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Abstract Living organisms have evolved a plethora of sens-
ing systems for the intra- and extracellular detection of small
molecules, ions or physical parameters. Several recent studies
have demonstrated that these principles can be exploited to
devise synthetic regulatory circuits for metabolic engineering
strategies. In this context, transcription factors (TFs) control-
ling microbial physiology at the level of transcription play a
major role in biosensor design, since they can be implemented
in synthetic circuits controlling gene expression in dependen-
cy of, for example, small molecule production. Here, we re-
view recent progress on the utilization of TF-based biosensors
in microbial biotechnology highlighting different areas of ap-
plication. Recent advances in metabolic engineering reveal
TF-based sensors to be versatile tools for strain and enzyme
development using high-throughput (HT) screening strategies
and adaptive laboratory evolution, the optimization of heter-
ologous pathways via the implementation of dynamic control
circuits and for the monitoring of single-cell productivity in
live cell imaging studies. These examples underline the im-
mense potential of TF-based biosensor circuits but also iden-
tify limitations and room for further optimization.
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Introduction

In the last century, the era of metabolic engineering resulted in
an enormous increase in microbial processes for the produc-
tion of value-added compounds, such as proteins, amino
acids, biofuels, organic acids and polymer precursors. Based
on renewable feedstocks, the efficient establishment and opti-
mization of bioprocesses is the key to a transition from the
currently petroleum-dependent and energy-intensive chemical
industry towards a sustainable bioeconomy.

Exploiting microorganisms for large-scale production re-
quires, on the one hand, elaborated high-throughput (HT)
tools for strain engineering, and, on the other hand, techniques
for analyzing the performance of producer strains and the
efficiency of bioprocesses. Recent studies using metabolic
flux analysis and in silico modelling approaches enable new
insights into the bacterial physiology during fermentation
(Wiechert and Noack 2011); however, the formation of inef-
ficient subpopulations affecting the outcome of the bioprocess
is often neglected (Delvigne and Goffin 2014; Lieder et al.
2014). While rational strain engineering is limited by the high
physiological complexity of microbes, traditional randommu-
tagenesis strategies are restricted by the selection and screen-
ing capacity, which requires a readily accessible phenotype
linked to product formation (Dietrich et al. 2010; Schallmey
et al. 2014). During the past decade, advances in synthetic
biology significantly contributed to the establishment of novel
metabolic engineering tools (Ng et al. 2015; Wendisch 2014).
For example, genetically encoded biosensors have proven to
be of high value for various applications in strain engineering,
dynamic pathway control and single-cell analysis. The basic
principle is based on metabolite-sensing proteins (e.g. tran-
scription factors, enzymes or periplasmic-binding proteins)
or RNAs (e.g. riboswitches and ribozymes) which are activat-
ed upon binding of effector molecules and control in turn the
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expression of an actuator part (e.g. fluorescent reporters,
regulatory switches or selection markers). This biosensor
architecture enables the intracellular detection of metabolite
production by converting it into a measureable output
(Fig. 1).

In the following sections, we will review recent progress
regarding the design of biosensor circuits based on transcrip-
tion factors (TFs) and their application in metabolic engineer-
ing strategies including HT screening approaches, dynamic
pathway control, biosensor-driven evolution and single-cell
analysis (Fig. 2). We will not include the application of TF-
based biosensors for the detection of environmental pollut-
ants, which is reviewed elsewhere (Fernandez-Lopez et al.
2015; van der Meer and Belkin 2010). For recent review arti-
cles on RNA- and FRET-based biosensors, see Frommer et al.
(2009), Liang et al. (2011), Michener et al. (2012), Schallmey
et al. (2014) and Zhang et al. (2015).

Exploiting nature’s toolbox—transcription
factor-based biosensors

Living organisms have evolved a variety of different sensor
principles to monitor the intra- or extracellular accumulation
of small molecules, ions or changes in physical parameters. In
prokaryotes, TFs play a major role in physiological adaptation
by controlling gene expression at the level of transcription—

typically by interfering with the binding of the RNA polymer-
ase to DNA. The activity of TFs can be affected by the inter-
action with small (effector) molecules, ions, physical param-
eters (e.g. temperature or pH), protein-protein interaction or
protein modification. In several recent studies, researchers
have demonstrated that these mechanisms provide a versatile
toolbox for applications in metabolic engineering and single-
cell analysis of production strains (Table 1) (Liu et al. 2015a;
Michener et al. 2012; Schallmey et al. 2014).

