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Abstract

Background: Studies suggest that the built environment with high numbers of fast food restaurants and
convenience stores and low numbers of super stores and grocery stores are related to obesity, type Il diabetes
mellitus, and other chronic diseases. Since few studies assess these relationships at the county level, we aim to
examine fast food restaurant density, convenience store density, super store density, and grocery store density and
prevalence of type Il diabetes among counties in South Carolina.

Methods: Pearson’s correlation between four types of food outlet densities- fast food restaurants, convenience
stores, super stores, and grocery stores- and prevalence of type Il diabetes were computed. The relationship
between each of these food outlet densities were mapped with prevalence of type Il diabetes, and OLS regression
analysis was completed adjusting for county-level rates of obesity, physical inactivity, density of recreation facilities,
unemployment, households with no car and limited access to stores, education, and race.

Results: We showed a significant, negative relationship between fast food restaurant density and prevalence of
type Il diabetes, and a significant, positive relationship between convenience store density and prevalence of type ||
diabetes. In adjusted analysis, the food outlet densities (of any type) was not associated with prevalence of type Il

diabetes.

Conclusions: This ecological analysis showed no associations between fast food restaurants, convenience stores,
super stores, or grocery stores densities and the prevalence of type Il diabetes. Consideration of environmental,
social, and cultural determinants, as well as individual behaviors is needed in future research.

Keywords: South Carolina, Geographic information systems, Diabetes, Fast food restaurants, Convenience stores,

Super stores, Grocery stores

Background

Type II diabetes mellitus (DM) is growing at an alarming
rate worldwide and in the United States (U.S.). An
estimated 221 million adults in the world [1], and an
estimated 25.8 million people in the U.S. have DM [2].
In South Carolina, one of 15 states that compromises
the diabetes belt [3], an estimated 450,000 individuals
are diagnosed with DM, which does not include those
undiagnosed or with pre-diabetes [4]. In fact, DM is the
7t leading cause of death in South Carolina [5], and this
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state ranks as the 4™ highest in the nation in terms of
DM prevalence [5].

When DM is not managed, it leads to complications
including but not limited to cardiovascular diseases,
retinopathy, and kidney failure [6, 7]. These complica-
tions increase risk for disability, risk for mortality,
hospitalization rates, and medical costs thus placing
additional physical and financial burdens upon the
individual [8]. Likewise, healthcare institutions treating
DM complications take on financial burdens [8, 9]. In
2012, the total estimated costs in the U.S. from DM
were $245 billion [10]. Similarly, in 2013, the total
amount for hospital charges related to DM diagnosis in
South Carolina was $321 million [5]. Hence, it is
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essential to understand DM risk factors and to design
effective interventions to reduce the risks and costs
associated with DM treatment.

Known risk factors of DM include genetic pre-
disposition, age (=45 years), obesity, physical inactivity,
and diet- particularly foods rich in carbohydrates [8,
11]. Race or ethnic background is also a significant
predictor of DM. DM disproportionately affects non-
Hispanic Blacks compared with Whites [11, 12]. In
2011, an estimated 12.6 % of non-Hispanic Black
adults (age >20) were diagnosed with DM [2], and in
2011, 1 in 8 African Americans in South Carolina have
DM [5].

Unfortunately, many weight loss interventions
geared towards individuals have been unsuccessful in
reducing DM prevalence [13]. Therefore, it is essential
for research to focus on the built environment in
which individuals’ behavioral decisions are influenced
[14]. Studies show the food environment, especially
those with a high number of fast food restaurants
and convenience stores, to be associated with in-
creased dietary intake [15, 16], and that exposure to
poor food quality has important effects on overweight
and obesity [17, 18]. Such food environments are
defined as obesogenic environments because they
have high levels of nutrient-deficient, highly-caloric,
affordable food that promote food consumption and
physical inactivity [13, 19].

Fast food restaurants particularly provide foods lacking
in nutritional value (i.e. foods low in calcium, folate,
vitamin A, vitamin C, and dietary fiber) and thus con-
tribute to poor quality dietary patterns [20]. Davis et al.
demonstrated that students whose schools were prox-
imal to fast food restaurants on average consumed more
servings of soda and were more overweight compared to
students whose schools were less proximal to fast food
restaurants [17]. Babey et al. showed that people in
communities with increased fast food restaurants and
less grocery stores are more likely to have DM [21].

Similar to fast food restaurants, convenience stores
are stocked with low quality food options. Galvez et
al. illustrated that the presence of convenience stores
is associated with increased risk of obesity [22]. Be-
cause obesity is a predictor of DM, it is hypothesized
that the presence of convenience stores will also be
associated with DM.

