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Characterization of the Functional Domains of a Mammalian
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ABSTRACT Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical poten-
tial to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning.
Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well under-
stood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining
whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD)
and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address
whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature
of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found
that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel
pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted
in P1(4,5)P, depletion that was sufficient to inhibit the PI(4,5)P,-regulated KCNQ2/3 channels. While testing the functionality of
the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and
those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native
VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments
to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the
lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse

neurophysiology.

INTRODUCTION

The phospholipid composition of cellular membranes and
the electrical potential across those membranes are two
important signaling mechanisms that are involved in a
wide variety of cellular functions. Accordingly, many dis-
eases are known to involve improper regulation of lipid
signaling (1) or the proteins that regulate the membrane po-
tential (2). Voltage-sensitive phosphatases (VSPs) are a fam-
ily of proteins comprising two domains that directly couple
these two important signaling mechanisms (3). The first
domain in VSPs is homologous to the voltage-sensing do-
mains (VSDs) in voltage-gated ion channels (4,5), whereas
the second domain is homologous to the lipid phosphatase
and tumor suppressor PTEN (6-10).

The VSP from the sea squirt Ciona intestinalis (Ci-VSP)
is the best-characterized VSP so far. In Ci-VSP, depolariza-
tion increases the protein’s lipid phosphatase activity (3,11),
resulting in dephosphorylation of the 5’ position of phospha-
tidylinositol 4,5-bisphosphate (PI(4,5)P,) and phosphatidy-
linositol ~ 3,4,5-trisphosphate  (PI(3,4,5)P3)  (12-14).
Although VSPs have been used as tools to study the role
of phosphoinositides in regulating cellular processes (15-
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17), and as a structural model for studying VSD activation
(5,18-21), little is known about the biological roles that
VSPs play in vivo. Furthermore, much less is known about
the properties of the mammalian VSP family members than
is known about their counterparts in other species.

To better understand the functionality of VSPs, we stud-
ied the mouse VSP as a model mammalian VSP. We inves-
tigated its expression in the central nervous system, where
both electrical signaling and lipid signaling play important
roles, and found that neural expression of the protein is
developmentally regulated. To test the functionality of
Mm-VSP’s VSD and lipid phosphatase domain, we gener-
ated chimeric proteins containing each of these domains
separately. These studies revealed that both the VSD and
phosphatase domain of Mm-VSP are functional indepen-
dently of one another. Analyses of the VSD also suggested
a potential sensitivity to intracellular pH that may serve as a
mechanism to regulate Mm-VSP’s activity.

As a note regarding nomenclature, although the mouse
protein was originally termed transmembrane phosphatase
with tensin homology (TPTE), our results indicate that the
protein is not only voltage sensitive but also displays lipid
phosphatase activity. Therefore, by analogy to Ci-VSP, we
refer to the protein as the VSP from Mus musculus (Mm-
VSP) from here on.
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MATERIALS AND METHODS
Protein sequence alignment

For amino acid sequence comparisons, the COBALT algorithm (22) was
used to align the sequences of Mm-VSP (NP_954866.2), Ci-VSP
(BAD98733.1), Dr-VSP (BAGS50379.1), Hs-VSP2 (previously named
TPTE)(NP_954868.1), Hs-VSP1 (previously named TPIP) (AAP45146.1),
Gg-VSP (XP_417079), and Drosophila Shaker (CAA29917.1).

RT-PCR

RNA was purified from mouse whole-brain homogenate using a spin col-
umn system (NucleoSpin; Machery-Nagel). RT-PCR primers against the
Mm-VSP mRNA sequence (NM_199257.2) were designed using Primer-
BLAST software (23) (Table S2 in the Supporting Material). Reverse tran-
scription and PCR were carried out using SuperScript III with the Platinum
Taq kit (Invitrogen). PCR products were separated by electrophoresis on a
1.5% agarose gel and visualized with ethidium bromide. For sequencing of
selected amplicons, bands were cut from the agarose gel, purified using a
spin column (QIAquick Gel Extraction Kit; Qiagen), and sequenced in
the forward and reverse directions using the associated RT-PCR primers.

DNA construct generation

GalT-oxBFP was a gift of Dr. Erik L. Snapp (Albert Einstein College of
Medicine). Kvsynni was given to us by the Moroni lab at the University
of Milan. KCNQ2, KCNQ3, and Dr-VSP were provided by the Hille lab
at the University of Washington. A BluntII-TOPO plasmid containing the
DNA for Mm-VSP was purchased from Open Biosystems (clone ID
40054415). Additional constructs were engineered and subcloned based
on these plasmids using standard molecular cloning techniques. Details
regarding the primers and restriction sites used are listed in Table S3.

Cell culture

HEK293T/17 cells (ATCC) were grown at 37°C with 5% CO, saturation in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin. For live-cell imaging and electro-
physiology, cells were transfected with DNA using calcium phosphate,
and experiments were conducted 24—48 h later. Primary cultures of mouse
cortical neurons and astrocytes were obtained on postnatal day 0—1 (PO-1).
Cells were dissociated using papain trituration. Astrocytes were grown un-
der the same conditions as HEK293T/17 cells until confluency was reached.
Neurons were cultured on top of a confluent layer of astrocytes in minimum
essential medium supplemented with 1x GlutaMAX, 10% fetal horse
serum, 25 mM HEPES, 20 mM glucose, 1% penicillin/streptomycin, 1%
N2 supplement, 1% B27 supplement, and 1 mM sodium pyruvate.

Microscopy

Immunolabeled samples were imaged on a Nikon Eclipse 90i with a 40x
objective, and standard filter sets for green fluorescent protein (GFP) (exci-
tation: 450-490 nm; dichroic: 495 nm; emission: 500-550 nm), RFP (exci-
tation: 530-560 nm; dichroic: 570 nm; emission: 590-650 nm), and DAPI
(excitation: 325-375 nm; dichroic: 400 nm; emission: 435-485 nm).
Images were acquired with a CoolSNAP HQ?2 cooled CCD camera (Photo-
metrics) controlled through NIS-Elements software (Nikon). Live-cell im-
aging was conducted on a Zeiss inverted laser scanning confocal
microscope with a 40x objective. The oxBFP protein was excited with
405 nm light, and emitted light was collected from 438-484 nm. GFP
was excited with 488 nm light, and emitted light was collected from
504-552 nm. Images were collected using ZEN software (Zeiss).
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Antibody development