Especially, metabolite-responsive TFs have proven to be
valuable tools for biotechnological applications and have been
integrated into a diverse set of synthetic regulatory circuits
enabling the detection of, for example, amino acids (Binder
et al. 2012; Mustafi et al. 2012), succinate (Dietrich et al.
2013), butanol (Dietrich et al. 2013), malonyl-CoA (Xu
et al. 2014a, b) and secondary metabolites (Siedler et al.
2014b). These circuits are typically based on a previously
well-characterized TF which limits the rapid access to novel
metabolite sensors to a small set of known TFs. However, the
principle of substrate-induced gene expression (SIGEX),
where fragments of a metagenomic library can be ligated into
an operon-trap vector in front of a suitable reporter gene (e.g.
gfp), might represent an option to overcome this limitation
(Uchiyama and Miyazaki 2010b; Uchiyama and Watanabe
2008). Originally developed for the screening of novel en-
zymes and biosynthetic operons, this design can in principle
also be exploited to screen metagenomic libraries for effector-

Fig. 1 Principles for the architecture of transcription factor-based
biosensors. a A transcriptional activator may be used to activate
expression of an actuator gene (circuit) in response to effector
molecules. In contrast, repressors block the expression of actuators. By
setting the expression of a second repressor under the control of the TF-
biosensor repressor, the signalling can be inverted, resulting in a positive
output of the actuator module. b Depending on the final function,

different actuators are available as biosensor readout. The expression of
e.g. autofluorescent proteins (AFP) results in an optical output, while the
insertion of the biosensor into regulatory circuits can trigger and
dynamically control biosynthetic pathways. Sensors can further be used
to generate an artificial selection scheme by the choice of a suitable
actuator (e.g. antibiotics, toxins or auxotrophy) controlling the survival
of strains with desired traits
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responsive TF-promoter pairs. Furthermore, global databases
like DBD (www.transcriptionfactor.org; (Wilson et al. 2008)),
RegPrecise (http://regprecise.lbl.gov/RegPrecise; (Novichkov
et al. 2013)) or PRODORIC (www.prodoric.de; (Münch et al.
2003)) are useful tools to gain information on prokaryotic
transcription factors and regulons. Finally, plenty of
species-specific databases are available, including
RegulonDB (http://regulondb.ccg.unam.mx; (Salgado et al.
2006)) and EcoCyc (http://ecocyc.org; (Keseler et al. 2013))
for Escherichia coli or CMRegNet (www.lgcm.icb.ufmg.br/
cmregnet; (Abreu et al. 2015)) for corynebacterial and
mycobacterial species which also provide valuable
information regarding regulatory circuits for the
development of novel sensor devices.

Besides classical one-component TFs, the principle of two-
component signalling (TCS) represents a promising mode for
the extracellular detection of small molecules in production
strains or synthetic communities. Previous studies have al-
ready demonstrated that the modular design of TCS can be
exploited to create sensor kinases with novel effector specific-
ities and to transduce the information to the level of gene
expression (Ohlendorf et al. 2012). In a recent study, Ganesh
and co-workers reported on the construction of a chimeric,
malate-responsive TCS by fusing the sensor domain of
MalK (Bacillus subtilis) to the kinase domain of EnvZ
(Escherichia coli) thereby controlling the activity of the
ompC promoter in response to external malate accumulation

(Ganesh et al. 2015). To ensure specific signal transduction
and to avoid detrimental cross-talk to host TCSs, the stoichi-
ometry, the expression level of the protein components, as
well as the potential phosphatase activity of the sensor kinase
remain critical aspects to be considered for the design of TCS-
based biosensors (Podgornaia and Laub 2013).

An alternative principle for intra- or extracellular sensing is
represented by extracytoplasmic function (ECF) sigma factors
(Mascher 2013). The orthogonality of ECF-based switches
has recently been demonstrated by a proof-of-principle study
describing the construction of a bistable switch in E. coli
(Chen and Arkin 2012) and was further developed by
Rhodius et al., who characterized ECF sigma factor families
in bacteria using bioinformatics. The authors reported on 20
highly orthogonal combinations of sigma factors and their
cognate promoters (Rhodius et al. 2013). These studies pro-
vide a promising basis for the design of synthetic circuits in
metabolic engineering.

High-throughput screening

Genetically encoded biosensors enable the specific translation
of intracellular product accumulation into a screenable (e.g.
fluorescence) or selectable (e.g. antibiotic resistance) output
by driving the production of a reporter protein (Fig. 1b).
Consequently, an important field of biosensor application is

Fig. 2 Versatile applications of TF-based biosensors. Biosensors with an
optical readout, e.g. production of an autofluorescent protein (AFP), are
efficient tools for the high-throughput (HT) screening of large mutant
libraries using fluorescence-activated cell sorting (FACS). Biosensor-
driven evolution has proven a convenient strategy to increase
production by iteratively imposing an artificial selective pressure on the
fluorescent output of a biosensor using FACS or selection schemes.

