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Abstract

A novel method is reported for simultaneous registration of location (axial direction) and 

orientation (circumferential direction) of two intravascular ultrasound (IVUS) pullbacks of the 

same vessel taken at different times. Monitoring plaque progression or regression (e.g., during 

lipid treatment) is of high clinical relevance. Our method uses a 3D graph optimization approach, 

in which the cost function jointly reflects similarity of plaque morphology and plaque/perivascular 

image appearance. Graph arcs incorporate prior information about temporal correspondence of the 

two IVUS sequences and limited angular twisting between consecutive IVUS images. 

Additionally, our approach automatically identifies starting and ending frame pairs in the two 
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IVUS pullbacks. Validation of our method was performed in 29 pairs of IVUS baseline/follow-up 

pullback sequences consisting of 8,622 IVUS image frames in total. In comparison to manual 

registration by three experts, the average location and orientation registration errors ranged from 

0.72 mm to 0.79 mm and from 7.3° to 9.3°, respectively, all close to the inter-observer variability 

with no difference being statistically significant (p = NS). Rotation angles determined by our 

automated approach and expert observers showed high correlation (r2 of 0.97 to 0.98) and agreed 

closely (mutual bias between the automated method and expert observers ranged from −1.57° to 

0.15°). Compared with state-of-the-art approaches, the new method offers lower errors in both 

location and orientation registration. Our method offers highly automated and accurate IVUS 

pullback registration and can be employed in IVUS-based studies of coronary disease progression, 

enabling more focal studies of coronary plaque development and transition of vulnerability.

Index Terms

Atherosclerosis; natural history; intravascular ultrasound; image registration; graph-based method

I. Introduction

When studying natural course of plaque development in human coronary arteries in vivo 

using intravascular ultrasound (IVUS), registration of axial location and circumferential 

orientation of each image frame in corresponding baseline and follow-up IVUS pullback 

data is of paramount importance if location-specific quantitative comparisons between the 

two timepoints are to be determined [1]–[5]. With large patient cohorts involved in baseline/

follow-up studies (e.g., 506 patients in [4]) and large numbers of IVUS image frames for 

each pullback (e.g., 80–133 frames after ECG gating [3]), manual registration of location 

and orientation is an extremely tedious task and requires expert knowledge. As a result, 

current clinical baseline/follow-up studies are not utilizing all available information due to 

undetermined frame location/orientation correspondences. Consequently, studies of 

mechanical forces, morphology and composition of lesions are only examined in culprit 

locations or over long vessel segments and are typically circumferentially averaged [1]–[4], 

[6]. Such approaches limit our ability to develop better understanding of the focal baseline/

follow-up associations since the coronary artery disease evolves frequently in a focal and 

eccentric manner [4], [7], [8].

Automated location/orientation registration methods for IVUS pullbacks have attracted 

substantial research interest in recent years. Despite several methods reported [9]–[13], no 

perfect solution emerged delivering reliable registration results. The registration task is 

indeed very challenging [12], [13]. The challenges associated with motion artifacts, 

longitudinal oscillations, artifactual angular twisting, stuck/accelerated IVUS catheter during 

pullback acquisitions, vessel-morphologic changes due to plaque progression/regression at 

follow-up, etc. Fig. 1 provides an example of IVUS pullback registration with seven frame 

pairs manually registered. Clearly, in focal analyses of coronary artery disease progression 

[5], complete one-to-one correspondences between all baseline and follow-up frames would 

be preferred.
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For automated registration of frame locations, the most intuitive approach is linear fitting 

(distance normalization) between two identified landmarks (e.g., side-branches) [9], [10]. 

This method works well when the transducer pullback exhibits a constant speed, which is 

not always the case in clinical settings. Non-rigid temporal alignment methods [11]–[13] 

(e.g., dynamic time warping, DTW [14]) treat the alignment task independently from the 

orientation registration task – consequently, the alignment results may not be optimal in the 

circumferential direction. In addition, these methods only rely on vessel morphologic 

features (area or shape) or plaque components, which may change for a long-term follow-up 

as a result of plaque progression/regression. For automated registration of orientation, a 

cross-correlation based method (rotating each follow-up image locally [9]) and a Catmull-

Rom spline based method (rotating all the follow-up images globally [10]) have been 

reported. These two approaches achieve sub-optimal rotation results for two already 

location-aligned IVUS image sequence. In addition, the former method depends on Virtual 

Histology (VH)-IVUS defined plaque constituents and needs manual interaction to 

determine the rotational registration angle. The latter method suffers from artifactual angular 

twisting between consecutive image frames.