It is also suggested that lack of supermarkets and gro-
cery stores, which provide healthy options, contribute to
the risk of obesity [23]. Inagami’s et al. study revealed
that abundance of and proximity to supermarkets within
residential census tracts were associated with increased
fruit and vegetable intake among pregnant women [24].
More so, distance from the home to a super or grocery
store may limit accessibility because some individuals
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may live farther away or lack the transportation to
obtain high quality foods [11].

Few studies have assessed the association between
food environment and DM at the macro level. Yet, it
is important for county-level studies to research how
attributes within the built environment contribute to
DM prevalence and research how access to food in-
fluences eating behavior [25]. Understanding the role
food outlets play in contributing to DM is vital
because it can greatly contribute to future public
policy making. Thus, further efforts to understand
how the built environment plays a role among the
known DM risk factors are needed. In particular, how
do types and amount of food outlets play a role in
DM prevalence?

This study aims to examine the relationship between
the density of four types of food outlets- fast food res-
taurants, convenience stores, super stores, and grocery
stores- and the prevalence of county-level DM in 2011
in South Carolina, while adjusting for the following
county-level risk factors: obesity, physical inactivity,
recreation facility density, unemployment, education,
households with no cars and limited access to stores,
and race.

Methods

Study design

This study was an ecological analysis examining the rela-
tionship between four types of food outlet densities- fast
food restaurants, convenience stores, super stores, and
grocery stores- and DM prevalence in 2011 among the
46 counties of South Carolina. The analysis controlled
for the following county-level covariates: obesity, phys-
ical inactivity, density of recreation facilities, unemploy-
ment, education, households with no car and limited
access to stores, and race. Multiple secondary data
sources were used: the US Census Topologically Inte-
grated Geographic Encoding and Referencing (TIGER)
Line Files [26], the Centers for Disease Control and Pre-
vention (CDC) which administers the Behavioral Risk
Factor Surveillance System (BRESS) [27], the US Depart-
ment of Agriculture Economic Research Service (USDA)
[28], and the US Decennial Census [29]. All of the data
used was publically available.

Data collection

The South Carolina county map was retrieved from the
US Census TIGER Line Files for 2011 [26]. County poly-
gons were joined with county-level covariates using the
“spatial join” tool in ArcGIS Desktop Version 10.2.2 for
Windows (Environmental Systems Research Institute,
Redlands, CA).
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Dependent variable: DM

DM prevalence is the age-adjusted percentage of adults
(age>20) in South Carolina with diabetes excluding
those with gestational diabetes in 2011. DM prevalence
was obtained from the CDC [27].

Independent variables

Fast food restaurants, convenience stores, super stores,
and grocery stores were downloaded from the USDA
2011 data [28]. Because urban areas are correlated with
neighborhood availability of food outlets and individual
eating behavior [30], population density is taken into ac-
count by dividing the number of food outlets per 1000
county residents.

Fast food restaurant densities are the number of
limited-service restaurants in each county in South Car-
olina per 1000 residents. The North American Industry
Classification System (NAICS) code for fast food restau-
rants is 722211 and includes businesses mainly engaged
in providing food services where customers pay before
eating. Food may be consumed at the establishment,
taken out, or delivered.

Convenience store densities are the number of con-
venience stores in each county in South Carolina per
1000 residents. The NAICS codes for convenience stores
are 445120 and 447110 and includes stores mainly en-
gaged in providing limited goods such as bread, soda,
and snacks.

Super store densities are the number of supercenters
and warehouse clubs in each county in South Carolina
per 1000 residents. The NAICS code for super stores is
452910 and includes stores mainly engaged in providing
groceries along with general lines of merchandise.

Grocery store densities are the number of supermar-
kets and grocery stores in each county in South Carolina
per 1000 residents. The NAICS code for grocery store
is 445110 and includes stores mainly known as super-
markets and excludes convenience stores with or
without gasoline sales as well as large, general-
merchandise stores.

Covariates

The covariates considered for this study are obesity,
physical inactivity, recreation, unemployment, education,
households with no car and at least one mile away from
a store, and race.

Obesity prevalence is the age-adjusted percentage of
adults (age >20) in South Carolina with a body mass
index > 30 in 2011. Body mass index is computed by div-
iding weight in kilograms by height in meters squared.
Physical inactivity prevalence is the age-adjusted preva-
lence of adults (age>20) in South Carolina, who re-
ported no leisure-time physical activity in the past 30
days in 2011. These data were obtained from the CDC
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collected from BRFSS [27], which is based on self- report
measures.