Integrated into synthetic regulatory circuits, biosensors can be used for
the dynamic control of biosynthetic pathways in order to avoid, for
example, the accumulation of toxic intermediates. Finally, biosensors
are convenient tools for non-invasive online monitoring of production
processes and for analysis at single-cell resolution using FACS and live
cell imaging in microfluidic chip devices
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Table 1 Overview of TF-based biosensors applied in biotechnological strain development and screening approaches

TF Analyte Host chassis Output Application

AraC-IdiSynth; based
on AraC of E. coli

Isopentenyl diphosphate
(lycopene)

E. coli MutD5-mCherry Improvement of isopentenyl diphosphate
production of E. coli using a biosensor-
controlled mutator strategy. Visualization of the
production by the biosensor output (Chou and
Keasling 2013)

BenR of P. putida Benzoate E. coli GFP Screening of a metagenomics library for improved
amidase activities (Uchiyama and Miyazaki
2010a)

BmoR of Thauera
butanivorans

1-Butanol (response to linear
and branched-chain alcohols)

E. coli TetA-GFP Improvement of 1-butanol production of E. coli by
a biosensor-based selection scheme.
Simultaneous monitoring of growth and
fluorescence as measure of the biosensor output
(Dietrich et al. 2013)

CysR of C. glutamicum O-acetyl (homo-) serine C.glutamicum eYFP Visualization of sulphur limitation at the single cell
level (Hoffmann et al. 2013)

DcuR of E. coli Succinate E. coli TetA Proof-of-concept study: linking dicarboxylic acid
production to bacterial growth (Dietrich et al.
2013)

FadR of E. coli Fatty acid/acyl-CoA E. coli RFP/regulatory circuit Implementation of a synthetic circuit for dynamic
pathway control of the production of fatty acid
ethyl ester in E. coli (Zhang et al. 2012)

FapR of B. subtilis Malonyl-CoA E. coli eGFP/regulatory circuit • Design and kinetic analysis of a malonyl-CoA
sensor in E. coli (Xu et al. 2014b)

•TF-based negative feedback loop for the dynamic
control of fatty acid biosynthesis in dependency
of the intracellular malonyl-CoA level (Liu et al.
2015b)

LacI of E. coli IPTG, lactose E. coli GFP Live cell imaging study of the correlation between
growth rate fluctuations and metabolic
stochasticity (Kiviet et al. 2014)

Lrp of C. glutamicum L-valine
L-leucine
L-isoleucine
L-methionine

C.glutamicum eYFP •HTFACS screening of a chemicallymutagenized
C. glutamicum wt library (Mustafi et al. 2012)

• Live cell imaging of L-valine production of
PDHC-deficient C. glutamicum strains (Mustafi
et al. 2014)

• Biosensor-driven evolution of L-valine
production (Mahr et al. 2015)

LysG of C. glutamicum L-lysine
L-arginine
L-histidine

C.glutamicum eYFP •HTFACS screening of a chemicallymutagenized
C. glutamicum wt library (Binder et al. 2012)

• Screening of enzyme libraries for feedback-
resistant variants of key enzymes for amino acid
production (Schendzielorz et al. 2014)

NahR of P. putida Benzoic acids E. coli TetA Proof-of-concept study: selection of biocatalysts
by the implementation of a TF-based selection
scheme (van Sint Fiet et al. 2006)

PcaR of P. putida ß-ketoadipate E. coli TetA Proof-of-concept study: linking ß-ketoadipate
production to bacterial growth (Dietrich et al.
2013)

SoxR of E. coli NADPH E. coli eYFP HT FACS screening of a mutant library of the
NADPH-dependent alcohol dehydrogenase of
Lactobacillus brevis for improved 4-methyl-2-
pentanone (Siedler et al. 2014a)

TyrR of E. coli L-tyrosine E. coli MutD5-mCherry Improvement of L-tyrosine production of E. coli
using a biosensor-controlled mutator strategy.
Visualization of the production by the biosensor
output (Chou and Keasling 2013)
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implementation in HT screening approaches for the selection
of novel or improved biocatalysts (Fig. 2) (Eggeling et al.
2015; Schallmey et al. 2014). Fluorescence-activated cell
sorting (FACS) was applied in several recent studies as a par-
ticularly suitable HT technique. For example, the transcrip-
tional regulator Lrp of Corynebacterium glutamicum was re-
cently implemented in a FACS HTscreening approach for the
isolation of mutant strains producing branched-chain amino
acids (L-valine, L-leucine and L-isoleucine) from a mutant
library after chemical mutagenesis (Mustafi et al. 2012). The
native function of Lrp is to sense the intracellular accumula-
tion of branched-chain amino acids and methionine, and in
turn to activate the amino acid export system BrnFE in order
to avoid high intracellular levels and toxic effects of these
amino acids (Lange et al. 2012). These characteristics provide
an optimal basis for the construction of biosensors featuring
an appropriate dynamic range and sensitivity for the improve-
ment of production strains. In addition, they have a significant
advantage in comparison to the use of sensors based on tran-
scriptional (biosynthesis) repressors or periplasmic-binding
proteins, which typically display a very high effector affinity.
The successful application of a similar activator protein has
also been demonstrated by a study using the LysG TF for the
isolation of L-lysine-producing strains of C. glutamicum via
FACS (Binder et al. 2012).

