portion of the 

orbital frontal cortex, inferior parietal lobule, lateral portion of the occipital cortex, inferior 

temporal gyrus, entorhinal cortex, temporal pole, and the isthmus of the cingulate cortex 

were averaged to form a meta-ROI thought sensitive to early AD related neurodegeneration, 

as previously suggested [26].

Image Analysis

In addition to the image analysis performed by various ADNI investigators, we ran 

additional analyses of MR images to supplement standard approaches with a state of the art 

multivariate analysis technique. 1.5T and 3T non-accelerated T1-weighted MPRAGE and 

SPGR MRI scans of all MCI subjects from ADNI1 and ADNI2/GO were downloaded from 

adni.loni.usc.edu. We computed an alternative measure of cortical thickness using DiReCT 

[12,13], and used the AAL label set [27] to define medial temporal and precuneal regions of 

interest (ROI’s), as these areas are known to atrophy in early AD. We performed a singular 
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value decomposition (SVD) analysis of the whole-brain cortical thickness data, as this 

analysis has proven useful in differentiating AD from frontotemporal dementia and 

predicting CSF-based biomarkers in this population [28,29]. The SVD was performed using 

the princomp function in R, and we retained the top 10 components. A grid search strategy 

using bootstrapping with 100 repetitions, with half the subjects left out for a validation 

cohort, was used to determine the optimal number of components to retain.

Statistical Analysis

All statistical analysis was performed using the R programming language, version 3.1.0. For 

predictive studies, we randomly split the subjects 5 times into training and testing cohorts, 

retaining half the subjects for training and using the other half for testing in a 5×2 cross-

validation scheme [30]. All area under the curve (AUC), odds ratios, and positive and 

negative predictive values are on the testing cohorts. Two-tail t-tests were used to compare 

AUC values between testing cohorts of different models to calculate a p-value for 

differences in mean AUC; false discovery rate (FDR) correction was applied to correct for 

multiple comparisons. For all analyses, patient age, gender, and education were used as 

additional predictors; for all MR-based imaging analyses, magnet field strength (1.5 or 3T) 

was included as a covariate. In addition to univariate predictions of Aβ status from 

psychometrics and imaging modalities, we performed principal component regression, using 

3 principal components, on all the psychometric scores, as well as the psychometric and 

imaging values combined. Area under the curve (AUC) analysis was performed using the 

ROCR package in R [31].

RESULTS

Subject Demographics

Subject data was collected between January 2006 and January 2013. A total of 622 MCI 

subjects with CSF-derived Aβ values were identified, and 407 of those were Aβ positive. Of 

these, 547 (350 Aβ positive) had FDG scans; 450 (286 Aβ positive) had complete Freesurfer 

segmentations without failures; 433 (273 Aβ positive) had intracranial volume available; and 

408 subjects (257 Aβ positive) had complete psychometric scores available. There was a 

mean difference of 15 days between the psychometric tests and imaging studies, with 95% 

of subjects having the imaging and psychometric tests done within 55 days of each other. 

The maximum time difference was 138 days. A total of 62 adverse events were reported 

from the lumbar punctures, most of which were headaches (25 cases) or pain (23 cases), 

with 2 subjects reporting nausea and a few reporting a variety of other effects, including 

bruising, tenderness, and swelling. One adverse event, transient procedural anxiety, occured 

during the imaging.

A summary of the demographics of the study population, including the psychometric and 

imaging information, is given in Table 1. We computed a logistic regression relating each 

psychometric test and modality with Aβ status, while covarying for age, gender, and 

education (Table 2). The logistic regression results indicated that the psychometric tests and 

imaging modalities were predictive of Aβ status, even when included in a univariate model.
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Predictive Models

