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Glioblastoma multiforme (GBM) is one of the most angiogenic tumors. However, antiangiogenic therapy has not shown significant
clinical efficacy. The aim of our study was to evaluate the impact of inflammatory tumor microenvironment on the expression of
vascular endothelial growth factor receptor 2 (VEGFR-2). Surgically excised primary GBM tissues were histologically examined
for overall extent of inflammation (score 1-3). After immunohistochemistry, the tissue expression of ICAM-1 (optical density), the
number of VEGFR-2 positive (VEGFR-2+) blood vessels (per microscopic field), and the endothelial staining intensity of VEGFR-
2 (score 0-3) were determined. In GBM, the extent of inflammation was 1.9 + 0.7 (group mean + SD). Mean optical density of
inflammatory mediator ICAM-1 was 57.0 + 271 (pixel values). The number of VEGFR-2+ blood vessels and endothelial VEGFR-
2 staining intensity were 6.2 + 2.4 and 1.2 + 0.8, respectively. A positive association was found between endothelial VEGFR-2
staining intensity and the extent of inflammation (p = 0.005). Moreover, VEGFR-2 staining intensity correlated with the expression
level of ICAM-1 (p = 0.026). The expression of VEGFR-2, one of the main targets of antiangiogenic therapy, depends on GBM
microenvironment. Higher endothelial VEGFR-2 levels were seen in the presence of more pronounced inflammation. Target
dependence on inflammatory tumor microenvironment has to be taken into consideration when treatment approaches that block

VEGEFR-2 signaling are designed.

1. Introduction

Although considered as rare tumor entity, about 27700 new
primary CNS cancers are diagnosed each year in Europe [1].
Out of these, glioblastoma multiforme (GBM) is the most
aggressive and lethal type of a brain tumor in adults that
accounts for approximately 20% of all malignant primary
CNS tumors and 82% of high grade (WHO grades III and IV)
gliomas [2, 3]. The prognosis of GBM patients is extremely
dismal since current standard treatment options result only
in medial survival times of 14.6 months [4].

GBM is one of the most angiogenic tumors. Therefore,
in recent years, the inhibition of tumor angiogenesis has

been an extremely attractive and dominating experimental
therapeutic strategy in neurooncology [5, 6]. A number of
anticancer drugs that block formation of new blood vessels
through different molecular targets and patterns of action
are currently in various stages of clinical development for
both newly diagnosed and recurrent GBM [7]. However,
first promising results of angiogenesis inhibitors, such as
high radiological response rates and apparent clinical benefit,
have been replaced by prevalent disappointment. Major
limitations of antiangiogenic drugs used in GBM include
the modest number of durable responses and the lack of
cytotoxic antitumor activity and overall survival benefit [6].
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The reasons of the lack of significant clinical efficacy of anti-
angiogenic drugs in GBM, however, are not fully elucidated
(8].

In GBM, at least five mechanisms by which tumors
achieve neovascularization have been described: vascular
cooption, angiogenesis, vasculogenesis, vascular mimicry,
and glioblastoma-endothelial cell transdifferentiation [9].
Out of these, angiogenesis and vasculogenesis have been
most extensively studied and described. During angiogene-
sis, blood vessels arise from sprouting and proliferation of
endothelial cells from preexisting vascular network, whereas
in vasculogenesis, de novo blood vessels are formed through
colonization of circulating bone-marrow-derived endothelial
progenitor cells that are recruited to the tumor [9]. Both
previously mentioned mechanisms of neovascularization
are largely regulated via vascular endothelial growth factor
(VEGF) and its receptor 2 (VEGFR-2) [10]. It has been shown
that tumor microenvironment influences glioblastoma treat-
ment outcome [11, 12]. The aim of the current study was to
evaluate the impact of tumor microenvironment, particularly
inflammatory reaction, on the expression of VEGFR-2, one of
the main targets of antiangiogenic drugs.

2. Materials and Methods

Study was approved by the Research Ethics Committee of the
University of Tartu, Estonia.

Surgically excised primary GBM tissues (n = 42) were
obtained after primary operation (prior to radiotherapy)
from patients treated at Tartu University Hospital or North
Estonian Medical Centre.