More generally, in the fields of computer vision and medical imaging, the problem of spatio-

temporal registration/alignment of image sequences has been investigated for several years. 

Related work mainly followed two lines of approaches, including feature-based approaches 

[15]–[17] appropriate when the appearance varies from sequence to sequence, and direct 

approaches [15], [17]–[20] that fit similar intensities between sequences. The spatio-

temporal registration/alignment algorithms use a particular transform to achieve optimality, 

typically based on gradient descent [15], [18], Powell methods [17], [20] or dynamic 

programming [21].

Compared with previous IVUS pullback location/orientation registration methods that treat 

the registration of location and orientation as separate tasks, we propose a novel joint spatio-

temporal approach for IVUS pullback registration. By combining these two aspects in one 

global optimization task of finding an optimal path in a 3D graph, the location and 

orientation are registered simultaneously. To increase the robustness to the changes of vessel 

morphologic features, our method combines advantages from feature-based and direct 

approaches by incorporating plaque thickness and plaque/perivascular pixel similarities 

which provides more robust correspondence in two time points. To ensure geometrically 

feasible registration, graph arcs incorporate prior information about baseline–follow-up 

correspondences of the two IVUS sequences as well as information about limited-range 

angular twisting between consecutive IVUS image frames. To initialize the registration 

procedure, global and local similarities of two IVUS pullbacks are extracted from the 3D 

graph to automatically identify the most proximal and most distal image pair 

correspondences. To the extent of our knowledge, our approach is the first in the literature to 

simultaneously establish temporal (location) and spatial (orientation) correspondences 

between two different image sequences of two similar dynamic scenes by using a graph-

based method, which has been traditionally used in image segmentation to detect boundaries 

or surfaces [22]–[26] or in deformable image registration to obtain the displacement field 

[27]–[29]. Partial results of this work have been reported in [30]. The current study provides 

more sophisticated methodology including regularization graph arcs, concise cost function, 
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and automated model initialization, as well as a more comprehensive evaluation in a larger 

patient population.

Our system registers image sequences in a highly automated fashion as long as sufficiently 

accurate lumen and external elastic lamina (EEL) segmentations are available for all frames 

of both image sequences. This means that there is no need to provide a variety of manually 

obtained guiding information, such as branch locations/orientations [9]–[12], plaque 

characterization [9], [11], [12], matching anatomic landmarks [9], [10], and co-registration 

angles [9]. IVUS segmentation suitable for further analysis is invariably required for 

quantitative IVUS-based studies of coronary atherosclerosis [1]–[6], [8], [31], [32].

II. Methods

A. 3D Graph Construction

Given a pair of baseline and follow-up IVUS pullbacks, a 3D directed graph is constructed 

and searched for the optimal path (Fig. 2). In the 3D graph, each node represents the 

possible location and orientation correspondences of a baseline and a follow-up image frame 

pair. For example, the uppermost green graph node with coordinates (bl = 4, θ = 212°, fu = 

3) in Fig. 2 represents correspondence of a follow-up frame #3 with 212° rotation with a 

baseline frame #4. The complete registration is defined by a sequence of nodes, which for 

each (bl, θ, fu) coordinate triplet forms a path in the 3D graph defining a possible location 

and orientation correspondence of baseline and follow-up image frames. Costs assigned to 

each node in the 3D graph reflect similarities of IVUS image data appearance and plaque 

morphology between the baseline and follow-up. An optimal path is defined as the path with 

the lowest global cost, which in an overall sense defines the frame-to-frame location and 

orientation registration of two image sequences. Clearly, such a registration is optimal with 

respect to the employed cost function.

To calculate the lowest cost path, a dynamic programming algorithm is employed [21], [33]. 