The associations between the various psychometric scores and Aβ status were strong enough 

to predict Aβ status when the data used to train the model was separate from the data used 

for evaluation. While many of the psychometric measures displayed predictive value, 

varying in range of AUC’s from 0.59 to 0.67, immediate and delayed recall measures 

performed particularly well, reaching an AUC of 0.65 and 0.67 respectively, corresponding 

to odds ratios of 3.0 and 2.5 (Figure 1, Table 3). The 30-minute delayed recall test was 

significantly better than both Trails tests, the Boston Naming Test, category fluency, and 

MMSE. The standard imaging modalities were similar to each other and the individual 

psychometric tests in prediction of Aβ status with FDG-PET displaying the highest AUC at 

0.67, followed by hippocampal volume at 0.64. Delayed recall performed significantly better 

than all of the cortical thickness-based measurements and trended better, but was not 

statistically significantly better, than hippocampal volume. Delayed recall performed 

similarly to FDG-PET. Despite the prior evidence of SVD analysis of the whole-brain 

cortical thickness data in prediction of CSF Aβ measures in a cohort of AD and FTD 

patients, this approach did not appear to enhance prediction (AUC=0.59) versus more 

standard structural MRI measures. Performing a PCA on the psychometric scores and using 

the resulting components boosted the AUC slightly to 0.68 with an odds ratio of 3.38; 

adding the imaging modalities to that model increased the AUC to 0.69, but the increase was 

not significant (Table 4). The multivariate analysis of the cognitive tests, however, was 

statistically significantly better than hippocampal volume, which was not true for any 

individual cognitive test. Repeating the analysis using only subjects with 3T MR scans did 

not significantly change the results.

Effect of ApoE Allele

Because of the tight link between ApoE ε4 and Aβ pathology, we sought to determine, as a 

secondary analysis, whether the observed effects are modulated by ε4 status. We divided the 

subjects into ε4 positive and ε4 negative groups and performed the analyses in the same way 

as before (Table 5). The results were broadly the same in that imaging did not significantly 

improve diagnostic accuracy over psychometric tests. Nearly all psychometric and 

neuroimaging biomarkers were more predictive of Aβ status in ε4 negative as compared to 

ε4 positive subjects. This trend was highly statistically significant (p<0.001 using a paired t-

test).

DISCUSSION

Impact

The results shown here indicate that a psychometric evaluation can be as useful as FDG-

PET or quantitative MR imaging in predicting whether or not a given amnestic MCI patient 

likely has underlying AD pathology. The low cost and ready availability of psychometric 

batteries as compared to imaging studies makes them an attractive and useful alternative to 

specialized imaging techniques in clinical evaluation. Although the psychometric batteries 

do not approach perfect classification between Aβ-positive and Aβ-negative subjects, they 

can be useful in clinical practice to broadly estimate risk of prodromal AD and, perhaps, 

guide the process of obtaining additional studies, including molecular biomarkers. For 
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situations in which obtaining an accurate measure of Aβ is paramount, such as evaluating 

appropriateness of a future anti-amyloid therapy, direct molecular imaging or CSF 

measurement of Aβ is still necessary, perhaps after initial screening with psychometrics to 

enrich with amyloid positive patients.

One intriguing finding of this study is that multivariate analysis using principal components 

analysis (PCA) of the psychometric scores only marginally improved on the single best 

psychometric test, and the difference in AUC was not statistically significant at the p<0.05 

level. At the same time, the modest boost in AUC achieved by a multivariate analysis was 

sufficient to give a statistically significant improvement over hippocampal volume, but not 

over FDG-PET. These results suggest that improvements in diagnostic capability by using a 

multivariate cognitive profile as opposed to a single test offer only marginal improvements 

while at the same time suffering from less interpretability than a single test. Adding the 

imaging biomarkers to the multivariate analysis did not significantly improve the AUC, 

suggesting that imaging offers little added value over a cognitive profile when screening for 

underlying AD pathology.

Further, the fact that even the “standard” cognitive measures examined here displayed some 

success in determining the likelihood of AD pathology suggests that more research is 

warranted on designing and evaluating psychometric tests optimized for detection of early 

AD-related cognitive decline. In particular, measures guided by the cognitive neuroscience 

literature may be particularly useful in this regard [32]. Finally, the results here indicate that 

the ability of psychometric scores to identify patients who will progress to AD is not due 

solely to the fact that those same scores are used to establish presence of probable AD. 