2.1. Histology. Haematoxylin and eosin stained sections
(4 pm thick) were used for primary diagnosis. The diagnosis
of GBM was confirmed by 2 independent pathologists.
Afterwards, the overall extent of inflammatory reaction was
estimated in tumor tissue by experienced pathologist. This
was based on typical visual appearance of inflammation,
including presence of edema and inflammatory cell infiltra-
tion. For the evaluation, an arbitrary score ranging from 1
to 3 was applied (1 = weak, 2 = moderate, and 3 = strong
inflammatory reaction).

2.2. Immunohistochemistry (IHC). GBM tissues were im-
munohistochemically examined for ICAM-1 and VEGFR-2
expression. Sections were cut from archived paraffin blocks
and stained according to standard immunohistochemistry
protocol. For immunohistochemistry, primary antibodies
against ICAM-1 (Santa Cruz Biotechnology, Inc., #sc-8439,
dilution 1:100) and VEGFR-2 (Santa Cruz Biotechnology,
Inc., #sc-6251, dilution 1:100) were applied. Diaminobenzi-
dine was used as chromogen.

The evaluation of immunohistochemically stained slides
was carried out in a blinded fashion. First, immunohis-
tochemical expression of intercellular adhesion molecule 1
(ICAM-1) was assessed. For this, digital IHC image analysis
was performed. IHC digital image analysis was carried out
in 6 selected images from each slide by using the freeware
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program Image]. The brown-colored area, occupied by the
immunohistochemical reaction, was selected by the color
threshold filtering tool to subtract the hematoxylin-stained
areas at the background. Then the images were converted
to the greyscale and the optical density by the area method
was measured in pixel values ranging from 0 to 255. Value 0
represents the lightest shade of the color while 255 represents
the darkest shade of the color in the image. Tissue expression
of ICAM-1 was determined at a magnification of x10.

The evaluation and scoring of VEGFR-2 immunobhisto-
chemically stained slides were carried out by 2 independent
researchers. For VEGFR-2 expression, two parameters were
assessed. First, the number of VEGFR-2 positive (VEGFR-
2+) blood vessels per microscopic field was determined.
Additionally, endothelial VEGFR-2 staining intensity was
evaluated using an arbitrary score ranging from 0 to 3 (0 =
no staining; 1 = weak, 2 = moderate, and 3 = strong staining
intensity). For individual values, both parameters were deter-
mined in 5 microscopic fields. These values were used to eval-
uate the correlation between the assessments of 2 indepen-
dent researchers. Afterwards, the mean number of VEGFR-
2+ blood vessels and VEGFR-2 staining intensity in 10
microscopic fields (2 x 5 fields) were calculated. All VEGFR-2
parameters were determined in areas with vital tumor tissue
(excluding necrotic areas) at a magnification of x40.

2.3. Statistical Analysis. The SPSS statistical software was
used to calculate individual means, group mean, and standard
deviation of the mean. Additionally, Pearson correlation anal-
ysis was utilized. A p value <0.05 was regarded statistically
significant.

3. Results

3.1. Histology and IHC. In individual GBM samples, the
extent of inflammation varied, ranging from 1.0 to 3.0 and
being in the whole group 1.9 + 0.7 (mean + SD). Figurel
represents GBM tissues with weak (a), moderate (b), and
strong (c) visual inflammatory reaction.

Similarly, individual optical densities of ICAM-1in GBM
tissue varied, ranging from to 17.6 to 154.9 pixel values. Group
mean optical density of ICAM-1 was 57.0 + 27.1 (mean + SD).
Figure 2 illustrates GBM tissues with weak (a), moderate (b),
and strong (c) optical density of ICAM-L.

VEGEFR-2 parameters were determined by 2 independent
researchers whose results were in good accordance (R =
0.8, p < 0.0001). In GBM tissue sections, the number of
VEGEFR-2+ blood vessels per microscopic field and endothe-
lial VEGFR-2 staining intensity were 6.2 + 2.4 (mean + SD;
range 2.8-13.5) and 1.2 + 0.8 (mean + SD; range 0.0-2.8),
respectively. Figure 3 illustrates GBM tissues with weak (a),
moderate (b), and strong (c) expression level of VEGFR-2 in
tumor blood vessels.

3.2. Correlation Analysis. The results of correlation analysis
are described in Table 1. A positive association was found
between the extent of visual inflammation and endothe-
lial VEGFR-2 staining intensity (p = 0.005). Moreover,
endothelial VEGFR-2 staining intensity correlated with the
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FIGURE 1: Inflammatory reaction in GBM. Photos illustrate GBM tissues with inflammatory reaction (photos represent different patients).
(a) Weak (score 1) inflammation, (b) moderate (score 2) inflammation, and (c) strong (score 3) inflammation. Note the different numbers of

tumor infiltrating inflammatory cells. Magnification x40.