DNA encoding the first 113 amino acids of Mm-VSP was amplified and in-
serted into the bacterial expression vector pRSF (Table S3), generating a
construct encoding a fusion protein with 6X-His and maltose-binding pro-
tein (His-MBP) at the amino terminus. Recombinant peptide containing
Mm-VSP amino acids 1-113 was purified from BL21 E. coli using the
His-MBP dual-affinity tag system and then cleaved from the tags using
an engineered tobacco etched virus cleavage site. The identity of the protein
was confirmed by mass spectrometry and the protein was then injected as an
antigen into two different rabbits (h5535 and h5536) by New England Pep-
tide. Antibody-containing serum from each rabbit had enzyme-linked
immunosorbent assay titers of 63,100 and 13,000, and both rabbits’ sera
were validated for use in immunocytochemistry experiments (Fig. S1 C).
Serum h5536 was chosen for affinity purification to generate pure poly-
clonal antibodies for use in western blotting. The immunizing peptide
was immobilized on NHS-activated agarose beads (Pierce). Serum diluted
1:1 in binding buffer (25 mM Tris, 150 mM NaCl, pH 7.2) was passed over
the peptide beads, allowing the antibodies to bind the peptide. The anti-
bodies were eluted using high-salt buffer (2.5 M KCl, pH 7.7). Eight frac-
tions were collected and tested for immunoreactivity via western blot
against mouse whole-brain homogenate. The fraction with the highest
immunoreactivity was verified by incubating the antibody with the immu-
nizing peptide before probing the western blot, which blocked the majority
of the band intensity at the expected size of Mm-VSP (Fig. S1 A).

Western blotting

Mouse brains were homogenized immediately after dissection in 1 mL
buffer (0.32 M sucrose, 5 mM HEPES, pH 7.4, 1x Roche EDTA-Free
cOmplete protease inhibitor) per 100 mg tissue. Whole-brain homogenate
samples were run out on polyacrylamide gels and transferred to nitrocellu-
lose membranes. Membranes were probed first with the affinity-purified
Mm-VSP rabbit polyclonal antibody and then with a microtubule-associ-
ated protein 2 (MAP2) monoclonal antibody raised in mouse (Sigma).
Both antibodies were diluted 1:1000 in phosphate-buffered saline with
Tween 20 (PBST) with 1% bovine serum albumin. Secondary goat anti-rab-
bit or goat anti-mouse immunoglobulin G conjugated to horseradish perox-
idase (Invitrogen) was diluted 1:1000 in PBST and incubated with the blot.
It was then exposed using Clarity ECL substrate (BioRad) and imaged us-
ing a Kodak IS440CF digital imager.

Immunolabeling

Cells were fixed with 4% paraformaldehyde, permeabilized, and blocked in
blocking buffer (2% normal goat serum, 0.4% saponin, 1% bovine serum al-
bumin, in PBS). The sera containing rabbit polyclonal antibodies generated
against Mm-VSP were used at 1:200 in blocking buffer. Both sera had high
immunoreactivity and specificity in immunolabeling (Fig. S1 C), and were
used interchangeably. Mouse monoclonal antibodies against FLAG
(Sigma), MAP2 (Sigma), GFAP (Sigma), and SV2 (24) were all used at
1:1000. Alexa 488 and 568 conjugated to goat anti-rabbit or goat anti-mouse
secondary antibodies were used at dilutions between 1:1000 and 1:2500.
Hoechst dye was used at 1:10,000 in blocking buffer to label cell nuclei.
For all samples, a corresponding control sample in which only secondary an-
tibodies were added was used to assess background fluorescence.

Electrophysiology

HEK293T/17 cells were plated on a poly-lysine-coated coverslip at low
density 4-24 h before experiments began. Cells were continuously perfused
with an extracellular solution of (in mM) 160 NaCl, 2.5 KCl, 2 CaCl,, 1
MgCl,, 10 HEPES, and 8 glucose, pH 7.4 with NaOH. Cells were recorded
in whole-cell voltage-clamp mode after a gigaohm seal was achieved
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through a borosilicate patch pipette, with an intracellular solution of (in
mM) 175 KCl, 5 MgCl,, 5 HEPES, 0.1 K,BAPTA, 3 Na,ATP, and 0.1 Na;-
GTP, pH 7.4 with KOH (or pH 6.6 where noted). Data were collected at
sample intervals of 0.1 ms (KCNQ2/3 tail currents), 0.4 ms (Kvgy, cur-
rents), or 5 ms (current decay at +100 mV). For Kvgyn, recordings, cells
were held at —70 mV. Channels were activated as shown in Fig. 3 B. Re-
cordings were obtained once every 10 s to allow the channels to completely
deactivate between pulses. For KCNQ2/3 (M-current) recordings, cells
were held at —60 mV. Channels were activated as shown in Fig. 5 C and
tail currents were measured instantly after the cell was repolarized. Traces
were analyzed using IGOR Pro version 6.3.4.1 (WaveMetrics) after they
were imported using the PPT library (Dr. Francisco Mendez and Frank
Wiirriehausen, Max-Planck Institute, Gottingen, Germany).

Statistical analysis

Statistical tests were performed using IGOR Pro version 6.3.4.1 (WaveMet-
rics) and the R statistical programming environment (25). For all tests, « (the
threshold for significance) was set to 0.05. Groups of data points were tested
for approximate normality using the Jarque-Bera test. When the hypothesis
of normality was not rejected, pairwise comparisons between families of data
points were performed using Student’s #-test. When the data were found to be
not normally distributed, the Wilcoxon rank-sum test was applied for pair-
wise comparisons. In instances involving multiple testing across families
of data points, the Kruskal-Wallis test was performed to test the hypothesis
that all data sets came from the same distribution. If this hypothesis was re-
jected, post hoc pairwise testing was performed using the Wilcoxon rank-
sum test followed by Holm’s correction for multiple testing.

RESULTS

Mm-VSP expression is developmentally regulated
in the brain

Mm-VSP expression has been reported in the testis (26,27),
similarly to other VSP family members (3,28-30). In most
species, VSP expression has been detected in the central
nervous system as well. A large-scale genomic study in
mouse suggested that Mm-VSP might be expressed in the
brain (31); however, these results have not yet been
confirmed. More recent reports on VSP activity still refer
to Mm-VSP as a testis-specific protein (29,32), leaving un-
answered the question of whether Mm-VSP is expressed in
the brain. Because both electrical signaling and phospho-
lipid signaling play important roles in the brain, neural
expression of Mm-VSP would likely have important physi-
ological consequences.

