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The hepatocyte growth factor (HGF) ligand and its 
receptor MET (mesenchymal-epithelial transition) tyrosine 
kinase receptor axis has long been demonstrated to be 
important in oncogenesis and metastasis in multiple tumor 
types. Mechanisms of dysregulation of the HGF-MET axis 
includes over-expression of the HGF ligand, activating point 
mutations in MET, MET gene amplification, MET protein 
over-expression and potentially MET rearrangements. 
Many structural different MET tyrosine kinase inhibitors 
(TKIs) have been developed to target the HGF-MET axis 
pathway but so far the results have been disappointing (1).

In non-small  cel l  lung cancer (NSCLC),  MET 
amplification has been shown to be an actionable driver 
mutation as high level of de novo MET amplification 
(MET/CEP7 >5) was effectively inhibited by crizotinib, 
an ALK/ROS1/MET TKI (2,3). However, the incidence 
of true MET amplification and not the broad category 
of MET polysomy (copy numbers gain without respect 
to other gene copy number gained simultaneously) is 
rather rare accounting for about 1% of all NSCLC (3).  
Secondary acquired MET amplification constitutes 
about 5% of resistance mechanism to first- or second-
generation epidermal growth factor receptor (EGFR) 
TKI in NSCLC patients harboring activating EGFR 
mutations (4,5). Thus the incidence of de novo or secondary 
MET amplification is low as compare to EGFR T790M 

which accounts for approximately 60% of the resistance 
mechanism. Additionally, the combination of MET TKI 
and EGFR TKI trials in NSCLC patients have been 
disappointing so far. For examples, the combination of 
crizotinib (MET TKI) and erlotinib (EGFR TKI) was not 
able to reach the approved dose of each approved agent 
due to toxicities of the combination (6). Additionally, the 
increased interstitial lung disease (ILD) observed with the 
combination of tivantinib and erlotinib as compared to 
erlotinib alone led to an early termination of a randomized 
phase 3 trial (ATTENTION) in Asia (7). Furthermore, 
the failure of the addition of tivantinib to erlotinib to 
improved overall survival as compared to erlotinib alone in 
a molecularly unselected nonsquamous NSCLC patients 
from a randomized phase 3 trial (MARQUEE) involving 
more than 1,000 patients is the latest blow to MET TKIs 
in gaining regulatory approval to enter clinical care (8). 
Given the relative low frequency of MET amplification 
as a resistance mechanism, clinical trials investigating 
combination of EGFR and MET TKIs in EGFR-positive 
NSCLC patients will take time to mature with no guarantee 
of success (e.g., ClinicalTrials.gov number: NCT01610336). 
Point mutations have been described throughout the MET 
gene but none of the mutations are directly activating I 
NSCLC to date (with the exception of Y1003N which 
will be discussed later) (1). More recently KIF5B-MET 
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fusion have been described in NSCLC by next generation  
sequencing (9). While the KIF5B-MET rearrangement 
is likely to be an activating genetic alteration in NSCLC 
similarly to ALK and ROS1 rearrangement in NSCLC, the 
frequency is likely very low and to date there is no report 
in the literature of any NSCLC patients harboring MET 
rearrangement responding to MET inhibitors.

Another alteration in MET that is potentially actionable 
in NSCLC is MET exon 14 deletion (METex14) mutations 
resulting in defective messenger RNA (mRNA) splicing due 
to mutations/deletions at the splice donor or acceptor sites 
around or involving MET exon 14. Initially reported in both 
small cell lung in 2003 and then in NSCLC in 2005 (10,11), 
the significance of these splice site mutations/deletions were 
demonstrated in 2006 by Kong-Beltran and colleagues where 
multiple point mutations and deletions in the splice donor 
and acceptor sites resulted in the exon 14 of MET gene 
being spliced out of the eventual mature MET mRNA (12).  
MET exon 14 contains the Cbl ubiquitin ligases site on 
tyrosine residue 1003 (Y1003) where ubiquitin is attached 
to the tyrosine residue and led to the lysosomal degradation 
of the MET protein (13). Hence, missense mutation of 
Y1003 residue or “skipping” of the protein region that is 
encoded by MET exon 14 results in MET protein leads to 
in a relative over-expression of MET protein and enhanced 
MET activation and subsequent oncogenesis. The findings 
of METex14 by Ma and colleagues and Kong-Beltran and 
colleagues were subsequently confirmed by whole genome 
sequencing (14,15) and estimated to be around 3–4% of 
adenocarcinoma from The Cancer Genome Atlas (TCGA) 
project (15). Interestingly, TCGA discovered that some of 
MET splice site mutations resulted in incomplete splicing 
so a low level of the normal size MET protein is expressed. 
Whether “incomplete” MET splicing is as oncogenic 
remain to be determined tis existence provides evidence 
that in order to develop companion diagnostic tests for 
future clinical use, and quantitative RNA approach will 
more accurately reflect the biological situation of the tumor 
environment with corresponding MET protein expression 
as quantified by immunohistochemistry (IHC) is also.