Instead, it appears that the predictive value of psychometric tests are due, at least in part, to 

their ability to separate MCI patients into sub-populations with higher and lower prevalence 

of AD pathology.

Limitations

Although this study does indicate that a psychometric battery should be an important 

component of the evaluation of MCI subjects beyond initial categorization to the MCI 

designation, there are several factors that may influence the relative ability of imaging to 

predict AD pathology. First, this study focused exclusively on cross-sectional imaging 

studies. Longitudinal imaging may provide a more reliable representation of disease 

progression. Nevertheless, longitudinal imaging may not be feasible for many care settings, 

so evaluating the diagnostic power of cross-sectional imaging is also important. It is worth 

noting that this study is meant to help guide providers caring for patients with MCI, not to 

detect AD pathology in presymptomatic patients. By the time cognitive scores become 

clearly abnormal, significant neurodegeneration has likely already occurred while this may 

be more variable in the preclinical phase. Thus, it is unclear whether the same relative 

predictive value of cognitive versus neuroimaging methods would hold in that context. The 

patient selection criteria also may limit the applicability of the findings presented here to a 

broader range of patients. This study focused on amnestic MCI subjects. It is possible that in 

a broader selection of MCI subjects, the memory tests proposed may provide even greater 

capability in prediction of amyloid status. On the other hand, in non-amnestic MCI 
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populations, these tests may be less predictive due to differences in the loci of 

neurodegenerative change in amnestic versus non-amnestic prodromal AD. In addition, the 

ADNI study population is enriched in AD- or AD-like pathology. In a more general clinical 

setting, providers must also consider the possibility of other sources of cognitive 

impairment, such as depression or stroke. It is uncertain how this greater heterogeneity 

would impact the predictive value of both cognitive and neuroimaging measures. Another 

drawback to the current study is the sampling procedure. We excluded subjects who did not 

have all the biomarkers examined here, including those for whom the automated 

hippocampal segmentation failed. As such, the subset in this study would, if anything, 

overestimate the ability of hippocampal segmentation to track AD pathology; had we not 

excluded patients with unreliable segmentations, the predictive ability of hippocampal 

volumes would likely be lower.

It is also possible that advances in image processing techniques may improve the diagnostic 

capability of neuroimaging data. Although it is impossible to rule out such advances, the 

variety of imaging modalities and image processing techniques used here make it less likely 

that new analytic approaches would improve the predictive power of imaging data enough to 

supplant psychometric measures as a key method for characterization of MCI patients. 

Indeed, the current work did use a promising analytic approach involving singular value 

decomposition across the entire cortical mantle, which had previously demonstrated good 

predictive value of CSF t-tau/Aβ in patients with AD and frontotemporal dementia [28]. 

Nonetheless, this approach did not display significant advantages over more traditional 

measures (e.g. hippocampal volume) or psychometric tests. In any case, psychometric tests 

are more accessible than sophisticated image processing techniques, especially to physicians 

who do not work in academic medical centers.

An obvious limitation of this study is the use of CSF-derived Aβ status as a gold standard in 

the prediction models, as CSF Aβ does not perfectly reflect brain AD pathology. While we 

took this approach to avoid the circularity of longitudinal studies of conversion, a better 

design would have autopsy-confirmed AD pathology for comparison with the other 

biomarkers. Nonetheless, CSF Aβ, along with amyloid PET, are the closest surrogates to 

histopathologic evaluation presently available and have displayed high sensitivity in autopsy 

studies [10,11].