Recreation is the number of recreational facilities in
each county in South Carolina per 1000 residents in
2011 and obtained from the USDA [28]. The NAICS
code is 713940 and includes establishments mainly en-
gaged in fitness and sport facilities.

Unemployment is the unemployment rate in each
county in South Carolina in 2011. This was downloaded
from the US Census 2010 [29] that is collected from the
Bureau of Labor Statistics. Education is the percentage
of adults with only a high school diploma in each
county in South Carolina. These data were also
downloaded from the US Census, specifically the
2009-2013 American Community Survey.

Households with no cars and at least one mile from a
store is the percentage of housing units in each county
in South Carolina with no car and at least one mile away
from a supermarket or large grocery store in 2010.
These data were obtained from the USDA [28].

Race is the percentage of each county’s resident popu-
lation in South Carolina that is non-Hispanic Black or
African American in 2010 obtained from the USDA
[28]. Neither of these data were available for the year
2011. A description of the data sources used to extract
these variables is found in Additional file 1.

Data analysis

Pearson’s correlation coefficients were computed to as-
sess the crude relationship between each food outlet
density and DM prevalence in SAS software, Version 9.3
for Windows (SAS Institute, Cary, NC). Bivariate maps
were created in ESRI ArcGIS (Environmental Systems
Research Institute, Redlands, CA) to represent the geo-
graphical distribution of food outlet densities and DM
prevalence among the 46 counties in South Carolina.
DM prevalence was split into three ranks based on the
following measures: 7.6—-10.5 %, 10.6—13.0 %, and 13.1—
15.6 %. Likewise, food outlet densities were split into
three ranks. Fast food restaurant densities were based on
the following categories: 0.25-0.50, 0.51-0.70, and 0.71—
1.13. Convenience store densities: 0.32—0.60, 0.61-0.80,
and 0.81-1.12. Super store densities: 0—0.001, 0.002—
0.02, and 0.03-0.04. Grocery store densities: 0-0.15,
0.16-0.20, and 0.21-0.31. Categories were created based
on equal intervals or included at least ten counties in
a category.

To analyze the association between each food outlet
density and DM prevalence, linear regression models
using ordinary least squares (OLS) method were calcu-
lated in ArcGIS. OLS regression was completed with
DM as the dependent variable and adjusting for obesity,
physical inactivity, recreation, unemployment, education,
households with no car and limited access to a store,
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and race. Diagnostics of the models were performed and
did not show spatial autocorrelation and did not violate
other model assumptions. Multicollinearity was assessed
and all Variance Inflation Factors were less than 7.0.
Diagnostics also showed that the variables explain 80 %
of the variation observed.

Results

Descriptive statistics

Table 1 summarizes mean values of DM prevalence, food
outlet densities, and covariates for each county in South
Carolina. The maximum value of DM prevalence was
156 % (Hampton County), the minimum was 7.6 %
(Beaufort County), and the overall mean prevalence of
DM was 12.1 %. The maximum value of fast food res-
taurant densities was 1.14 (Horry County), the minimum
was 0.25 (Saluda County), and the overall state mean
was 0.59. The maximum value of convenience store
densities was 1.12 (Marlboro County), the minimum was
0.32 (Berkeley County), and the overall state mean was
0.69. The maximum value of super store densities was
0.04 (Barnwell County), the minimum was 0 (several
counties), and the overall state mean was 0.01. The max-
imum value of grocery store densities was 0.31 (Bamberg
County), the minimum was 0.07 (Calhoun County), and
the overall state mean was 0.19. There was also variation
among the covariates between counties (see Table 1).

Bivariate maps

Figure 1 displays the bivariate maps between the four
food outlet densities and DM prevalence, each based on
three ranks (i.e., low, medium, high). The highest rank
combination formed between fast food restaurant dens-
ities and DM prevalence was observed in two PeeDee re-
gion counties: Hampton and Orangburg. The lowest
rank combination was observed in Aiken, Beaufort, Dor-
chester, and Kershaw counties. The highest rank com-
bination formed between convenience store densities
and DM prevalence was observed primarily along the 1-
95 corrdior (i.e., Clarendon, Colleton, Darlington,
Dillion, Hampton, Orangeburg, and Union counties).
The lowest rank combination was found in Aiken,
Beaufort, Charleston, Dorchester, Greenville, Lexington,
Pickens, and York counties. Rank combinations between
super store density, grocery store density, and DM
prevalence are also shown in Fig. 1.

