Skip to main content
. Author manuscript; available in PMC: 2017 Jan 1.
Published in final edited form as: Eur J Appl Physiol. 2015 Aug 23;116(1):97–113. doi: 10.1007/s00421-015-3228-3

Table 1.

Model parameter values used in the simulations, most of which are as presented in the Dash and Bassingthwaighte (2010) paper; model parameters that are re-estimated based on fittings of the model to the experimental data in Figs. 1 and 3 are shown with footnotes. Unless otherwise noted, the kinetic parameter values are at T = 37 °C.

Parameter Definition Value Unit
K1
Ionization constant of H2CO3 5.5×10−4 M
K1
Equilibrium constant for the CO2 hydration reaction: CO2+H2OH2CO3(K1=K1/K1) 1.4×10−3 Unitless
K1 Equilibrium constant for the overall CO2 hydration reaction: CO2+H2OHCO3-+H+(K1=K1·K1); pK1 = −log10(K1) = 6.1 − 0.0434(pHpl−7.4) + 0.0014(T−37)(pHpl−7.4) 7.94×10−7 (pHpl = 7.4; T = 37°C) M
K2
Ionization constant of HbNHCOOH 1×10−6 M
K2
Equilibrium constant for the CO2-Hb binding reaction: CO2+HbNH2HbNHCOOH(K2=K2/K2) 21.5#
23.65*
M−1
K2 Equilibrium constant for the overall CO2-Hb binding reaction: CO2+HbNH2HbNHCOO-+H+(K2=K2·K2) 21.5×10−6#
23.65×10−6*
Unitless
K3
Ionization constant of HbO2NHCOOH 1×10−6 M
K3
Equilibrium constant for the CO2-HbO2 binding reaction: CO2+HbO2NH2HbO2NHCOOH(K3=K3/K3) 11.3#
14.7*
M−1
K3 Equilibrium constant for the overall CO2-HbO2 binding reaction: CO2+HbO2NH2HbO2NHCOO-+H+(K3=K3·K3) 11.3×10−6#
14.7×10−6*
Unitless
K4,S
Equilibrium constant for the overall O2-Hb binding reaction: O2 + HbNH2 ↔ HbO2NH2 at standard physiological conditions (otherwise it is a function of PO2, PCO2, pHrbc, [DPG]rbc and T) 2.03×105 M−1
K5
Ionization constant of HbNH3+ 2.4×10−8#
2.64×10−8*
M
K6
Ionization constant of HbO2NH3+ 1.2×10−8#
1.56×10−8*
M
nH Hill coefficient with variable cooperativity hypothesis for O2 binding to Hb: nH = αβ×10PO2/γ (Eq. 11) Variable Unitless
α Parameter governing PO2-dependent variable Hill coefficient nH with variable cooperativity hypothesis for O2 binding to Hb 2.82$ Unitless
β Parameter governing PO2-dependent variable Hill coefficient nH with variable cooperativity hypothesis for O2 binding to Hb 1.20$ Unitless
γ Parameter governing PO2-dependent variable Hill coefficient nH with variable cooperativity hypothesis for O2 binding to Hb 29.25$ mmHg
P50,S Level of PO2 at which Hb is 50% saturated by O2 at standard physiological levels of PCO2, pHrbc, [DPG]rbc and T 26.8$ mmHg
PO2,S Standard partial pressure of O2 in blood 100 mmHg
PCO2,S Standard partial pressure of CO2 in blood 40 mmHg
pHpl,S Standard pH in plasma 7.4 Unitless
pHrbc,S Standard pH in RBCs, related to the standard plasma pH by: pHrbc,S = 0.795pHpl,S +1.357 7.24 Unitless
[DPG]rbc,S Standard 2,3-DPG concentration in RBCs 4.65×10−3 M
TS Standard temperature of blood 37 °C
pHrbc pH in RBCs, related to plasma pH by: pHrbc = 0.795pHpl + 1.357) Variable Unitless
Rrbc Gibbs-Donnan ratio for electrochemical equilibrium of protons or bicarbonate ions across the RBC membrane (Rrbc = [H+]pl/[H+]rbc = [HCO3]rbc/[HCO3]pl; Rrbc = 10−(pHpl−pHrbc) = 10−(0.205·pHpl−1.357)) Variable (0.692 at pHpl = 7.4) Unitless
αO2,S Solubility of O2 in water at standard temperature (37 °C) 1.46×10−6 M/mmHg
αCO2,S Solubility of CO2 in water at standard temperature (37 °C) 3.27×10−5 M/mmHg
HctS Standard hematocrit (volume fraction of RBCs in blood) 0.45 Unitless
[Hb]bl,S Standard hemoglobin concentration in blood 2.33×10−3 M
[Hb]rbc,S Standard hemoglobin concentration in RBCs ([Hb]rbc=[Hb]bl/Hct) 5.18×10−3 M
Wpl Fractional water space of plasma 0.94 Unitless
Wrbc Fractional water space of RBCs 0.65 Unitless
Wbl Fractional water space of blood: Wbl = (1−Hct)·Wpl + Hct·Wrbc 0.81 Unitless
[O2]tot Total O2 concentration of whole blood: [O2]tot = Wbl·αO2·PO2 + 4·Hct·[Hb]rbc·SHbO2 Variable M
[CO2]tot Total CO2 concentration of whole blood: [CO2]tot = Wbl·αCO2·PCO2 + ((1−Hct)Wpl+Hct·Wrbc·Rrbc)(K1·αCO2·PCO2/[H+]pl) + 4·Hct·[Hb]rbc·SHbCO2 (parameter K1 defined above) Variable M
#

Estimated based on model fittings to the data of Bauer and Schröder (1972) at T = 37 °C (see Fig. 3E)

*

Estimated based on model fittings to the data of Matthew et al. (1977) at T = 30 °C (see Fig. 3F)

$

Estimated based on model fittings to the data of Severinghaus and colleagues (Roughton et al., 1972; Roughton & Severinghaus, 1973; Severinghaus, 1979) in normal human blood at standard physiological conditions