Finally, the limited accuracy for prediction of amyloid status of even the most accurate 

models indicates that caution should be exercised when using values from these models to 

guide clinical decision-making and, at most, they should be considered another piece in the 

overall assessment of risk in MCI patients. Fundamentally, the main conclusion of this study 

is that psychometric scores provide as much information as neurodegenerative imaging 

biomarkers in prediction of underlying amyloid pathology, not that either imaging or 

cognitive biomarkers should be regarded as having perfect diagnostic accuracy. This 

conclusion strengthens the argument made in previous studies that cognitive tests are a 

crucial component in multivariate predictive models for conversion from MCI to AD by 

demonstrating that cognitive scores predict molecular AD pathology, not just cognition-

based diagnoses of AD. Therefore, cognitive tests should be considered just as important a 

biomarker for AD pathology as other neurodegenerative biomarkers, which have already 
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been recognized by the National Institute on Aging – Alzheimer’s Association (NIA-AA) 

work group for MCI diagnosis. Finally, while the AUC values are relatively modest, the 

odds ratios suggest that poorer performance on the best cognitive predictors are associated 

with approximately a three-fold risk of underlying AD pathology, which may influence 

counseling of patients.

Effect of ApoE

One intriguing result in this study is the marked difference in prediction accuracy in ApoE 

ε4 positive vs. ε4 negative subjects. This finding is consistent with previous work showing 

that cognitive function is more closely linked to Aβ status within ε4 negative than within ε4 

positive subjects [33,34]. The mechanism behind this effect is not clear, but may be that the 

effects of Aβ on cognitive function are modulated by ApoE isoforms. However, an 

important confounding factor is the highly unbalanced nature of the samples: The ε4 

negative group had 79 Aβ+ and 120 Aβ− subjects, whereas the ε4 positive group had 178 Aβ

+ and only 29 Aβ− subjects. The relative paucity of ε4 positive but Aβ− subjects may 

contribute to the lower performance of the predictive model in the ε4 positive group. Thus, it 

is possible that the strong association of Aβ with ε4 status obscures the association with 

cognitive measures.

Psychometric Scores as Functional Biomarkers

It is worth pointing out that the current algorithm for determining the likelihood of “MCI 

due to AD” in the recently proposed criteria treats neurodegenerative and molecular markers 

as dissociable modalities of evidence. In a sense, psychometric tests can be considered 

another type of downstream neurodegenerative measure. Thus, it may seem somewhat odd 

to use one type of biomarker (neurodegenerative) to predict another (molecular) in this 

context if these measures provide orthogonal information. However, these measures are 

obviously related and multiple studies have demonstrated the significant predictive value for 

conversion to clinical AD in patients either with “positive” CSF or PET amyloid studies or 

neurodegenerative markers [1,35,36].

Nonetheless, one reason for the modest ability of cognitive measures to predict amyloid 

status is that MCI Aβ+ likely is associated with variable levels of impairment. This is almost 

certainly an issue for any neurodegenerative biomarker given the range of disease severity 

within the MCI category. Indeed, neurodegenerative biomarkers, in addition to providing 

some currency on the underlying pathology (e.g. cerebral amyloid), also are informative on 

disease stage and enhance prediction of the timing of transitions to dementia, as has been 

suggested in the literature [37–39]. Thus, relatively poor performance on cognitive measures 

within the MCI category increases both the likelihood that the underlying process is AD and 

that progression to dementia is more likely to occur in the near future, which may help 

provide additional context for clinicians in their assessment of these patients.

The choice of CSF Aβ as the proxy or standard for AD pathology in the present analysis also 

reflects the notion that it is a more specific measure of AD pathology than 

neurodegenerative markers given the defining nature of cerebral amyloid in the pathologic 

criteria for AD. Indeed, more and more therapeutic trials, including in MCI, are using a 
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positive amyloid study as inclusion criteria [40]. Thus, examination of psychometric 

measures within the MCI category may contribute to increasing the likelihood that a given 

patient may qualify for such a study on that basis.