Correlations

Pearson correlation coefficients between each food out-
let density and DM prevalence are presented in Table 2.
Two food outlet densities reached statistical significance
at the 0.05 level and were moderately correlated with
DM prevalence: fast food restaurants (r = -0.45) and con-
venience stores (r=0.54). Super stores (r=-0.21) and
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grocery stores (r=0.16) had weak correlations with DM
prevalence and did not reach statistical significance.

OLS regression

Table 3 presents results from OLS regression analyses.
Model 1 is a simple linear regression with each food out-
let density considered as the only explanatory variable.
The models predicted that for every 1 % increase in DM
prevalence in a county, the density of fast food restau-
rants decreases by 4.52 % (p-value =0.002), and the
density of convenience stores increases by 5.33 % (p-
value < 0.001). Model 2 is adjusted for the following
county-level covariates: obesity, physical inactivity, recre-
ation, unemployment, education, households with no car
and limited access to a store, and race. The models show
that 80 % of the variation in DM is explained by the var-
iables (adjusted R-squared was consistent across all
models). No food outlet density reached statistical sig-
nificance in these adjusted models.

Discussion

Type II Diabetes Mellitus, along with other chronic dis-
eases, is growing rapidly in South Carolina and the
United States. Since the built environment has been
shown to influence DM [13-15, 17, 21], this study ex-
amined the relationship between four types of food out-
lets accounting for density of population and the
prevalence of DM. Both convenience stores and fast
food restaurants are associated with poor food quality
and thus were expected to be positively correlated with
prevalence of DM. Likewise, super and grocery stores
are associated with healthy food options and thus were
expected to be negatively correlated with prevalence of
DM. Pearson correlations revealed that the density of
convenience stores had a moderate, positive correlation
with DM, but the density of fast food restaurants had a
moderate, negative correlation with DM. Super stores
and grocery stores were not significantly correlated with
DM prevalence.

The expectation that fast food restaurants and con-
venience stores are positively associated with DM and
that super stores and grocery stores are negatively asso-
ciated with DM was more evident in the bivariate maps.
Aligned with our hypothesis, Hampton County for ex-
ample, had the highest rank combination between fast
food restaurant densities and DM prevalence as well as
convenience store densities and DM prevalence. In fact,
Hampton County has the highest prevalence of DM and
obesity within South Carolina. This county also had the
lowest rank of super store densities and the highest rank
of grocery store densities. With Hampton County having
one of the state’s smallest population densities, the lack
of super stores is to be expected [31]. Small grocery
stores are more common in rural counties [31].



Table 1 Descriptive characteristics of Counties in South Carolina

County Density Density of ~ Density  Density Diabetes Obesity Physical Density of Densities of households Unemployment Education Non-hispanic
of fast food convenience of super of grocery prevalence (%) prevalence (%) inactivity recreation with no car and greater rate black or African
restaurants  stores stores stores prevalence (%) facilities than 1 mile from store American (%)