Furthermore, TF-based sensors were successfully exploited
in enzyme screenings. For example, the abovementioned
LysG sensor was used to screen enzyme libraries for
feedback-resistant enzyme variants for the overproduction of
the effector amino acids L-arginine (N-acetyl-L-glutamate ki-
nase), L-histidine (ATP phosphoribosyl transferase) and L-
lysine (aspartate kinase) (Schendzielorz et al. 2014). An
engineered AraC variant was used by Tang and co-workers
for the directed evolution of 2-pyrone synthase activity (from
Gerbera hybrida) in E. coli. Two iterative rounds of mutagen-
esis and selection led to the isolation of enzyme variants
displaying roughly 20-fold increased triacetic acid lactone
production (Tang et al. 2013). The considerable plasticity of
the AraC protein for the engineering of new effector specific-
ities was already previously demonstrated in a study where a
mevalonate-responsive AraC variant was used for the screen-
ing of ribosome binding site (RBS) variants in front of a
hydroxymethylglutaryl-CoA reductase (Tang and Cirino
2011). A promising alternative to the sensing of product for-
mation was recently demonstrated by the application of an
NADPH-responsive biosensor based on E. coli SoxR. This
sensor provides a broadly applicable tool for the screening
of NADPH-dependent enzymes, as exemplified by screening
a dehydrogenase library for enzymes exhibiting improved cat-
alytic activity for the substrate 4-methyl-2-pentanone (Siedler
et al. 2014a).

As an alternative to screening strategies, TF-based biosen-
sors can also be integrated in circuits to establish a product-

dependent selection scheme driving the expression of, for ex-
ample, an antibiotic resistance or toxin gene (Fig. 1b)
(Dietrich et al. 2013; Raman et al. 2014; van Sint Fiet et al.
2006). The proof-of-principle was provided by a study of van
Sint Fiet et al., who used the transcriptional activator NahR
which responds to benzoate and 2-hydroxybenzaldehyde by
the activation of tetA (or lacZ) expression (van Sint Fiet et al.
2006). The authors suggested that this design enables the ef-
ficient selection of novel or improved biocatalysts for chemi-
cal synthesis. Suitability of such a circuit design was later, for
instance, demonstrated by the improvement of 1-butanol pro-
duction of engineered E. coli by using the putative σ54-tran-
scriptional activator BmoR and a σ54-dependent, alcohol-
regulated promoter (PBMO) from Pseudomonas butanovora
driving the expression of a tetA-gfp gene fusion (Dietrich
et al. 2013). This setup allowed the simultaneous monitoring
of growth and fluorescence as a measure of the biosensor
output.

Dynamic pathway control

In microorganisms, small molecule biosynthesis is typically
controlled by a complex regulatory network which optimizes
metabolic flux according to the requirements of the host and
counteracts the accumulation of toxic intermediates.
Consequently, the simple integration of heterologous biosyn-
thetic pathways or enzymes may lead to unbalanced flux and
detrimental interference with the host metabolism. In this con-
text, TF-based biosensors can be used to construct synthetic
regulatory switches to dynamically regulate metabolic fluxes
(Figs. 1b and 2). This has, for example, been achieved by
using the fatty acyl-CoA biosensor FadR to coordinate the
biosynthesis of acyl-CoA and ethanol as well as the expres-
sion of a wax-ester synthase in anE. coli strain producing fatty
acid ethyl ester (FAEE) (Zhang et al. 2012). Upon accumula-
tion of acyl-CoA, the repressor FadR dissociates from its tar-
get promoters, leading to the activation of ethanol biosynthe-
sis and the expression of wax-ester synthase, which converts
ethanol and acyl-CoA to FAEE. Similarly, Xu and co-workers
designed a hybrid promoter-regulator system based on the
malonyl-CoA-responsive TF FapR in E. coli (Xu et al.
2014b). This regulator was further used to devise different
negative feedback loops for the dynamic control of the en-
zymes acetyl-CoA carboxylase and fatty acid synthase for
improved fatty acid biosynthesis as a function of intracellular
malonyl-CoA levels (Liu et al. 2015b; Xu et al. 2014a).