CONCLUSION

In an MCI population, psychometric scores predict presence of CSF-based amyloid 

pathology that overlaps with predictions obtainable from FDG-PET and structural MR 

images. Thus, psychometric measures may be preferable in the cross-sectional context to 

provide initial screening on the likelihood of prodromal AD. The ability of cognitive scores 

to predict the existence of underlying AD pathology indicates that in addition to using 

cognitive test cutoffs to establish the existence of MCI, the severity of the test scores is as 

reliable an indicator as imaging biomarkers of neurodegeneration that the cognitive 

impairment is due to AD pathology. Thus, these measures could be included in the MCI 

algorithm as a type of neurodegenerative marker that could further help clinicians 

prognosticate in the clinical setting.
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Figure 1. 
ROC curves for predicting Aβ status from psychometric scores, imaging biomarkers, and 

principal components analysis of a collection of psychometric scores, and principal 

components of psychometric and imaging biomarkers.
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Table 1

Summary of demographics, psychometric scores, and imaging data for subjects.

All subjects
(mean ±
standard
deviation)

Aβ+ Aβ−

Number of subjects 408 257 151

Number of males 232 151 81

Number of ApoE ε4+ 207 178 29

Age 71.61±7.16 72.66±6.76 69.79±7.47

Education 16.24±2.71 16.14±2.79 16.41±2.59

Mini-Mental Status Examination 28.0±1.74 27.7±1.80 28.4±1.54

AVLT Trial 5 Recall 9.03±3.00 8.35±2.85 10.19±2.90

AVLT 5-min Recall 5.65±3.74 4.82±3.42 7.05±3.87

AVLT 30-min Recall 4.27±3.92 3.30±3.33 5.92±4.29

AVLT Recognition Discrimination 2.31±1.21 2.07±1.18 2.72±1.14

Retention 0.41±0.31 0.34±0.29 0.53±0.31

Trail Making Test A 39.00±16.71 41.64±18.21 34.50±12.63

Trail Making Test B 105.70±57.60 116.30±62.47 87.66±42.69

Boston Naming Test 26.92±3.28 26.73±3.20 27.26±3.39

Category fluency (animals) 18.05±4.93 17.44±4.88 19.08±4.84

Hippocampal volume 3497.62±577.07 3386.02±537.17 3687.56±537.17

Medial Temporal Thickness 3.83±0.60 3.78±0.61 3.93±0.57

Precuneus Thickness 1.54±0.39 1.52±0.39 1.58±0.37

Mean Cortical Thickness of AD Meta-ROI 2.64±0.17 2.61±0.17 2.68±0.16

Mean FDG-PET SUVR of AD Meta-ROI 1.26±0.14 1.23±0.15 1.31±0.11
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Table 2

Summary of univariate logistic regressions predicting Aβ status from each psychometric test and imaging 

biomarker. Age, gender, and education level (in years) were included as covariates. All data were scaled 

before regression to facilitate inspection of regression coefficients.

β Estimate Std.
Error

Zval pval

Mini-Mental State Examination −0.36 0.12 −3.11 1.9E-3

AVLT Trial 5 Recall −0.57 0.12 −4.946 7.6E-7

AVLT 5-min Recall −0.55 0.11 −4.83 1.3E-6

AVLT 30-min Recall −0.63 0.11 −5.47 4.4E-8

Trail Making Test A 0.44 0.14 3.18 1.5E-3

AVLT Recognition Discrimination −0.50 0.11 −4.45 8.7E-6

Retention −0.59 0.11 −5.25 1.5E-7

Trail Making Test B 0.52 0.15 3.57 3.6E-4

Boston Naming Test −0.08 0.11 −0.76 4.5E-1

Category fluency (animals −0.26 0.11 −2.39 1.7E-2

Hippocampal volume −0.43 0.13 −3.44 5.9E-4

Medial Temporal Thickness −0.12 0.11 −1.01 3.1E-1

Precuneal Thickness −0.01 0.12 −0.05 9.6E-1

Mean Cortical Thickness of AD Meta-ROI −0.23 0.12 −1.88 6.1E-2

Mean FDG-PET SUVR of AD Meta-ROI −0.54 0.12 −4.57 4.9E-6
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Table 3

Area under the curve (AUC), odds ratios, and positive and negative predictive values predicting Aβ status 

from biomarkers.