Abbeville 0.397 0477 0 0.199 114 348 289 0 6.05 124 3341 28.17

Aiken 0.548 0.573 0.019 0.180 10.1 314 249 0.06 3.24 9.2 31.57 24.39

Allendale 0393 0.786 0 0196 154 394 337 0 4.08 184 34.12 73.38

Anderson 0817 0.690 0.016 0.149 106 334 288 0.06 3.26 103 31.91 1593

Bamberg 0.626 0.626 0 0313 144 41.1 316 0.06 3.97 16.2 26.02 61.21

Barnwell 0.537 0.850 0.045 0179 119 383 289 0.04 6.38 152 39.05 44.05

Beaufort 0656 0383 0.012 0200 76 225 16 0.16 3.05 87 2437 18.90

Berkeley 0.605 0.321 0.016 0.104 127 36.3 256 0.05 2.56 9.5 31.69 24.75

Calhoun 0.264 0.792 0 0066 149 39.7 287 0 833 123 37.77 4231

Charleston 0.987 0461 0.020 0274 104 259 21 0.11 226 83 21.30 29.55

Cherokee 0.702 0.774 0.018 0.180 1.5 328 322 0.07 349 14.7 35.15 20.26

Chester 0456 0.790 0 0304 123 372 272 0.06 5.18 173 38.83 37.26

Chesterfield 0473 0.558 0.021 0258 119 354 303 0.04 7.26 129 38.65 3248

Clarendon 0.605 1.037 0.029 0.115 135 383 28 0.03 529 145 38.06 49.70

Colleton 0.647 0932 0.026 0.285 142 382 305 0.05 763 14.1 3539 38.85

Darlington 0454 0.805 0.015 0190 135 338 32 0.09 381 129 36.89 4144

Dillon 0.567 0.850 0 0.252 132 39.8 359 0 7.26 15.8 39.60 4594

Dorchester 0.539 0341 0.007 0.121 9.7 30 229 0.05 236 89 2931 25.53

Edgefield 0.300 0450 0 0.112 1.6 335 26 0.04 412 9.9 37.95 36.88

Fairfield 0.297 0.764 0.042 0.085 153 406 29.7 0 6.26 145 39.57 5891

Florence 0.791 0.696 0.015 0297 126 36.8 273 0.06 5.01 12 33.28 41.06

Georgetown 0.750 0617 0.017 0.283 109 355 26.5 0.08 539 135 32.31 3346

Greenville 0.854 0.460 0.017 0.186 9.9 293 233 0.13 232 86 26.06 17.86

Greenwood 0.730 0.730 0014 0229 95 325 255 0.09 250 13 2997 31.19

Hampton 0.768 1.105 0 0288 156 435 32 0 7.35 129 38.65 5341

Horry 1.140 0612 0.033 0.199 9.8 276 22 0.10 248 19 32.08 13.28

Jasper 0714 0.953 0.040 0238 128 393 252 0.04 533 99 4023 4562

Kershaw 0.546 0.707 0.016 0.112 104 30.7 275 0.05 5.08 11.0 34.44 2440

Lancaster 0.449 0.603 0.026 0.282 12 349 269 0.05 2.83 133 3412 23.69

Laurens 0421 0.737 0 0.180 13 38 32 0.05 6.49 116 36.02 25.26

Lee 0422 0474 0 0263 134 415 31 0 857 16.2 3831 64.07
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Table 1 Descriptive characteristics of Counties in South Carolina (Continued)

Lexington
Mccormick
Marion
Marlboro
Newberry
Oconee
Orangeburg
Pickens
Richland
Saluda
Spartanburg
Sumter
Union
Williamsburg
York

South Carolina

0.756
0.399
0457
0421
0477
0.685
0.751
0.719
0.779
0.251
0.694
0.521
0453
0.381
0.711
0.59

0.532
0.698
0.792
1.122
0.901
0524
0.947
0.594
0445
0.704
0.603
0.661
0.837
0.763
0486
0.69

0.026
0
0.030

0.027
0.013
0011
0.008
0.015

0.021

0.009

0.022
0014

0.157
0.199
0.304
0.246
0.159
0215
0.239
0.092
0.136
0.151
0.143
0.186
0.174
0.235
0.174
0.19

10.1
14.6
13.2
11.1
12

1

14.3
10.3
1.5
11.8
1.3
138
134
15.3

12.14

299
40.1
397
328
34.7
315
414
296
319
332
29.2
346
36
43.1
279
3495

24

306
317
285
26.5
224
278

24.1
276
266
29.8
329
31
216
2759

0.09

0.03

0.05
0.03
0.07
0.09
0.08

0.10
0.06
0.03
0.03
0.09
0.05

8.0
13.6
17.7
19.7
10.3
100
15.8

9.8

9.2

9.7
109
120
16.0
16.7
1.0
12.56

2770
28.56
4321
4053
3204
3348
3543
30.19
2239
40.59
30.76
30.60
3751
40.02
28.18
3385

14.10
49.54
5555
50.64
30.75

747
61.93

6.54
4540
26.14
2044
46.63
31.15
65.44
18.85
3595
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Our results are unexpected due to the lack of healthful
foods provided by fast food restaurants and convenience
stores [20] as well as studies demonstrating the positive
association between fast food restaurants and chronic
diseases, such as obesity, at the macro level [13]. Studies
found that proximity to fast food outlets is associated
with greater food intake and availability of convenience
stores is associated with increased risk of obesity [25].
Yet, studies have also been inconsistent with fast food
restaurants resulting in negative or null associations be-
tween obesity and/or frequency of fast food consump-
tion [30]. Jeffrey’s et al. study found no association
between fast food proximity and fast food consumption
or BMI [32]. The inconsistent findings in the literature
may be caused by the lack of an established definition
for fast food restaurants. This study used the definition

Table 2 Pearson’s correlation coefficients between density of
food outlets and County-level diabetes prevalence in South
Carolina, 2011