To determine whether Mm-VSP is expressed in the mouse
brain, we first looked for mRNA transcript using RT-PCR.
Primers were designed to amplify three different regions
of Mm-VSP mRNA, to decrease the possibility of false neg-
atives due to expression of different isoforms. RT-PCR tar-
geting MAP2 was used as a positive control. Because
expression of Mm-VSP has already been reported in the
testis, RNA extracted from P37 mouse testis was used as a
positive control for Mm-VSP expression. When RT-PCR
was performed on RNA extracted from mouse brain, Mm-
VSP transcript was detected using each of the primer pairs
in both male and female mice at both PO and P37 (Fig. 1 A).
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FIGURE 1 Mm-VSP mRNA and protein are expressed and developmen-

tally regulated in mouse brain. (A) Mm-VSP mRNA is expressed and devel-
opmentally regulated in the brain. RT-PCR amplicons were visualized in an
agarose gel using ethidium bromide. Left-hand labels indicate the basepairs
of Mm-VSP’s mRNA sequence amplified by each primer pair, where 0 is
the beginning of the open reading frame. Primers against MAP2 mRNA
were used as a positive control. Top labels indicate the postnatal age (in
days), gender, and tissue of the mice from which RNA was collected.
Each gel is representative of three replicates. (B) A novel Mm-VSP variant
lacks exon 9. In dark gray (top row) is the cDNA sequence for Mm-VSP
spanning exon 9 and flanking bases. In the second row, the sequence of
the splice variant is shown with exon 9 indicated by dashes. The amino acids
encoded by the cDNA are indicated below in blue. The alternate splice
variant identified in (A) was found to be lacking exon 9 after sequencing
of the amplicon. Shown below in black are the amino acid sequences of
other VSP family members, aligned with Mm-VSP using COBALT. Note
that the Mm-VSP amino terminus is much longer than that of other VSPs
and lacks obvious sequence similarity to other orthologs in the region en-
coded by exon 9. (C) Mm-VSP protein is expressed and developmentally
regulated in the brain. Whole-brain homogenates were probed in a western
blot to detect the presence of Mm-VSP protein. MAP2, probed for on the
same blot, served as a loading control. Tissue samples from two separate
mice are shown for each age. The blot is representative of three technical
replicates. The predicted mass of Mm-VSP is 77 kDa. Two bands near
this size are seen to be present in whole-brain homogenate, and their inten-
sity increases with the age of the mice. To see this figure in color, go online.

Surprisingly, a primer pair that targeted the mRNA region
encoding part of the amino terminus amplified two differ-
ently sized products in the brains of PO mice (Fig. 1 A, sec-
ond row). By P37, only the shorter product could be detected
in the brain, whereas only the longer product could be de-
tected in the testis. Sequencing the DNA corresponding to
the two bands revealed that the higher-molecular-weight
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band contained the expected 328 basepair sequence,
whereas the lower-molecular-weight band contained a
sequence lacking the 54 bases of exon 9 (Fig. | B). Alternate
splicing of Mm-VSP has been predicted (26), although the
exclusion of exon 9 has not been previously reported. We
term this novel (to our knowledge) splice variant Mm-
VSP-Ex9. Exon 9 encodes a region of Mm-VSP’s cyto-
plasmic amino terminus, and therefore this splice variant
is not expected to affect the voltage-dependent properties
or phosphatase activity of Mm-VSP. Furthermore, this re-
gion is one of the most evolutionarily divergent among
VSPs, and exon 9 demonstrates very little homology to
any other proteins, even among other VSP family members
(Fig. 1 B).

To track Mm-VSP protein, we developed and validated a
polyclonal antibody against a sequence in the amino termi-
nus of Mm-VSP that is unique to the mouse protein
(Fig. S1). To determine whether Mm-VSP protein is pre-
sent in the brain, we used this antibody in Western blots
of whole-brain homogenate (Fig. 1 C). Very little Mm-
VSP was identified in mouse brain at PS5, but by P30 a
strong band that ran close to the expected molecular
mass of Mm-VSP (76 kDa) was observed. This band was
detected in the brains of 1-year-old mice as well. These
data indicate that Mm-VSP is expressed in the adult mouse
brain and is developmentally regulated at both the mRNA
and protein levels.

The two predominant cell types within the brain are neu-
rons and glia, and the most abundant glial cells are astro-
cytes (33). To address whether neurons, astrocytes, or both
cell types express Mm-VSP, we investigated protein expres-
sion in primary cocultures of mouse cortical neurons and as-
trocytes. Cells were fixed after the neurons had grown for
14 days in vitro, and the cultures were then labeled with
anti-Mm-VSP antisera. To distinguish between the cell
types in the cultures, cells were colabeled with antibodies
against protein markers of neurons (MAP2), synapses
(SV2), or astrocytes (GFAP). MAP2-positive neurons
consistently also showed high anti-Mm-VSP labeling
(Fig. 2 A), whereas GFAP-positive astrocytes were consis-
tently seen to lack anti-Mm-VSP labeling. These data sug-
gest that within the brain, Mm-VSP is expressed
exclusively in neurons.

Consistent with previous reports on Mm-VSP, we found
that the protein localized to intracellular compartments
when expressed in heterologous systems (26,27). Indeed,
when we expressed Mm-VSP-GFP fusion proteins in
HEK?293T/17 cells, we observed fluorescence in intracel-
lular compartments (Fig. 2 B). Because previous studies
indicated that Mm-VSP trafficked to the Golgi, we coex-
pressed our Mm-VSP fusion proteins with GalT-oxBFP, a
fluorescent marker of the Golgi (34). We did not observe
colocalization between fluorescence from full-length Mm-
VSP-GFP and GalT-oxBFP. Rather, we saw Mm-VSP-
GFP fluorescence in a compartment morphologically
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FIGURE 2 Mm-VSP is expressed in neurons and localizes to intracel-
lular compartments. (A) Mm-VSP is expressed in neurons, but not astro-
cytes. Mouse cortical neurons were cultured for 14 days in vitro on a
confluent layer of astrocytes. Cells were double labeled with anti-Mm-
VSP antibodies (left panels, green in the merged image) and an antibody
against a protein marker of neurons (MAP2), synapses (SV2), or glia
(GFAP) (center panels, red in the merged image). Cell nuclei were labeled
with Hoechst dye (blue). Scale bars indicate 15 um. (B) GFP-tagged
Mm-VSP localizes to intracellular membranes in HEK293T/17 cells. Sche-
matics depicting Mm-VSP-GFP variants (/eft) are shown alongside live-cell
confocal fluorescence images of HEK293T/17 cells (right). N-term, amino
terminal domain; VSD, voltage-sensing domain; P’ase, phosphatase
domain. Removal of exon 9 is depicted as a carat connecting exons 8 and
10. Cells were cotransfected with the indicated Mm-VSP constructs (first
panel, green in the merged image) and the GalT-oxBFP construct (center
panel, red in the merged image). The fluorescent GalT-oxBFP protein local-
izes to the Golgi apparatus (34). Images were taken 24 h after transfection.
Scale bars indicate 10 um. To see this figure in color, go online.

consistent with the endoplasmic reticulum (Fig. 2 B, top
panel). This localization was not due to the presence of
the fluorescent tag, because we observed a similar intracel-
lular localization when a FLAG-Mm-VSP fusion protein
was expressed in HEK293T/17 cells (Fig. SI B). In
contrast, we saw that fluorescence from the GFP-fusion
of the exon 9-lacking splice variant, Mm-VSP-Ex9-GFP,
did colocalize with GalT-oxBFP fluorescence, indicating
localization to the Golgi (Fig. 2 C, bottom panel). This
finding is comparable to previous reports that different
splice variants of human VSPs localize to different subcel-
lular compartments in heterologous expression systems
(28,35).
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The VSD of Mm-VSP is voltage and pH sensitive