TaBLE 1: Results of correlation analysis”.

Correlations p value
Visual inflammatory reaction and VEGFR-2 = 0.005
staining intensity '
Tfissue.ICAM—l expression and VEGFR-2 staining p=0.026
intensity

The number of VEGFR-2+ blood vessels and = 0.065

VEGEFR-2 staining intensity

*Bivariate Pearson correlation test.

expression level of tissue ICAM-1 (p = 0.026). Additionally,
there was a trend toward significant association between the
number of VEGFR-2 positive blood vessels and endothelial
VEGEFR-2 staining intensity in GBM tissue (p = 0.065).

4. Discussion

Downstream effects of VEGFR-2 activation in the vascular
endothelium include cell proliferation, migration, permeabil-
ity, and survival, resulting in neovascularization processes,
such as angiogenesis and vasculogenesis [10]. Consequently,
this receptor has been very attractive target in the develop-
ment of antiangiogenic drugs (e.g., bevacizumab, sunitinib,
sorafenib, vatalanib, vandetanib, recentin, and cediranib)

[10]. Unfortunately, a number of these antiangiogenic drugs
(vandetanib, cediranib, sorafenib, and sunitinib) have failed
to show clinical efficacy in different phases of clinical trials
in both newly diagnosed and recurrent glioblastoma [13-
17]. Moreover, the most advanced antiangiogenic drug in
glioblastoma, bevacizumab, did not get approval from The
European Medicines Agency Committee for Medicinal Prod-
ucts for Human Use (CHMP) due to the lack of clinically
relevant efficacy [18, 19]. All these negative trials have caused
a lot of frustration since the results do not coincide with
the initial expectations. The reasons of the lack of significant
clinical eflicacy of antiangiogenic drugs, however, are not
fully elucidated.

In the present study, we evaluated the impact of tumor
microenvironment on the expression level of VEGFR-2, one
of the main targets of antiangiogenic drugs. Foremost, the
possible role of inflammatory reaction was assessed. Inflam-
matory reaction was evaluated by two means. First, visual
inflammation (based on the presence of tissue edema and
inflammatory cell infiltration) was estimated in hematoxylin-
eosin stained sections by experienced pathologist. After-
wards, to reduce subjectivity, a digital IHC image analysis
was performed in ICAM-1 stained sections. ICAM-1 was
chosen as a marker of inflammation since this transmem-
brane glycoprotein can be induced in response to a number
of stimuli, including inflammatory mediators, hormones,
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FIGURE 2: ICAM-1 expression in GBM. Photos illustrate GBM tissues with different extent of ICAM-1 expression (photos represent different
patients). (a) Weak optical density, (b) moderate optical density, and (c) strong optical density. Magnification x10.

and cellular stresses [20, 21]. Moreover, endothelial ICAM-
1 is considered to represent the most important adhesion
molecule for leukocyte recruitment to inflamed sites [22-24].

All glioblastoma samples showed various levels of visually
confirmed inflammatory reaction. This is not surprising
since inflammation is considered one of the characteristic
histopathological features of glioblastoma [25]. Also, the
expression of ICAM-1 was present in all digitally analyzed
individual tumor samples, which is in good accordance with
previous studies, where compared to peritumoral ICAM-
1 expression significantly higher expression of ICAM-1 has
been detected in GBM tumor areas in both gene and protein
levels [26-28]. In GBM cells, ICAM-1 expression has been
shown to increase following stimulation with proinflamma-
tory cytokines, such as interleukin-1f (IL-1f3), tumor necrosis
factor-alpha (TNFa«), and interferon-gamma (IFN-y) [26,
29], indicating that ICAM-1 is one of the inflammatory
mediators also in this type of cancer.

In GBM tissues, different numbers of VEGFR-2+ blood
vessels and endothelial levels of VEGFR-2 were detected. Pre-
vious studies have shown that in normal brain, low or unde-
tectable endothelial expression of VEGFR-2 can be found;
however, in gliomas, the proportion of VEGFR-2+ vessels
and endothelial VEGFR-2 expression increases with tumor
grade, being the highest in GBM [30, 31]. Our study revealed
that also in the most aggressive glioma—GBM—the extent
of VEGFR-2 expression may vary. Additionally, present study

showed that the expression of VEGFR-2 depends on inflam-
matory reaction in tumor tissue: the higher the endothelial
VEGEFR-2 expression the higher the extent of inflammation.
Moreover, this association was seen for both assessments of
inflammatory reaction (visual and computer software based).