While there have been ample pre-clinical evidence 
pointing to the significance of METex14, the clinical evidence 
was lacking until Paik and colleagues demonstrated these 
mutations are actionable and inhibition by MET TKIs can 
result in clinical benefit in NSCLC patients harboring these 
MET exon 14 alterations (16). In the 2015 Cancer Discovery 
paper, Paik and colleagues first confirmed the existence of 
METex14 is about 4% of adenocarcinoma of the lung similar 

to what was observed the TCGA, a substantial portion 
of a potential driver mutation according to the thoracic 
oncology community. Of the 8 (out of 178 adenocarcinoma 
samples) adenocarcinoma of lung patients with MET exon 
14 mutation, 7 harbored splice site mutations while 1 
with Y1003 mutation. Of note of the 6 samples that MET 
protein expression could be tested, all 6 had 3+ IHC score 
(H-sore of 300) indicating high MET protein expression. 
Importantly, in 6 out of the 8 samples MET was not 
amplified while one had intermediate level of amplification 
(MET/CEP7 =3.8) and one had high level of amplification 
(MET/CEP7 =6.0) indicating MET exon 14 mutations and 
de novo wildtype MET amplification is likely to be mutually 
exclusive. Frampton and colleagues, in an accompanying 
paper in the same issue of Cancer Discovery as Paik and 
colleagues, did identify that MET amplification (likely of the 
allele with the MET exon 14 mutations and not the wildtype 
MET gene) was associated with METex14 (17). Importantly 
Frampton and colleagues survey > 38,000 clinical tumor 
samples submitted to Foundation Medicine Inc. and subject 
to hybrid-capture next generation sequencing and found 
that lung cancer by far is the tumor type that harbors MET 
exon 14 mutations. Approximately 3% of adenocarcinoma 
of the lung and 2.3% of non-adenocarcinoma of lung cancer 
harbored MET exon 14 mutations that will likely result 
in METex14. At the same time, Halmos and colleagues 
reported that METex14s occurred up to 22% of pulmonary 
sarcomatoid carcinoma (18) although this high frequency of 
METex14 needed to be independently verified from different 
tumor banks.

Of the 8 patients with MET  exon 14 mutations 
described by Paik and colleagues (16), 4 received anti-
MET therapy and 3 out of the 4 patients had a response 
(Table 1). Contemporaneously, other investigators have also 
published case reports alone or embedded in larger surveys 
of METex14 in solid tumors (Table 1). First, all histologies of 
NSCLC were found to harbor METex14 (adenocarcinoma, 
squamous cell, large cell, and sarcomatoid). Second, both 
never-smokers and ever-smokers harbored METex14. 
Third, in all cases with the exception of one where IHC 
were performed MET protein expression is high (3+) thus 
providing evidence that MET protein is not degraded at the 
normal rate as expected. Fourth, three different MET TKIs 
have been shown single agent activity against METex14 with 
durable partial response. In summary, given the confluence 
of the relative high incidence (3–4%) of METex14 among 
major histologies of lung cancer reported by large clinical 
database from commercial diagnostic company, single 
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institutions, and the TCGA together with case reports/
series of the significant preliminary single agent activity of 
MET TKIs against METex14, suddenly the “holy grail” of 
eventually getting a MET TKI approved for clinical use in 
NSCLC is suddenly thrust upon us. Clinical trials involving 
MET inhibitor are now investigating their activities against 
MET inhibitors. For example, the on-going phase 1/2 
crizotinib trial has already produced ground-breaking 
results in ALK-rearranged and ROS1-rearranged NSCLC 
is enrolling NSCLC METex14 patients (ClinicalTrials.
gov number: NCT00585195) (23,24). Besides completing 
clinical trials with MET TKIs in NSCLC METex14 patients 
as soon as possible, several concurrent projects in MET 
exon14 deletions needed to be completed also. First, the 