Whereas many VSPs generate sensing currents that can
be wused to characterize their voltage sensitivity
(3,29,30,36,37), no such currents have yet been detected
from mammalian VSPs, even those that have been observed
to traffic to the plasma membrane (14). We thus sought
another method to assess the voltage sensitivity of Mm-VSP.
Recently, Arrigoni et al. (38) showed that the VSD from
Ci-VSP could be expressed as a fusion protein with the pore
of the viral potassium channel Kcv. The resulting chimera,
Kvgyni, trafficked to the plasma membrane in Xenopus
oocytes, and the voltage-dependent conformation change in
the VSD could be used to drive gating of the pore. Hence, ionic
currents generated by the Kvgyny channel provide a readout
of VSP voltage-sensor activation, a property that we utilized
to investigate the voltage dependence of Mm-VSP.

To generate a Kvgyng channel that would enable us to
study Mm-VSP’s voltage sensor, we replaced the VSD of
Ci-VSP in Kvgynn with the VSD (amino acids 143-334)
of Mm-VSP (Fig. 3, A and B), resulting in a chimera we
termed Kvgynnm. The Kvgynni and Kvgynnm channels
were each transiently expressed in HEK293T/17 cells, and
the cells were voltage clamped in whole-cell mode. To mea-
sure the voltage sensitivity of the Ci-VSP and Mm-VSP
voltage sensors in the context of the Kvgyng channels, we
applied a series of depolarizing pulses and measured instan-
taneous tail currents at —40 mV (Fig. 3 C). The tail current
amplitude was plotted against the activating voltage, and the
data from each individual cell were fitted with a two-state
Boltzmann function to derive the voltage of half-maximal
activation (V,,;). The maximal and base values of the Boltz-
mann function were allowed to be fit to the data as free pa-
rameters, and the data from each cell were normalized based
on these parameters. These curves were then averaged
together for visual comparison (Fig. 3, D—F) and statistical
analysis was performed on the families of values from the
individual cells. Cells that produced values that could not
be fit with a Boltzmann function were excluded from
analysis.

HEK293T/17 cells expressing Kvgynn; produced voltage-
dependent currents that were qualitatively similar to those
reported when Kvgynm1 Was expressed in Xenopus oocytes
(Fig. 3 E). These voltage-dependent currents comprised an
instantaneous component and a slowly activating compo-
nent, as previously reported (38). Analogous currents were
not seen in cells that were not transfected with Kvgyy,, chan-
nels (Fig. 3 D). There was, however, a large difference in the
Vi we observed (—12 mV) and the V;, reported for
Kvgynin1 expressed in oocytes (+56 mV). This discrepancy
may be due to the different cell types used and the different
holding potentials from which test pulses were applied. For
experiments in HEK293T/17 cells, we held the cells at
—70 mV to model the neuronal resting membrane potential,
whereas Arrigoni et al. held oocyte membranes at —20 mV
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(38). Although this difference is notable and warrants
further investigation, it does not prevent us from using the
Kvgynm channels to address the question of whether the
VSD in mammalian VSPs is functional. Nevertheless,
because of this difference, and the fact that in this work
our assessment of Mm-VSP voltage-sensor function was
limited to the Kvgyynmm chimera, we did not seek to draw
strong conclusions about the exact properties of voltage
activation. Rather, we sought to determine the relative dif-
ferences, if any, between the behavior of the Ci-VSP voltage
sensor and that of the Mm-VSP voltage sensor.

Cells expressing the Kvgynmm chimera produced large
voltage-dependent currents, confirming that the transmem-
brane region of Mm-VSP acts as a VSD (Fig. 3 F). In the
original report characterizing Kvgynmi, Arrigoni and col-
leagues (38) demonstrated that the strong rectification
observed in Kvgyni was due to coupling between the
VSD and the pore. Thus, we compared the degree of recti-
fication of Kvgynnm currents with that observed in cells ex-
pressing Kvgy,mi by calculating the ratio of normalized
current amplitude at 40 mV to current amplitude at
—40 mV (Fig. 4 A). Values were normalized to the current
at 70 mV to control for differences in expression levels.
We observed similar degrees of rectification in Kvgynmm
and Kvgynpi, leading us to conclude that our Kvgynmm
chimera demonstrates similar coupling between the VSD
and pore domains.

We assessed the voltage dependence of channel opening
at negative potentials by calculating the ratio of current at
—40 mV/=70 mV. This revealed that Mm-VSP-based
Kvgynthm Was more active at hyperpolarized potentials
than Ci-VSP-based Kvgynm; (Fig. 4 C). To attempt to under-
stand the basis of this difference, we compared the residues
of the fourth transmembrane segment (S4) between Mm-
VSP and Ci-VSP. $4 is known to contain positively charged
amino acid residues, termed gating charge residues, that
confer sensitivity to voltage in voltage-gated ion channels
and VSPs (4,39). Mm-VSP appeared to lack one of the
gating charge residues present in Ci-VSP (Fig. 3 B), which
likely contributes to the weaker voltage sensitivity of the
Mm-VSP VSD (Table 1). This comparison also revealed
that the Mm-VSP VSD contains a histidine residue, H330,
that is conserved in human VSPs but absent in Ci-VSP.

The pKa of a histidine side chain (typically near 6.0) is
such that histidine can be protonated at low physiological
pH, which adds positive charge. Consequently, when gating
charge residues of voltage-gated channels (40,41) or Ci-
VSP (39) are replaced with histidines, the mutant proteins
demonstrate a pH-dependent influence on voltage-depen-
dent properties. Furthermore, Sutton et al. (42) reported
that a histidine in the same region (three residues before
the analog of H330 in human VSPs) conferred proton flux
in voltage-sensor chimeras. H330 in Mm-VSP is six resi-
dues away from the final gating charge of the VSD, and
thus is likely near the same face of the a-helical S4 as the
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A KVSynth1 B FIGURE 3 The transmembrane domain of
219 239 1 10 Mm-VSP senses voltage and pH. (A) Schematics
i Ci-VSP VVLARLLRVVRLARIF---YSHQQ -- MLVFSKFLTR K depicting chimeric Kvgyun channels. Kvsynmi
g Mm-VSP AVLLRPLRLLILIRILQLAHQKRQ GT MLVFSKFLTR eV (top) contains the voltage sensor from Ci-VSP
Ci-VSP VSD Kcv pore 311 334 (red) and the Kcv potassium pore from the PBCV-
KVSynthM Dr-VSP VTFLRSLRILILVRIFRLASQKRE 178 \1,01\:;;8 siigi{)%rﬁ Sﬁ;;“j[vg;’m(tlflr:; Ca(r):(ll[iii:s K[l:/
Hs-VSP2 THLLRLLRLIILLRIFHLFHQKRQ 214 potassium pore (gray). (B) S4 sequences of five
Hs-VSP1 THLVELLGLIQL IRIFRLLYAKRQ 196 VSP family members .and the Drosophila Shaker
Shaker LAILRVIRLVRVFRIFKLSRHSKG 381 . . .