AUC Odds
Ratio

PPV NPV

Mini-Mental Status Examination 0.61±0.03 1.94±0.60 0.71±0.05 0.43±0.05

AVLT Trial 5 Recall 0.65±0.03 3.01±0.36 0.75±0.04 0.50±0.05

AVLT 5-min Recall 0.65±0.02 2.50±0.44 0.73±0.05 0.47±0.04

AVLT 30-min Recall 0.67±0.02 2.46±0.52 0.73±0.05 0.48±0.06

AVLT Recognition Discrimination 0.64±0.03 2.44±0.55 0.73±0.02 0.48±0.07

Retention 0.67±0.03 2.48±0.48 0.73±0.03 0.47±0.06

Trail Making Test A 0.62±0.02 2.13±0.46 0.73±0.04 0.44±0.05

Trail Making Test B 0.63±0.02 2.49±0.48 0.75±0.05 0.45±0.05

Boston Naming Test 0.59±0.02 1.66±0.17 0.70±0.03 0.42±0.04

Category fluency (animals) 0.60±0.02 1.88±0.43 0.71±0.05 0.42±0.03

Hippocampal volume 0.64±0.02 2.41±0.34 0.74±0.04 0.46±0.04

Medial Temporal Thickness 0.59±0.01 1.67±0.07 0.70±0.04 0.42±0.04

Precuneal Thickness 0.59±0.02 1.83±0.25 0.71±0.03 0.43±0.05

Mean Cortical Thickness of AD Meta-ROI 0.61±0.02 1.90±0.31 0.71±0.04 0.43±0.04

Mean FDG-PET SUVR of AD Meta-ROI 0.67±0.03 3.19±1.22 0.76±0.05 0.49±0.08

Principal component analysis of psychometric scores 0.68±0.02 3.38±1.16 0.71±0.03 0.56±0.10

Principcal component analysis of psychometric scores and imaging biomarkers 0.69±0.02 3.18±0.76 0.71±0.03 0.55±0.08

Principal component analysis of cortex-wide cortical thickness 0.59±0.03 1.57±0.21 0.67±0.04 0.43±0.02
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Table 4

Table of p-values of AUC's for each variable compared with every other variable (FDR corrected). p-values of 

less than 0.05 are color-coded to indicate which measure is better: Blue indicates that the test indicated in the 

row name is better, whereas green indicates that the test indicated in the column name is better.
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Table 5

AUC values for prediction of Aβ status from cognitive tests when stratifying patients by ApoE ε4 status. 

Cognitive tests were overall more predictive of Aβ status in ε4 negative subjects than ε4 positive subjects.

ε4+ ε4−

AUC AUC

AVLT Trial 5 recall 0.72±0.03 0.71±0.04

AVLT 5-minute recall 0.70±0.04 0.72±0.04

AVLT 30-minute recall 0.70±0.03 0.74±0.03

Trails A 0.68±0.03 0.75±0.03

Trails B 0.67±0.02 0.76±0.03

Boston Naming Test 0.67±0.02 0.72±0.06

Category Fluency (animals) 0.70±0.03 0.72±0.05

MMSE 0.68±0.03 0.73±0.02

Discrimination 0.69±0.04 0.72±0.02

Retention 0.70±0.03 0.73±0.03

Medial Temporal Thickness 0.68±0.03 0.72±0.04

Precuneus Thickness 0.68±0.03 0.70±0.05

Mean FDG 0.70±0.02 0.75±0.03

Hippocampal Volume 0.70±0.04 0.74±0.04

Thickness of Meta-ROI 0.67±0.03 0.69±0.03

PCA of psychometrics 0.69±0.03 0.74±0.03

PCA of psychometrics and imaging 0.69±0.03 0.73±0.04
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