clinicopahtologic characteristics of these NSCLC METex14 
patients remained limited and elusive (Table 1). Hence survey 
of large databases to fully characterize these MET exon1 
4 NSCLC patients is urgently needed to help guide future 
screening and identification of these patients. Second, the 
development of a companion diagnostic(s) to accompany 
the regulatory approval of MET TKIs is urgently needed. 
Given the TCGA identified “incomplete skipping”, any 
RNA based detected method is probably preferable although 
the mutations in the DNA level underlying the METex14 is 
diverse as demonstrated by Frampton and colleagues with 
implication of basic science research for years to come. 
Finally, although not detected by Frampton and colleagues, 
Lee and Colleagues in Korea (25) have detected comparable 

Table 1 List of NSCLC patients with METex14 responded to MET tyrosine kinase inhibitors

Number Age/gender
Smoking 

status
Histology

MET exon 14  

alterations

MET 

IHC

MET  

amplification

Best (duration of) 

response
Reference

1 80/F NS Adeno Splice donor site 

mutation

3+ Yes CR (>7 months) 

(PERIST) to 

cabozantinib

Paik et al., Cancer Dis 

2015 (16)

2 78/M ES Adeno Splice donor site 

deletion

3+ NR PR to crizotinib 

(lung); PD to  

crizotinib (liver)

Paik et al., Cancer Dis 

2015 (16)

3 65/M ES Adeno Splice donor site 

mutation

NR NR PR (>7 months) to 

crizotinib

Paik et al., Cancer Dis 

2015 (16)

4 90/F NS Adeno Splice donor site 

mutation

NR NR PR (>5 months) to 

crizotinib

Paik et al., Cancer Dis 

2015 (16)

5 86/M NS Adeno Splice donor site 

deletion

2+ NR PR (5 weeks) to 

crizotinib

Jenkins et al., Clin Lung 

Cancer 2015 (19)

6 71/M ES Adeno Splice donor site 

mutation “D1028H”

NR No PR (>6 months) to 

crizotinib

Waqar et al., J Thorac 

Oncol 2015 (20)

7 76/F ES Adeno Splice donor site 

mutation “D1010H”

NR No PR (>8 months) to 

crizotinib

Mendenhall et al., J  

Thorac Oncol 2015 (21)

8 82/F ES Large cell Splice donor site 

mutation

3+ Yes* PR (>5 months) to 

capmatinib

Frampton et al., Cancer 

Dis 2015 (17)

9 66/F ES SqCC Splice donor site 

mutation

3+ NR PR (>13 months) 

to capmatinib

Frampton et al., Cancer 

Dis 2015 (17)

10 74/F ES Sarcomatoid Splice site  

mutation

NR NR** PR (>2 months) to 

crizotinib

Liu et al., J Clin Oncol 

2015 (18)

11 61/M NS Sarcomatoid Splice donor site 

mutation/H1094Y

NR NR PR (> 5 months) to 

crizotinib

Lee et al., J Thorac  

Oncol 2015 (22)

NSCLC, non-small cell lung cancer; METex14, MET exon 14 deletion; IHC, immunohistochemistry; M, male; F, Female; ES,  

ever-smoker; NS, never-smoker; Adeno, adenocarcinoma; SqCC, squamous cell carcinoma; NR, not reported; CR, complete  

response; PR, partial response; SD, stable disease; PD, progressive disease. *, MET/CEP7 =2.3 (low amplification); **, polysomy  

(9 copies) of the MET exon 14 mutation allele.
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incidence of METex14 in gastrointestinal (GI) malignances 
indicating the clinical benefit if MET TKIs can potentially 
be expanded to GI malignancies. Thus Paik and colleagues’ 
Cancer Discovery paper and reports by others has suddenly 
provided the blueprint and started a race to finally get MET 
TKIs approved for clinical use after many years of searching 
for a frequent enough and actionable target. It is anticipated 
by the end of 2016, the significance of METex14 in NSCLC 
will be widely appreciated.
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