Mm-VSP VSD Kev potassium channel. The amino acid numbers of
the first and last positions shown are noted. Posi-
C Untransfected tive—gating—?hgrge re.sidues are highlighted in red
4s and the histidine residue that was mutated to pro-
+7omy —— duce the KvsynnvH330G channel is highlighted
2s  40mv 'e in green. Shown with Ci-VSP and Mm-VSP are
-70 mV the first 10 residues of the Kcv pore, illustrating
-80 mv the juncture in the Kvgynmi and Kvgynam chimeras.
Note that two residues were introduced into
E KvSynth1 5 1.0 588 [} Kvsynmm as part of the cloning strategy that were
% %5 3 Ly not present in Kvgy,m;. The presence of these resi-
g i 8 dues does not appear to significantly impact
é 0.6 3 coupling of the VSD to the Kcv pore (see Fig. 4
£ o044 39 A). (C) Voltage protocol used to generate voltage-
E 0.2 S8 o pH 7.4 dependent activation curves for the Kvgy,g chan-
pHi 7.4 pHi 6.6 2 55 82 e pH:G_G nels. Cells were held at —70 mV in whole-cell
80 40 o 40 mode. Four-second pulses from —80 mV
Voltage (mV) to +70 mV were applied, increasing in 10 mV in-
0.8 T crements. Instantaneous tail currents were
g R 0 ﬁ" ° measured upon repolarization to —40 mV and
£ 064 call 8 used as an indication of voltage-sensor activation.
§ ﬁ ; { { H Cells were kept at their holding potential for 10 s
] 0.4 i i { between sweeps. (D) Untransfected cells do not ex-
'TE 024 } E i i press Kvgyng-like currents. Shown is a representa-
S | g é s ; :::f;"; tive family of current traces from a HEK293T/17
T ——T cell that was not transfected with any Kvgy,a chan-
80 -40 0 40 nel. Recordings were performed with an intracel-

Voltage (mV) A
lular pH of 7.4. (E-G) Voltage-dependent gating
;:: 1.0 1t of the Kvgyn channels at different intracellular
£ o084 $ 3 . pH values. Representative current traces from
§ 064 $ HEK293T/17 cells transfected with the indicated
S ) t KVsynin constructs are shown. Recordings were per-
5 047 s § formed with intracellular solutions at pH 7.4
= E 0.2 588 £ . pH; 7.4 (darker traces) or pH 6.6 (lighter traces). Vertical
pH; 7.4 pH; 6.6 % ooef ' ; & PHiES scale bars indicate 500 pA and horizontal scale
-80  -40 0 40 bars indicate 1 s. Dotted lines indicate zero current.

Voltage (mV)

To the right of the representative traces are average

activation curves. Individual cells’ tail-current/voltage relationships were fitted using a two-state Boltzmann curve and were subsequently normalized to the
extrapolated maximum and minimum values of these fits. The average of these normalized curves is shown, with error bars indicating standard error of the
mean. Each color-coded data set corresponds to a given Kvgy,g, channel: (E) Kvgynni (pH; 7.4 n = 4, pH; 6.6 n = 4), (F) Kvgynmm (pH; 7.4 n =8, pH; 6.6 n =
7), and (G) Kvgynum:H330G (pH; 7.4 n = 6, pH; 6.6 n = 7). To see this figure in color, go online.

gating charges. We therefore hypothesized that this histi-
dine, which is conserved in human VSPs, might result in
pH-titratable gating effects for the VSD of Mm-VSP. Based
on the known structure of Ci-VSP’s voltage sensor (5), we
expected this histidine to be near the cytoplasmic side of
Mm-VSP’s S4. This reasoning led us to predict that chang-
ing the intracellular pH (pH;) might affect the voltage-
dependent properties of Kvgynnm. To test this possibility,
we repeated the Kvgyny experiments using a pH; of 6.6
instead of 7.4.

Decreasing the pH; from 7.4 to 6.6 had very little effect on
either the Vy,, (Fig. 4 B) or the strength of voltage depen-

dence observed for the Ci-VSP-based Kvgynn (Fig. 3 E).
In contrast, the Mm-VSP-based Kvgy,nvm demonstrated
moderately different voltage-dependent properties at
different pH; values (Fig. 3 F). In particular, the V;,, of
Kvgynim increased from —24 mV at pH; 7.4 to —4 mV at
pH; 6.6 (Fig. 4 B; Table 1). Although the difference in the
average V,, between pH; conditions was statistically signif-
icant, there was a large degree of variability in the measured
V112 for individual cells expressing Kvgynmm. To provide an
additional test of pH effects, we employed an alternate mea-
sure of voltage-dependent gating that did not depend on the
goodness of fit of any particular model. By measuring the
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A B c FIGURE 4 Electrophysiological properties of

° cells expressing Kvgyng channels at neutral and

E E S z low pH;, as determined by further analysis of re-

(70 13 = cordings depicted in Fig. 3. Cells expressing

R s e E KvVsynti (1), KVsynnm (M), or the Kvgy,mm:H330G

3 5 > S mutant (mut) at the indicated pH are depicted in
P ;

wn - - different colors. Black circles represent values ob-

tained from untransfected cells. For a given chan-

pH; 7.4 + pH; 7.4 + nel, data from cells with intracellular solutions of

pH; 6.6 pH; 6.6 pH; 7.4 (darker colors) are shown to the left of

KVSymh KVSymh data from cells with intracellular solutions of pH;