The fact that accumulation of toxic intermediates may lead
to a complex cellular stress response can also be exploited for
the design of synthetic circuits balancing the pathway flux. In
contrast to the choice of a well-known TF for circuit design,
transcriptome analysis by DNAmicroarrays or RNA-Seq may
be applied to uncover genes whose expression is altered upon
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accumulation of a certain pathway intermediate. For instance,
exploiting the cellular response of E. coli to the accumulation
of farnesyl pyrophosphate was used to balance terpenoid pro-
duction (Dahl et al. 2013). However, transcriptome analysis
provides a snapshot view of the cellular response tometabolite
accumulation and, thus, the dynamic behaviour of the partic-
ular transcriptional response can hardly be estimated.
Furthermore, complex regulatory hierarchies will likely hin-
der the exact description of the sensor transfer curve and its
application for the dynamic control of heterologous pathways.

Biosensor-driven adaptive evolution

Due to the high physiological complexity of living organisms
and the limited knowledge of their underlying mechanisms,
alternative approaches are in demand to efficiently engineer
bacterial strains for biotechnological applications. Random
mutagenesis strategies, however, lead to several hundred un-
directed small nucleotide polymorphisms (SNPs) genome-
wide (Harper and Lee 2012), which makes it difficult to iden-
tify mutations contributing to the desired phenotypic trait.
Evolution approaches driven by mutation and selection have
proven a valuable tool to adapt microorganisms to stress
conditions (Lee et al. 2013; Oide et al. 2015) or to improve
product formation (Reyes et al. 2014; Xie et al. 2015). In
several recent strategies, biosensors were successfully imple-
mented to expand adaptive laboratory evolution to include
production phenotypes which are not naturally linked to bac-
terial growth or fitness (Fig. 2) (Chou and Keasling 2013;
Dietrich et al. 2013; Mahr et al. 2015; Yang et al. 2013).

Using feedback-regulated evolution of phenotype (FREP),
Chou and Keasling dynamically regulated the mutation rate of
a strain defective in the DNA repair machinery by controlling
the mutator gene (mutD5) as the actuator of a small molecule
biosensor (Chou and Keasling 2013). The FREP strategy was
successfully applied in E. coli to increase tyrosine production
up to fivefold. Using the same strategy, the propagation of
high lycopene producer cells for a total cultivation of 432 h
yielded up to 6800 μg lycopene g−1 dry cell weight. The
application of FREP, however, resulted in several hundred
SNPs throughout the entire genome (Chou and Keasling
2013). To reduce the number of mutations, we recently
established a biosensor-driven adaptive evolution strategy,
which is based on the natural mutation frequency of 10−10 to
10−9 mutations per base pair per replication cycle (Mahr et al.
2015). Using FACS, cells exhibiting a high biosensor output
(eYFP fluorescence) were iteratively isolated and recultivated.
Within five rounds of evolution, growth and the L-valine
product formation of a pyruvate-dehydrogenase-deficient
C. glutamicum strain were significantly improved, while at
the same time a three- to fourfold reduction in by-product
(L-alanine) formation was achieved. Four out of seven

identified SNPs were reintroduced into the parental strain
and were found to significantly increase L-valine production
or to reduce by-product formation (Mahr et al. 2015).

Since artificial selection schemes may result in the enrich-
ment of (false positive) cheaters, Raman et al. devised a com-
bination of a positive and negative selection strategy based on
the TolC selector (positive selection: sodium dodecyl-
sulphate; negative selection: using colicin E1, (DeVito
2008)). This elegant design enabled the performance of mul-
tiple toggled rounds of selection to improve the production of
naringenin and glucaric acid (Raman et al. 2014). Altogether,
these examples demonstrate that biosensor-driven evolution
represents a suitable strategy to complement rational ap-
proaches for the engineering of production strains.

Single-cell analysis

Microbial metabolism is typically analyzed using bulk tech-
niques neglecting single-cell behaviour and the formation of
complex phenotypic patterns (Huang 2009; Vasdekis and
Stephanopoulos 2015). However, even clonal groups of mi-
croorganisms may display significant phenotypic variation
which can significantly contribute to the fitness of the whole
population in its natural ecological niche (Ackermann 2015).
Cell-to-cell variability caused by intrinsic or extrinsic factors
may, however, strongly influence bioprocess performance and
stability (Delvigne et al. 2014; Müller et al. 2010). The for-
mation of inefficient subpopulations has, for example, been
observed in the production of solvent by endospore-forming
Clostridia (Tracy et al. 2008), the production of lactobionic
acid in Pseudomonas taetrolens (Alonso et al. 2012) and the
production of heterologous proteins by E. coli (Want et al.
2009), Bacillus megaterium (Münch et al. 2015) and yeast
(Carlquist et al. 2012; Newman et al. 2006). However, only
a limited number of studies implemented TF-based biosensors
for single-cell analysis of production strains, so far (Delvigne
et al. 2009; Hoffmann et al. 2013; Mustafi et al. 2014).