Food outlet Correlation P-value
Fast food restaurants -045 0.007°
Convenience stores 0.54 <0.001°
Super stores -0.21 0.16
Grocery stores 0.16 0.29

Correlation is significant at the 0.05 level
N=46

based on NAICS code whereas other studies may pro-
vide their own definition. Additionally, the NAICS code
is defined as food establishments where consumers pay
before eating thus also including food establishments
that provide healthy alternatives, such as Subway®’. The
inconsistent findings in the literature may also be due to
differences in spatial scale. Ahern’s county-level study
found obesity rates to be negatively associated with fast
food restaurants and positively associated with grocery
stores (in non-metro areas only), where as Maddock’s
state-level analysis found obesity rates to be positively
associated with fast food restaurants [13, 25].

The null findings regarding super store densities and
grocery store densities to DM prevalence contradict the
literature. Other studies found that larger food stores
and super stores are associated with better access to
high quality food, such as fresh fruits and vegetables
[32-38], and the availability of supermarkets is associ-
ated with healthier diets, lower rates of obesity, and a
longer life span [14, 23, 39-43].

The significant covariates in the regression models
were obesity, physical inactivity, and race (except
when considering the density of fast food restaurants
as the exposure). This is expected because DM dis-
proportionately affects non-Hispanic Blacks and Afri-
can Americans. Previous studies have found that
Blacks and disadvantaged groups are more likely to
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Table 3 Multiple-variable linear regression prediction County-level diabetes with density of food outlets in South Carolina, 2011

Model 1 Model 2°
Food outlet Beta coefficient Standard error P-value Beta coefficient Standard error P-value
Fast Food Restaurants -4.52 1.34 0.002° -0.55 0.90 0.54
Convenience Stores 533 1.24 <0.001° 0.89 0.86 0.31
Super Stores -31.91 2231 0.16 -040 11.66 0.97
Grocery Stores 461 430 0.29 -3.70 213 0.09

“Beta coefficients are significant at the 0.05 level

PModel 2 adjusted for obesity, physical inactivity, recreation facility density, unemployed, education, household with no cars and limited access to a store,

and race
N=46

live in areas with inadequate access to healthy foods
directly affecting their health [24].

Limitations

This study has several limitations. DM, obesity, and
physical inactivity were based on self-reported data
collected by BRFSS. However, studies have shown self-
report DM based on a physician’s diagnosis to be highly
validated [44], and self-reported weight and height to
compute BMI to also be validated among adults [45].
Additionally, BRFSS obtains county-level estimates by
aggregating three years of data for a single estimate due
to the limiting sample size preventing possible calcula-
tions for a single year. BRESS also includes type I dia-
betes mellitus along with the DM data making it difficult
to distinguish between the two types of diabetes; how-
ever, type II diabetes accounts for 90-95 % of all dia-
betes cases [11]. Furthermore, the study analysis did not
consider spatial spillover: the impact of food outlets in
bordering counties in other states. It is likely for individ-
uals living in a border county to purchase food from
nearby state counties. Moreover, because our total sam-
ple only included 46 counties, the power to detect statis-
tical differences was reduced. Finally, the ecological
nature of the study subjugates it to the ecological fallacy,
thus limiting its inference to the county level only.

Conclusions

Overall, findings from this ecological study do not show
significant associations between any of the four types of
food outlets and the prevalence of DM. This emphasizes
the role of individual behavioral decisions on DM
prevalence as well as the need for studies that examine
the role of food outlet density on health outcomes at
various spatial scales. DM and other chronic diseases are
multi-faceted and relate to many factors including both
individual and environmental as well as social and
cultural. Therefore, to further understand the impact on
DM, future research should include both the structure
of the built environment- food outlets and recreational
space- and individual factors in order to construct a
thorough, comprehensive model of the contextual

factors contributing to the increase of chronic diseases.
Assessing the environmental, social, and cultural deter-
minants of chronic diseases is key in establishing health-
promoting environments. There is a strong need to
advocate for such environmental change.

Additional file

[ Additional file 1: Study Variables’ Data Sources. (DOC 35 kb) ]

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

DMA performed the statistical analysis and drafted the manuscript. JME
made substantial contributions to the design of the study and revised the
manuscript critically. All authors read and approved the final manuscript.

Acknowledgements
We thank Charity Breneman who provided technical services in GIS and
writing services.

Author details

'Department of Epidemiology and Biostatistics, University of South Carolina,
Columbia, SC, USA. ZDepartment of Epidemiology and Biostatistics, Statewide
Cancer Prevention and Control Program, University of South Carolina,
Columbia, SC, USA.