6.6 (lighter colors). Averages are shown as open cir-

cles. (A) Kvsynmm couples voltage to pore opening

D 20 -70 mV a0 0omV comparably to Kvgyumi. Current-voltage relation-

% < e ® ° ships for cells expressing Kvgsynn channels were

brd £ 20 2.0 . ° normalized to the current observed at 70 mV to

i o ° e o allow for comparison between different constructs

kS g 1.0 1.0 LI ; S . and expression levels. To measure the degree of

% 8 8 - 3 % %9 rectification, the ratio of the currents at 40 mV

oo 8 8 @ & © ooe and —40 mV was compared between the Kvgy,m

PHi 7.4 ++ + + ++ + + constructs. .Indi.vidual cells’ current ratios gre

H shown as solid circles and the average current ratios

PH; 6.6 + + + + + ik for each Kvgy,q construct are shown as open cir-

Kvsymh 1 M |Imut 1 M Imut cles. Similar rectification was observed between

constructs. All recordings were obtained at pH;
7.4.(B) V> as a function of pH;. Solid circles represent the V, of the tail currents measured from an individual cell expressing the indicated Kvgyns, channel
at the indicated pH;. The open circles represent the average V.. Values were compared between pH; conditions for a given Kvgy,g channel using Student’s
t-test (*p < 0.05). Only Kvgyninm demonstrated a statistically significant difference in V,, between pH; of 6.6 and 7.4. (C) Tail current ratios as a function of
pH;. Each solid datum represents the tail current of an individual cell after pulsing to —40 mV divided by the tail current of that same cell after pulsing to
70 mV. Open circles represent the average. Values were compared between pH; conditions for a given Kvgy,, channel using Student’s t-test (*p < 0.05).
There was a statistically significant difference between the tail current ratios at pHi of 7.4 between KvSynth1 and KvSynthM. Only Kvgynmm demonstrated
a statistically significant difference in this current ratio between pH; 6.6 and pH; 7.4. (D) Kvgyn, current amplitudes are not noticeably different between
pH; 7.4 and 6.6. Each datum represents the average whole-cell current in a HEK293T/17 cell at either —70 mV (left) or 0 mV (right). Note that none of
the constructs produces appreciable current at —70 mV, indicating that expression of Kvgy,:, channels does not produce significant leak current at resting
membrane potentials. To see this figure in color, go online.

ratio of the tail current amplitude after pulsing to —40 mV
over the tail current amplitude after pulsing to 70 mV, we
calculated the percentage of total channel activation
observed at a moderate voltage. When we performed this
analysis, we saw no effect of pH; on the current ratio of
Kvgynini (Fig. 4 C). Kvgynmm, however, demonstrated a sta-
tistically significant (albeit slight) decrease in the current ra-
tio at pH; 6.6. This result indicates less channel activity at

—40 mV at pH 6.6 and is consistent with the difference
in Vl /2.

The properties of the pH;-dependent effects we observed
in Kvgynmm are distinct from the proton permeation in VSD
chimeras reported by Sutton and colleagues (42). The pro-
ton conductance they reported is on the order of 1-4 pS,
compared with the >100 pS conductance of Kvgynn (38).
A proton conductance on this scale would make up a small

TABLE 1 Values of Boltzmann Fits to Kvgyn;, Chimera Currents

Kvsynni> PHi 7.4 KVsynmi, pH; 6.6 KvVsynmm, PHi 7.4 Ksynmms PH;i 6.6 Kvsynnm:H330G, pH; 7.4 Kvsynmvi:H330G, pH; 6.6
Vip (mV) —12.43 + 2.99 —7.96 + 3.70 —24.39 + 5.14 —4.07 + 6.28 25.60 + 7.26 30.69 + 4.62
z 1.00 = 0.08 1.02 = 0.04 0.84 = 0.09 0.77 = 0.05 0.93 + 0.07 1.00 = 0.15

Tail currents from individual HEK293T/17 cells expressing the indicated channels were plotted versus activating voltage and fitted with the two-state Boltz-

mann function:

I = e + [I,m,x/(l + exp((V1/2 — V) /rate)]

where

rate = kT /ze

and k is the Boltzmann constant, 7'is the absolute temperature in Kelvin, and e is the elementary charge. k7/e was taken to be a constant (25.693 mV) at room
temperature to estimate values of z. Mean values for the recordings depicted in Fig. 3 are reported in the above table * standard error of the mean.
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fraction of our observed current, and therefore is unlikely to
account for the observed effect of pH; on the voltage depen-
dence of Kvgynnm. Conversely, if Kvgynawv Were to conduct
a significant outward proton current in addition to the
expected potassium current, cells with pH; 6.6 would be ex-
pected to demonstrate larger current amplitudes than cells
with pH; 7.4, due to the increased proton driving force. Con-
trary to this, the Kvgynmw current amplitudes did not differ
significantly between cells with pH; 7.4 and cells with pH;
6.6 (Fig. 4 D). Furthermore, H330 is conserved in the human
VSPs (Fig. 3 B), and Sutton and colleagues (42) found that
this residue did not produce proton currents in their
experiments.

To attempt to identify the mechanism underlying the
apparent pH sensitivity in Kvgynmm, we mutated the candi-
date pH-sensing residue H330 to a glycine to prevent proton-
ation at this amino acid. The histidine-to-glycine mutation
(H330G) did abolish the pH-dependent shift in V;, and
the difference in the tail current ratio (Figs. 3 G and 4, B
and C; Table 1). However, we were not able to conclusively
determine that this residue behaves as a pH sensor in
Kvgyninm because the H330G mutant had a positively shifted
activation curve and stronger voltage dependence compared
with the wild-type Kvgynmm (Table 1). Therefore, H330
appears to have a pH-independent influence on Kvgynmm
gating that complicates the interpretation of results obtained
by changing the pH; in the context of this mutation.

Although these results suggest that both H330 and pH
could play functional roles in the activity of Mm-VSP, it
should be noted that the effect size of changing the pH;
from 7.4 to 6.6 is small in Kvgy,mm, corresponding to a
change in activation of ~10%. While this is an intriguing
finding, we acknowledge that further experiments will be
required to fully evaluate the functional roles of intracellular
pH and H330 in native Mm-VSP.

The phosphatase domain of Mm-VSP inhibits
Pl(4,5)P>-sensitive M currents

It has been shown that the enzymatic activity of the phos-
phatase domains of the tumor suppressor PTEN and the hu-
man Hs-VSP1 (previously named TPIP) can be controlled
by the VSD from Ci-VSP (14,43). VSP chimeras can thus
be a useful tool for investigating the activity of phosphatase
domains. Because we found no indication of Mm-VSP on
the plasma membrane (Fig. 2 B), we turned to a chimeric
approach to study Mm-VSP’s phosphatase activity. To this
end, we generated a chimera in which the phosphatase
from Mm-VSP is fused to the VSD of the zebrafish VSP
(Dr-VSP) (Fig. 5, A and B). The VSD of Dr-VSP traffics
readily to the plasma membrane and requires membrane po-
tentials above 0 mV to be activated (36), making it ideally
suited for studies in HEK293T/17 cells.