Angiogenesis is a tightly controlled process that in a
number of pathological conditions, including cancer and
inflammation, may become aberrant [32]. Different factors
produced by tissues are capable of promoting or inhibiting
blood vessel proliferation, whereas in normal status, the
balance between angiogenic and angiostatic factors exists.
In inflammation, this balance is clearly inclined toward
angiogenic factors and angiogenesis [33].

Although the link between inflammation and angio-
genesis has received much attention only recently, there is
a substantial body of evidence showing close association
between these two processes. Previous studies have described
that angiogenic factors exhibit both proangiogenic and proin-
flammatory effects, inflammatory cells are able to produce
large quantities of proangiogenic factors, and both processes
(inflammation and angiogenesis) are capable of potentiating
each other [33]. For example, VEGF that exerts majority of
its angiogenic effects by binding to VEGFR-2 has also been
shown to induce adhesion molecules on endothelial cells
during inflammation [34]. In endothelial cells, treatment with
VEGF results in an increase of both ICAM-1 mRNA and
protein expression [35]. Moreover, VEGF increases leukocyte
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FIGURE 3: VEGFR-2 expression in GBM blood vessels. Photos illustrate GBM tissues with different endothelial staining intensities of VEGFR-
2 in blood vessels (photos represent different patients). (a) Weak (score 1) staining intensity, (b) moderate (score 2) staining intensity, and (c)
strong (score 3) staining intensity. Note also the different numbers of VEGFR-2+ blood vessels. Magnification x40.

adhesiveness to endothelial cells, which is the first step of
leukocyte trafficking into inflamed tissue [35]. Next to these
effects, VEGF enhances vascular permeability and causes
vasodilatation, potentiating thereby inflammation through
formation of tissue edema [10, 36]. At the same time, hyper-
permeability is also involved in pathological angiogene-
sis [36]. Additionally, inflammatory and angiogenic proc-
esses involve similar cell types. Inflammatory cells, namely,
monocytes, macrophages, T lymphocytes, and neutrophils,
participate in the angiogenesis by secreting cytokines that
affect endothelial cell functions, proliferation, migration, and
activation [37]. Macrophages, present in the inflammatory
infiltrate, produce a broad array of angiogenic growth factors
and cytokines, generate channels for blood flow through
proteolytic mechanisms, and promote the remodeling of arte-
rioles into arteries [32]. Inflammatory dentritic cells stimulate
similarly angiogenesis by secreting angiogenic factors and
cytokines, as well as by promoting proangiogenic activity
of T lymphocytes [32]. Previous studies have also shown
that proinflammatory cytokines, which are always present
in inflamed tissue, mediate also endothelial expression of
VEGEFR-2 [38, 39]. Later this is also indirectly supported by
our findings since positive correlation was found between the
extent of VEGFR-2 expression and inflammatory response in
GBM tissue.

There are several clinical situations, where inflammatory
reaction in GBM may be suppressed. These particularly
include the use of anti-inflammatory drugs, such as steroids

and nonsteroidal anti-inflammatory drugs (NSAIDs), to
manage tumor surrounding inflammation and edema [40].
Whether these very commonly used medicines influence also
treatment efficacy of antiangiogenic drugs through dimin-
ishing inflammatory response and thereby the expression
of VEGFR-2 remains unclear. Nevertheless, our data point
toward the possibility that this association might exist. This
is also supported by studies where dexamethasone, most
frequently used steroid in GBM patients, has been shown
to inhibit the effects of proinflammatory cytokines, VEGF
mRNA expression, VEGFR-2 expression, and macrophage
infiltration [39, 41, 42].

5. Conclusions

In conclusion, our study showed that the expression of
VEGEFR-2, one of the main targets of antiangiogenic drugs,
depends on GBM microenvironment. Importantly, higher
endothelial VEGFR-2 levels were seen in the presence of
more pronounced inflammation, whereas in less inflamed
tissues only weak expression of VEGFR-2 was found. Target
dependence on inflammatory tumor microenvironment has
to be taken into consideration when treatment approaches
that block VEGFR-2 signaling are designed.
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