Recent advances in live cell imaging approaches using
microfluidic chip devices and flow cytometry (FC) have sig-
nificantly contributed to the analysis and monitoring of micro-
bial populations at single-cell resolution (Fig. 2) (Delvigne
and Goffin 2014; Grünberger et al. 2014; Vasdekis and
Stephanopoulos 2015). To address the variety of biological
questions, different microfluidic chips have recently been de-
veloped for the spatiotemporal analysis of microbial popula-
tions, including two-dimensional picolitre bioreactor cham-
bers (Grünberger et al. 2012, 2014) as well as one-
dimensional designs (e.g. the mother machine (Long et al.
2013; Wang et al. 2010)) for the long-term study of bacterial
growth and fluorescence. The mother machine structure was,
for instance, applied to analyze the correlation of growth rate
fluctuations and metabolic stochasticity using a LacI-sensor
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(Kiviet et al. 2014). In this study, Kiviet and co-workers dem-
onstrated how gene expression noise can affect growth rate
fluctuations and vice versa, leading to cellular heterogeneity
(Kiviet et al. 2014). Recently, the abovementioned Lrp bio-
sensor was applied to monitor L-valine production of
pyruvate-dehydrogenase-deficient C. glutamicum strains
grown in 2D microfluidic chip devices (Mustafi et al. 2014).
Interestingly, the addition of small amounts of complex medi-
um compounds, as often used during production processes,
resulted in phenotypic heterogeneity during the production
phase (Mustafi et al. 2014).

Complementing live cell imaging studies, FC allows the
convenient analysis of populations grown in large volumes
such as shake flasks or bioreactors by HT processes (Huang
2009; Vasdekis and Stephanopoulos 2015). Combined with
biosensors, FC has the potential to identify the formation of
subpopulations with respect to metabolic activity, co-factor
supply or cell cycle state and to use this information for the
optimization of bioprocesses. For example, Delvigne and co-
workers revealed subpopulations differing in rpoS expression
applying oscillating feed control during fermentation using a
transcriptional rpoS-gfpmut2 sensor construct (Delvigne et al.
2009). Furthermore, recent advances in the establishment of
downstream analytical methods bring the analysis of isolated
subpopulations within reach. Jehmlich and co-workers
established a workflow to analyze the proteome of FACS-
isolated subpopulations by mass spectrometry (Jahn et al.
2013; Jehmlich et al. 2010). This protocol was successfully
applied to analyze subpopulations occurring during the
growth of Pseudomonas putida KT2440 in bioprocesses
(Lieder et al. 2014). Altogether, these examples highlight the
recent advances in single-cell analysis of microbial production
strains. Combined with TF-based biosensors, these technolog-
ical advances will significantly increase the resolution of
bioprocess monitoring.

Biosensor engineering

Although nature has evolved a variety of TF-promoter pairs,
these sensor devices only exist for a limited number of cellular
metabolites (Mustafi et al. 2015; Tang and Cirino 2011). As
organisms tightly regulate their transcriptional machinery, en-
dogenous promoter activity and its control are adapted to the
organism’s purposes. For this reason, biosensors based on
native transcription factors and promoters are often limited
in sensitivity as well as the dynamic range, and are incompat-
ible with non-native hosts (Blazeck and Alper 2013;
Umeyama et al. 2013; Zhang et al . 2012, 2015).
Furthermore, many biotechnological applications require the
extension of promiscuous transcriptional regulators for specif-
ic or non-natural ligands (Looger et al. 2003; Schallmey et al.
2014). Due to the modular architecture of promoter regions

(Blazeck and Alper 2013) and TFs (Galvao et al. 2007), engi-
neering of biosensors for suitable performance characteristics
becomes feasible (Fig. 3, Table 2). For example, Zhang and
co-workers increased the dynamic range of a sensor system
based on the fatty acid-sensing transcriptional regulator FadR
about 1000-fold by the introduction of two copies of the
FadR-DNA binding sequence into the strong phage lambda
(PL) and phage T7 promoters (PA1) (Lutz and Bujard 1997;
Zhang et al. 2012). By combining the FadR binding sites with
a LacI operator site in the synthetic promoter, a tight regula-
tion and induction by IPTG and fatty acids was accomplished,
yielding a dynamic sensor-regulator system which enabled
fatty acid ethyl ester production to be increased threefold
(Fig. 3a) (Zhang et al. 2012).