To assess the phosphatase activity of Dr-VSP and the
Dr-VSP/Mm-VSP chimera, we measured their effect on M

2487

currents. The amplitudes of M currents, generated by potas-
sium channels comprising the KCNQ2 and KCNQ3 sub-
units, are highly sensitive to the concentration of PI(4,5)P,
in the plasma membrane (44). Consequently, the amplitudes
of M currents serve as an electrophysiological readout of the
PI1(4,5)P, concentration in the plasma membrane. Because
dephosphorylation of PI(4,5)P, is the best-characterized
enzymatic activity of VSPs examined to date, we coex-
pressed VSPs with KCNQ2/3 channels to assess lipid phos-
phatase activity. To test whether the Mm-VSP phosphatase
produced a voltage-dependent decrease in PI(4,5)P,, cells
were cotransfected with KCNQ2, KCNQ3, and the chimera
containing the Mm-VSP phosphatase fused to the Dr-VSP
VSD. Transfected cells were subjected to a stimulation pro-
tocol in which the membrane was depolarized to +100 mV
(Fig. 5 C). In cells expressing the Dr-Mm-VSP chimera, the
M current was suppressed (Fig. 5, D—F) with a time constant
of Tinnibition = 4.9 s (Table S1). We did not observe inhibition
of M currents in cells that were coexpressing full-length
Mm-VSP (Fig. S2), which is consistent with Mm-VSP being
absent from the plasma membrane.

To verify that the observed suppression of M currents
was due to the Dr-VSP/Mm-VSP chimera and not to an ac-
tivity endogenous to HEK293T/17 cells, we repeated the
experiment in cells cotransfected with KCNQ2, KCNQ3,
and the pIRES2-EGFP vector (containing no VSP
construct). Cells expressing these constructs generated
appreciable M currents when they were held at —60 mV
and depolarized to —20 mV (Fig. 5, D-F). Repeated mea-
surements of tail currents in individual cells demonstrated
that the M-current amplitudes did not show much vari-
ability (Fig. 5 G), indicating that the concentration of
PI1(4,5)P, at the plasma membrane was stable over time.
Additionally, the M-current amplitudes were stable when
currents were continuously recorded for 8 s at +100 mV
(Fig. 5, E and F).

To compare the effects of activation of the Mm-VSP
phosphatase and a well-studied VSP, we cotransfected cells
with KCNQ2, KCNQ3, and Dr-VSP. As in the absence of
Dr-VSP, robust M currents were observed at —20 mV
(Fig. 5 D). Repeated measurements of tail currents at
discrete time points again showed very little variability, con-
firming that Dr-VSP was not active at this potential (Fig. 5
G). When cells expressing Dr-VSP were depolarized
to +100 mV, M-current amplitudes rapidly decreased
(Fig. 5, D-F), indicating depletion of PI(4,5)P,. Repolariz-
ing cells and continuing to measure tail currents repeatedly
after the +100 mV depolarization revealed tail current-
amplitude recovery over time, indicating the resynthesis
of PI(4,5)P, by endogenous lipid kinases (Fig. 5 G). When
M-current inhibition and tail current recovery after Dr-VSP
activation were fitted with single exponentials (Table S1),
the time constants from the fits (Tiphibition = 0.3 S Trecovery =
4.4 s) were in good agreement with those previously re-
ported under these conditions (16).
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vsD Linker

VVLARLLRVVRLARIF - - - YSHQQMKASSRRTIS - 249
VTFLRSLRILILVRIFRLASQKRELEKVTRRMVS -188
AVLLRPLRLLILIRILQLAHQKRQLERLTRKLVS-344
THLLRLLRLIILLRIFHLFHQKRQLEKLIRRRVS-224
THLVRLLRLIILIRIFHLLHQKRQLEKLMRRLVS-206
VTLLRVLRIVILIRIFRLASQKKQLEVVTRRMVS-188

P-loop
361-IHCKGGKGR-
300-IHCKGGKGR-
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Dr-VSP
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Hs-VSP1
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300 ms
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Rosasco et al.

Gating Loop

398-RTDFEVGDVFQGVETAS-414
337-RTDKSMSSKFQGVETPS-353
493-RTDKSNSSKFQGIETPS-509
373-RTDKTHSEKFQGVETPS-389
355-RTNKTHSNKFQGVETPS-371
337-RTDRTMSTKFQGVETPS-353

FIGURE 5 A VSP chimera containing the Mm-
VSP phosphatase inhibits M currents in HEK cells.
(A) Sequence alignment of various VSP family
members and an engineered Dr-VSP/Mm-VSP
chimera. Amino acid positions are given by the
numbers before and after each region of the
sequence. Key regions implicated in the voltage-
dependent phosphatase activity of VSPs are high-
lighted. In particular, the gating-charge residues of
the VSD are shown in red and histidine 330 in
Mm-VSP is shown in green, whereas the catalytic
cysteine and gating-loop aspartate of the phospha-
tase active site are shown in orange. Below is the
sequence of the Mm-VSP phosphatase-containing

RTDKSNSSKFQGIETPS

300 ms

20 mV
150 ms
-60 mV
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larization are shown in darker colors. (E) Changes in normalized M current (I,.x — Ignar) at +100 mV. Changes in normalized M current observed in individual
cells are plotted with circular markers, and medians for each condition are shown as rectangles. The resulting data were compared using a Wilcoxon rank-sum
test (*p < 0.05; n.s., p > 0.05). (F) Average normalized M current (I/I ,,,,) of cells held at +-100 mV. The lighter center of each trace represents the average I/],;,,x,
and darker bars represent the per-time-point standard error of the mean. No VSP, n = 4 cells; Dr-VSP, n = 4 cells; Mm-VSP phosphatase, n = 7 cells.
(G) Normalized tail current amplitudes plotted over time. The tail current amplitude was recorded at discrete time points and repeatedly measured at
—60 mV after short pulses to —20 mV. Amplitudes were normalized to the initial tail current in each cell. Error bars are standard error of the mean for the
same four to seven cells analyzed in (E). To see this figure in color, go online

Suppression of KCNQ2/3 currents at 4100 mV and recov-
ery of tail currents after suppression both occurred more
slowly in cells coexpressing the Mm-VSP phosphatase
chimera than in cells coexpressing Dr-VSP (Fig. 5, F and
G). Furthermore, fitting the time course of tail current recov-
ery after Mm-VSP phosphatase activation required a double
exponential, whereas recovery of the tail currents after Dr-
VSP activation could be fit with a single exponential (Table
S1). Interestingly, the fast component of tail-current recovery
after activation of the Mm-VSP phosphatase-containing
chimera (Tfast recovery = 2.5 s) was comparable to that
observed after Dr-VSP activation (Tyecovery = 4.4 8); however,
the second time constant was about seven times slower
(Tslow recovery = 18.6 s). Taken together, our data indicate
that the phosphatase domain of Mm-VSP can be activated
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by the Dr-VSP voltage sensor, and that its activation can
reduce the concentration of PI(4,5)P, in the plasma mem-
brane, though with different kinetics compared with Dr-VSP.