Received: 11 July 2015 Accepted: 22 December 2015
Published online: 05 January 2016

References

1. Chaput JP, Despres JP, Bouchard C, Astrup A, Tremblay A. Sleep duration as
a risk factor for the development of type 2 diabetes or impaired glucose
tolerance: analyses of the Quebec family study. Sleep Med. 2009;10:919-24.

2. Center For Disease Control and Prevention. National diabetes fact sheet:
general information and national estimates on diabetes in the United
States, 2007.

3. Barker LE, Kirtland KA, Gregg EW, Geiss LS, Thompson TJ. Geographic
distribution of diagnosed diabetes in the U.S.: a diabetes belt. Am J Prev
Med. 2011;40(4):434-439.

4. South Carolina Department of Health and Environmental Control. Burden of
Diabetes Report. 2012.

5. Department of Health and Environmental Control. Diabetes in South
Carolina fact sheet. 2014; Available at: http://www.scdhec.gov/Library/ML-
025328.pdf

6. American Diabetes Association. Diagnosis and classification of diabetes
mellitus. Diabetes Care. 2005;28:537-42.

7. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and
its complications: estimates and projections to the year 2010. Diabetes Med.
1997;14:51-85.


dx.doi.org/10.1186/s12889-015-2681-6
http://www.scdhec.gov/Library/ML-025328.pdf
http://www.scdhec.gov/Library/ML-025328.pdf

AlHasan and Eberth BMC Public Health (2016) 16:10

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

Jones AP, Homer JB, Murphy DL, Essien JD, Milstein B, Seville D. Understanding
diabetes population dynamics through simulation modeling and
experimentation. Oppor Demands Public Health Syst. 2006,96(3):488-94.
American Diabetes Association. Economic consequences of diabetes
mellitus in the US in 1997. Diabetes Care. 1998;21:296-309.

American Diabetes Association. Economic costs of diabetes in the US.
in 2012. Diabetes Care. 2013;36:1033-46.

Chatterji M. Association between food deserts and diabetes related
morbidity and mortality among residents of Fulton County, Georgia.
Thesis, Georgia State Univeristy. 2013.

Duru OK, Gerzoff RB, Selby JV, Brown AF, Ackermann RT, Karter AJ, et al.
Identifying risk factors for racial disparities in diabetes outcomes: the
translating research into action for diabetes study. Med Care.
2009:47(6):700-6.

Maddock J. The relationship between obesity and the prevalence of fast

food restaurants: state-level analysis. Am J Health Promot. 2004;19(2):137-43.

Cummins S, Macintyre S. Food environments and obesity- neighbourhood
or nation? Int J Epidemiol. 2006,35:100-4.

Barnes TL, Bell BA, Freedman DA, Colabianchi N, Liese AD. Do people really
know what food retailers exist in their neighborhood? Examining GIS-based
and perceived presence of retail food outlets in an eight-county region of
South Carolina. Spat Spatio-temporal Epidemiol. 2010;13:31-40.

Block JP, Scribner RA, DeSalvo KB. Fast food, race/ethnicity, and income:

a geographic analysis. Am J Prev Med. 2004;27(3):211-7.

Davis B, Carpenter C. Proximity of fast-food restaurants to schools and
adolescent obesity. Am J Public Health. 2009;3(99):505-10.

Fraser LK, Clarke GP, Cade JE, Edwards KL. Fast food and obesity: a spatial
analysis in a large United Kingdom population of children aged 13-15.

Am J Prev Med. 2012;42(5):77-85.

Reidpath DD, Burns C, Garrard J, Mahoney M, Townsend M. An ecological
study of the relationship between social and environmental determinants
of obesity. Health Place. 2002,8:141-5.

Satia JA, Galanko JA, Seiga-Riz AM. Eating at fast-food restaurants is
associated with dietart intake, demographic, psychosocial and behavioural
factors among African Americans in North Carolina. Public Health Nutr.
2004;7(8):1089-96.

Babey SH, Diamant AL, Hastert TA, and Harvey S. Designed for disease:

the link between local food environments and obesity and diabetes.

UCLA Center for Health Policy Research. 2008.

Galvez MP, Hong L, Choi E, Liao L, Godbold J, Brenner B. Childhood obesity
and neighborhood food store availability in an inner city community.
Acaad Pediator. 2009;9(5):339-43.

Powell LM, Slater S, Mirtcheva D, Bao Y, Chaloupka FJ. Food store availability
and neighborhood characteristics in the United States. Prev Med.
2007;44:189-95.