The modulation of the affinity and amount of TF binding
sites can likewise contribute to the development of altered
effector specificities and sensitivities (de Las Heras et al.
2012; Silva-Rocha and de Lorenzo 2012). For example, the
TF BenR (AraC/XylS family) of P. putida KT2440 regulates
Pb promoter activity by binding to the Om-p operator site in
response to benzoate and with less efficiency to 3-
methylbenzoate (3MBz) (Silva-Rocha and de Lorenzo
2012). Interestingly, the completion of a second truncated op-
erator motif upstream of theOm-p site enhanced sensitivity of
the sensor construct to 3MBz four- to fivefold (Fig. 3b) (Bintu
et al. 2005a, b; Silva-Rocha and de Lorenzo 2012).

The modular architecture of regulators responding to effec-
tor molecules theoretically allows the development of any
specificity and sensitivity (Fig. 3c) (Galvao and de Lorenzo
2006). Techniques generating genetic diversity, such as error-
prone PCR (Wise and Kuske 2000), chemical and saturation
mutagenesis (Tang and Cirino 2011; Tang et al. 2008, 2013) or
computational modelling based on crystal structure data sets
(Looger et al. 2003; Mandell and Kortemme 2009) contribut-
ed to the development of effector-molecule binding sites with
altered or novel specificities (Galvao and de Lorenzo 2006).
For example, the L-arabinose-response transcriptional regula-
tor AraC was engineered by saturation mutagenesis to specif-
ically respond to D-arabinose (Tang et al. 2008), to
mevalonate (Tang and Cirino 2011) and to triacetic acid lac-
tone (Tang et al. 2013). The de novo design of TF exhibiting
the desired effector specificity was, furthermore, reported in a
study by Chou and Keasling, who assembled the ligand bind-
ing domain of enzymes with the AraCDNA binding domains,
yielding a synthetic transcription factor for the sensing of
isopentenyl diphosphate (Chou and Keasling 2013).
However, complex conformational changes occurring upon
ligand binding and inter-domain interactions required for sig-
nal transduction make it more difficult to apply this strategy as
a ubiquitous design approach.

The orthogonality of functional biological parts (e.g.
promoters, coding sequences or terminators) still repre-
sents a major objective in the field of synthetic biology
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(Fig. 3d). Libraries of standardized modules (also desig-
nated as BioBricks) may contribute to facilitate the engi-
neering of sensor devices. The functional transfer between
organisms, however, still remains challenging. In an inter-
esting study, Umeyama and co-workers fused the tran-
scriptional regulator MetJ of E. coli to the transcriptional
activation domain B42, yielding the synthetic TF MetJ-
B42 which allows S-adenosylmethionine (SAM) sensing
in the yeast Saccharomyces cerevisiae (Umeyama et al.
2013). Due to the extremely low diversity of regulatory
proteins in mammalian cells, Stanton and co-workers sup-
plied the PhlF repressor of E. coli with eukaryotic-specific
signals (including a nuclear localization signal) and
equipped regulated promoters with multiple operator sites
resulting in 2,4-diacetylphloroglucinol recognition in
HEK293 cells (Stanton et al. 2014). Although orthogonal-
ity still remains problematic, these examples show, how-
ever, that the transfer of sensor elements is feasible even
across kingdom borders.

Future prospects

TF-based biosensors have significantly contributed to a num-
ber of recent metabolic engineering approaches by improving
production strains or by identifying non-producing subpopu-
lations during bioprocesses (Fig. 2). However, a detailed mo-
lecular understanding of the observed phenotypic patterns
during fermentation requires the establishment of highly sen-
sitiveOmics techniques interfacing with live cell imaging (e.g.
in microfluidic chips) and cytometry analysis and cell sorting.
Here, the combination of biosensors with next generation se-
quencing (e.g. RNA-seq) or high-resolution proteomics ap-
pears promising to reveal new insights into subpopulations
and may support the identification of bottlenecks during
bioprocesses.

Most biosensors reported to date are based on a small num-
ber of well-characterized TFs (Table 1). At this point, the
screening of promoter libraries or transcriptome analysis using
RNA-seq might contribute to harness still uncharacterized

Fig. 3 Examples of biosensor engineering for altered performance
characteristics or orthogonal applications. a The dynamic range,
describing the maximum fold change of a reporter output to a given
input signal (Mustafi et al. 2015), was increased by introducing two
FadR binding sites from the fadAB promoter into the strong lambda
phage promoter PL (Zhang et al. 2012). b To increase the sensitivity as
rate of increase in reporter output (depicted by the slope of the transfer
curve) to 3-methylbenzoate (3MBz), the truncated operator site Omp-d
upstream of the operator site Omp-p in the Pb promoter was completed