DISCUSSION

The biological functions of VSPs are not yet understood,
particularly in mammals. However, both electrical signaling
and phospholipid signaling have been well studied with re-
gard to a wide variety of cellular processes. In the mamma-
lian brain, for example, these signaling mechanisms have
been implicated in diseases as diverse as cancer (45,46), ep-
ilepsy (47,48), and autism (49,50). This suggests that VSPs
serve important physiological roles in the cells where they
are expressed, and may provide useful drug targets.
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The nonmammalian Ci-VSP (3) and Dr-VSP (36) are the
two best-characterized VSPs to date; however, previous
work on Mm-VSP and the Hs-VSPs suggests that mamma-
lian and nonmammalian proteins may have distinct func-
tional properties. The first line of evidence for this comes
from the different subcellular localization observed for
mammalian and nonmammalian VSPs when expressed in
heterologous cells. Whereas both Ci-VSP and Dr-VSP
localize to the plasma membrane (3,36), most isoforms of
the human and mouse VSPs appear to localize to intracel-
lular membranes (26,35). In this study, we observed intra-
cellular localization of Mm-VSP in heterologous
expression systems (Fig. 2 B). This suggests that if Mm-
VSP is present on the surface of neurons, it may require a
trafficking partner or splice variant that is absent in cultured
fibroblasts.

Another putative difference between mammalian and
nonmammalian VSPs is the voltage sensitivity of the pro-
teins’ VSDs. Whereas nonmammalian VSPs are characteris-
tically activated by very large depolarizations (11,29,30,36),
our data indicate that Mm-VSP may be more active at nega-
tive potentials (Fig. 4 C). Furthermore, the weak voltage
sensitivity of the Kvgynnm chimera indicates that factors
other than membrane voltage may act as modulators of
Mm-VSP. One such possible modulator suggested by our
data is intracellular pH, although we note that because we
performed our studies with chimeras, it remains unknown
whether the properties revealed here accurately represent
the properties of full-length Mm-VSP in its native
environment.

The phosphatase activity of some mammalian VSPs
also appears to differ from that of nonmammalian VSPs.
Previous reports have shown that whereas the phosphatase
domain of human Hs-VSP1 dephosphorylates PI(4,5)P,
(14), two residue substitutions at positions 342 and 343
in the P-loop region of Hs-VSP2 prevent phosphatase ac-
tivity against lipid substrates (51) (Fig. 5 A). In this study,
we found that activating Mm-VSP’s phosphatase domain
resulted in an apparent decrease in PI(4,5)P,, as measured
by a decrease in PI(4,5)P,-dependent M current. However,
the kinetics of M-current recovery after activation of the
Dr-VSP/Mm-VSP  chimera was distinct from that
observed upon activation of Dr-VSP. Unlike the effects
of Dr-VSP, which could be fit with a single exponential
(Fig. 5, F and G; Table S1), the time course of PI(4,5)
P, recovery we observed after Mm-VSP activation was
biphasic and required two exponential time constants
to fit.

One potential scenario that could account for the biphasic
recovery of the M current after activation of Mm-VSP phos-
phatase activity is that PI(4,5)P, resynthesis takes place in
two steps: phosphorylation of PI to produce PI(4)P, and sub-
sequent phosphorylation of PI(4)P to produce PI(4,5)P,. It is
known that PI(4)P and PI(4,5)P, are in dynamic equilibrium
in cells, mediated by the activity of lipid kinases and phos-
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phatases (52). As a result, decreasing the concentration of
PI(4)P could have the result of indirectly decreasing
PI(4,5)P,. It is thus intriguing to speculate that Mm-VSP
functions as a PI(4)P phosphatase, inhibiting M current by
causing an indirect decrease in plasma membrane PI(4,5)
P,. In this context, it is interesting to note that PI(4)P is
the primary phosphoinositide in the Golgi body (53), raising
the question of whether the subcellular localization of Mm-
VSP that we and others have observed in heterologous sys-
tems (26,27) (Fig. 2) reflects a functional role for Mm-VSP
in this organelle.

If Mm-VSP were found to have PI(4)P phosphatase activ-
ity, it would be unique among VSPs, as only 3- and 5-phos-
phatase activities have been reported for other VSP family
members. In particular, using a chimeric approach similar
to ours, Halaszovich et al. (14) showed that the closely
related Hs-VSPI acts as a PI(4,5)P, phosphatase. Although
the sequence similarity of VSPs in regions such as the cat-
alytic P-loop suggests that they would have similar substrate
specificities, it is worth noting that the structural determi-
nants of VSP substrate specificity are incompletely under-
stood. For instance, in PTEN, the residues corresponding
to Ci-VSP’s G365 and E411 are alanine and threonine,
respectively. These differences have been shown to be
responsible for Ci-VSP’s ability to dephosphorylate
PI(4,5)P,, in contrast to PTEN’s strong specificity for
P1(3,4,5)P3 (54). However, the glycine and glutamate at
these positions are conserved among VSP family members
that display varying substrate specificity. As an example,
Gg-VSP from chicken displays almost no phosphatase ac-
tivity against PI(4,5)P,, but has activity against PI(3,4,5)P;
and PI(3,5)P, (30,54), despite the presence of the glycine
and glutamate in these two positions (Fig. 5 A).

Furthermore, evidence suggests that the phosphatase ac-
tivity of Ci-VSP can change in a voltage-dependent manner,
with 5-phosphatase activity dominating at moderate depo-
larizations and 3-phosphatase activity emerging at more se-
vere depolarizations (54). Therefore, the residues that
confer substrate specificity could be ones that move as a
result of voltage-induced conformational changes. Based
on crystal structures of the phosphatase domain of Ci-
VSP, a gating loop was proposed to be the mobile structural
element that couples movements from the VSD to regulate
phosphatase activation (9). This region contains the
conserved glutamate (E411 in Ci-VSP) that is known to
be important for substrate specificity. Interestingly, the sur-
rounding residues of the gating loop are somewhat less
conserved than in other regions of the catalytic domain,
such as the P-loop (Fig. 5 A). Mutagenesis experiments
investigating this region may therefore provide insight into
which residues are responsible for the varied substrate spec-
ificity across VSP proteins.

The fact that wild-type Mm-VSP did not appear to traffic
to the plasma membrane presented a technical hurdle
against studying the native protein. Therefore, we leveraged
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the modular nature of VSP VSDs and phosphatase domains
to reveal the functionality of these domains in a mammalian
VSP. When the VSDs and phosphatase domains were ex-
pressed as chimeras that allowed trafficking to the plasma
membrane, we observed voltage-dependent gating of a viral
pore or PI(4,5)P,-depletion-dependent inhibition of M cur-
rents, respectively. The ability of the VSDs and phosphatase
domains to retain function in the context of a chimeric pro-
tein indicates some level of functional and structural conser-
vation. However, we also observed subtle differences
between the activities of these domains from VSPs of
different species. Although more work is needed to deter-
mine whether the differences observed in the chimeras
represent the respective activities of the native proteins,
our findings provide the basis for future studies directed at
determining how this intriguing class of proteins regulates
cellular functioning in both health and disease.
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