Inagami S, Cohen DA, Finch BK, Asch SM. You are where you shop: grocery
store locations, weight and neigborhoods. Am J Prev Med. 2006;31(1):10-7.
Ahern M, Brown C, Dukas S. A national study of the association between
food environments and county-level health outcomes. J Rural Health.
2011;27:367-9.

2011 TIGER/Line Shapefiles [machine-readable data files] and Technical
Documentation prepared by the U.S. Census Bureau, 2011. Available at:
http://www.census.gov/geo/maps-data/data/tiger-line.html.

Center for Disease Control and Prevention. County Data Indicators, 2011.
Available at: http://www.cdc.gov/diabetes/atlas/countydata/County_
Listofindicators.html

Economic Research Service, U.S. Department of Agriculture (USDA). Food
Environment Atlas. Available at: http://www.ers.usda.gov/data-products/
food-environment-atlas.aspx.

US Bureau of the Census American Fact Finder. 2010 Available at: http://
factfinder.census.gov.

Richardson AS, Boone-Heinonen J, Popkin BM, Gordon-Larsen P.
Neighborhood fast food restaurants and fast food consumption: a national
study. BMC Public Health. 2011; 11(543).

Kaufaman PR. Rural poor have less access to supermarkets, larege grocery
stores. Rural Dev Perspect. 1998;13:19-26.

Jeffery RW, Baxter J, McGuire M, and Linde J. Are fast food restaurants an
environmental risk factor for obesity? Int J Behav Nutr Phys Activ. 2006; 3(2).
Glanz K, Sallis JF, Saelens BE, Frank LD. Nutrition environment measures
survet in stores (NEMS-): development and evaluation. Am J Prev Med.
2007,32(4):282-9.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

Page 9 of 9

Horowitz CR, Colson KA, Hebert PL, Lancaster K. Barriers to buying healthy
foods for people with diabetes: evidence of environmental disparities.

Am J Public Health. 2004;,9(94):1549-54.

Jetter KM, Cassady DL. The availability and cost of healthier food
alternatives. Am J Prev Med. 2006;30(1):38-44.

Larai BA, Siega-Riz AM, Kaufman JS, Jones SJ. Proximity of supermarkets is
positively associated with diet quality index for pregnancy. Prev Med.
2004,39:869-75.

Liese AD, Weis KE, Pluto D, Smith E, Lawson A. Food store types, availability,
and cost of foods in a rural environment. Am Diet Assoc.
2007;11(107):1916-23.

Wang MC, Kim S, Gonzales AA, MacLeod KE, Winkleby MA. Socioeconomic
and food-related physical characteristics of the neighborhood environment
are associated with body mass index. J Epidemiol Commun Health.
2007;61:491-8.

Larson NI, Story MT, Nelson MC. Neighborhood environments: disparities in
access to healthy foods in the U.S. Am J Prev Med. 2009;36(1):74-81e10.
Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and
obesity: the atherosclerosis risk in communities study. 339. 2006;30(4):333-9.
Morland KB and Evenson KR. Obesity prevalence and the local food
environment. Health Place. 2009; 15(2):491-495.

Wang MC, Cubbin C, Ahn D, Winkleby MA. Changes in neighborhood

food store environment, food behavior and body mass index, 1980-1990.
Public Health Nutr. 2008;11(9):963-70.

Zenk SN, Schulz AJ, Hollis-Neely T, Campbell RT, Holmes N, Watkins G, et al.
Fruit and vegetable intake in African Americans income store characteristics.
Am J Prev Med. 2005;29:1-9.

Kehoe R, Wu'S, Leske MC, Chylack LT. Comparing self-reported and
physician-reported medical history. Am J Epidemiol. 1994;139:813-8.
Pierannunzi C, Hu S, Balluz L. A systematic review of publications assessing
reliability and validity of the Behavioral Risk Factor Surveillance System
(BRFSS), 2004-2011. BMC Med Res Methodol. 2013;13:49.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://www.census.gov/geo/maps-data/data/tiger-line.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.ers.usda.gov/data-products/food-environment-atlas.aspx
http://www.ers.usda.gov/data-products/food-environment-atlas.aspx
http://factfinder.census.gov
http://factfinder.census.gov

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design
	Data collection
	Dependent variable: DM
	Independent variables
	Covariates

	Data analysis

	Results
	Descriptive statistics
	Bivariate maps
	Correlations
	OLS regression

	Discussion
	Limitations

	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