enabling the binding of two benzoate-binding transcription factors (TF)
(Silva-Rocha and de Lorenzo 2012). c Furthermore, screening of an AraC
mutein library for effectors of interest resulted in the identification of
transcription factors with altered specificities (Tang and Cirino 2011;
Tang et al. 2013). d The orthogonal transfer of biosensors to host
organisms is challenging. Umeyama and co-workers equipped the S-
adenosylmethionine (SAM)-responsive transcription factor MetJ of
E. coli with the transcriptional activator domain B42 resulting in SAM
detection in S. cerevisiae (Umeyama et al. 2013)
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TFs for biosensor designs. However, accessibility to novel
biosensor circuits and sensor components with altered effector
specificities (e.g. to non-natural compounds) is key to a broad
application in a wide variety of studies. As demonstrated by a
number of studies, the modular design of TFs and their re-
spective target promoters make a rapid design of novel circuits
feasible (Fig. 3, Table 2). Despite this modularity and in-depth
knowledge of the molecular basis, however, the design of
synthetic regulatory circuits is not yet like a Lego set. To this
end, future attempts must focus on the precise definition of
highly orthogonal parts for sensor design and on the efficient

generation of custom-made sensor domains with novel spec-
ificities and suitable characteristics (sensor transfer curves).
Here, the combination of rational design and HT screening
of mutant TF libraries appears most promising for efficient
sensor design. Furthermore, the integration of synthetic
biosensor circuits involves a metabolic burden for the host
system which may affect productivity. Especially in the
case of integral dynamic control circuits, the expression
level of sensor components should be optimized to a min-
imum level, ensuring sensor functionality but minimizing
interference with the host system.

Table 2 Examples for biosensor engineering

TF; source Analyte Host Output Characteristics/architecture

AraC-IdiSynth; E. coli Isopentenyl diphosphate
(lycopene)

E. coli MutD5-mCherry Sensor based on a synthetic TF composed of a
isoprenoid binding domain and the DNA
binding domain of AraC (Chou and Keasling
2013)

AraC-mev; E. coli Mevalonate E. coli GFPuv Screening of an AraC mutant library for a TF
with a specific response towards mevalonate
(mutated ligand binding site) (Tang and
Cirino 2011)

AraC-Mut; E. coli D-arabinose E. coli GFP Screening of an AraC mutant library for a TF
with a specific response towards D-arabinose
(mutated ligand binding site) (Tang et al.
2008)

AraC-TAL; E. coli Triacetic acid lactone E. coli GFP, LacZ Screening of an AraC mutant library for a TF
with a specific response towards triacetic acid
lactone (mutated ligand binding site) (Tang
et al. 2013)

BenR; P. putida Benzoate, 3-methylbenzoate P. putida LuxCDABE Introduction of a second operator motif into the
promoter region increased specificity of the
biosensor towards 3-methylbenzoate (Silva-
Rocha and de Lorenzo 2012)

DcuS/EnvZ chimeric
TCS; E. coli

Fumarate E. coli GFP Chimeric TCS-based sensor for the extracellular
sensing of fumarate (Ganesh et al. 2013)

GAL4-IdiSynth; S.
cerevisiae/E. coli

Isopentenyl diphosphate
(isoprenoids)

E. coli Citrine Sensor based on a synthetic TF composed of a
isoprenoid binding domain and the DNA
binding domain of GAL4 (Chou and
Keasling 2013)

MalK/EnvZ chimeric TCS;
B. subtilis/E. coli

Malate E. coli GFP Sensor based on a chimeric TCS enabling the
extracellular detection of malate by E. coli
(Ganesh et al. 2015)

MetJ-B42; E. coli S-adenosyl-methionine S. cerevisiae Venus, HIS3 Equipment of the E. coli TF MetJ with the
transcriptional activation domain B42 results
in the functional expression in S. cerevisiae
(Umeyama et al. 2013)

PhlF; E. coli 2,4-Diacetylphloroglucinol HEK293 cells YFP Equipment of the E. coli TF PhlF with
eukaryotic-specific signals results in 2,4-
diacetylphloroglucinol recognition in
eukaryotic HEK293 cells (Stanton et al.
2014)

XylR; P. putida 3-Methyl-benzylalcohol
m-xylene

P. putida LuxCDABE Equipment of the biosensor with a positive
feedback loop and an attenuation mechanism
shifted the specificity towards m-xylene (de
Las Heras et al. 2012)
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TF-based biosensors have the potential to revolutionize
recent strategies in biotechnological strain development.
However, several studies still remain at the level of sensor
construction and proof-of-principle applications. To enhance
the availability of sensors with appropriate characteristics,
more studies are required to establish efficient workflows for
biosensor design. Altogether, these efforts should aim to en-
able an application-oriented construction of biosensors to al-
low the rapid engineering of required circuits meeting the
needs of the particular metabolic engineering purpose.
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