A three-dimensional cumulative cost matrix C is computed according to node costs c(i, j, k) 

(bl = i, θ = j°, fu = k, see Section II-B for details) and node connections. The design of the 

node connections assumes limited angular twisting between consecutive image pairs [9], 

[34]. In each stage of the dynamic programming, the best one of the N = 3 × (2 × θtwist + 1) 

possible preceding nodes is selected, where θtwist is the rotational constraint of angular 

frame-to-frame twisting. The node connection diagram is visualized in Fig. 3. Nodes at any 

location (e.g., the red, green, or blue shaded nodes in Fig. 3) in the 3D graph, can be reached 

from any nodes in the other three rows (nodes connected by red, green, or blue arcs in Fig. 

3), which potentially correspond to preceding baseline/follow-up frame pairs. As a result, 

each element C(i, j, k) (bl = i, θ = j°, fu = k) in the matrix C is computed as

(1)

where i is the i-th baseline image, j is the rotation angle of the k-th follow-up image, Δθ∈

{−θtwist, …, θtwist}. Note that when j + Δθ≤ 0 and j + Δθ > 360, the connections will link to 
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360 + j + Δθ and j + Δθ − 360, respectively, shown as the connections to purple nodes in 

Fig. 3. fp(Δθ) is the smoothness penalty function for different angular twisting Δθ. The 

angular twisting between consecutive IVUS images depends on the geometrical vessel 

morphology and vessel movement in the 4D case. It can be analytically determined using 

fusion with X-ray angiography [34]. Under ideal circumstances, such twisting should be 

identical between the two pullbacks and thus their differences should be zero. While this 

cannot be assured in clinical setting when artificial catheter movements may add an 

unpredictable component, the relative frame-to-frame differences should be small but they 

are cumulative. Therefore, we increasingly penalize twisting Δθ in either direction as 

follows

(2)

where ω controls the penalty weight. The elements C(i, j, 1) in the first layer (follow-up 

frame 1) and the elements C(1, j, k) in the first rows of each layer (baseline frame 1) are 

initialized as

(3)

(4)

The initialization condition is set as

(5)

As is typical for dynamic programming, the optimal path through the 3D matrix C is 

determined by backtracking from element min(C(I, j, K)) to C(1, j, 1) by following the 

minimum values of the neighboring elements, where I and K represent the last frames in 

baseline and follow-up, respectively.

B. Cost Function Design

Design of node-associated costs is always problem-specific. For IVUS pullback registration, 

Each cost c(i, j, k) reflects the similarity between the i-th baseline image and the k-th follow-

up image with j-degree rotation. The similarity is designed as a combination of feature-

based and direct approaches based on three terms: 1) perivascular tissue, including pixels 

outside of the EEL border (the green region in Fig. 4(c)); 2) plaque appearance, including 

the pixels between the EEL and lumen borders (the orange region in Fig. 4(c)); and 3) 

plaque thickness, defined as the distance between lumen and EEL borders at 360 

circumferential wedges centered at the lumen centroid. Such a cost function design is 

depicted in Fig. 4 and formulated as
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(6)

Calculation of Corr(i, j, k) is based on the normalized cross-correlation approach as detailed 

in [9], α, β, and γ are the weights for the perivascular tissue, plaque appearance, and plaque 

thickness terms, respectively, satisfying α + β + γ = 1. In [9], the calculation of Corrpa relies 

on the VH-derived indexed values to describe plaque component similarity. In our 

implementation, IVUS image pixel intensities are directly used to reveal the plaque 

appearance similarity while avoiding the dependency on VH. Since the Corrpt used in [9] 

cannot discriminate between two similar plaque shapes with different sizes, a size factor was 

added to represent differences of mean plaque thickness between baseline and follow-up:

(7)

where j is the rotation angle of a follow-up image being registered,  and  are average 

plaque thickness values of the i-th baseline and the k-th follow-up images, respectively, σfi 
and σgkare their respective standard deviations, n is the number of plaque thickness values 

which were set to 360, and rd is the plaque thickness index calculated in the radial 

directions. Note that when computing these Corr values, coinciding lumen centroids for the 

baseline and rotated follow-up image pairs are provided by our automated segmentation and 

operator-guided refinement algorithm [26]. This cost function design follows the rules for 

characteristic calcifications, perivascular landmarks, and plaque shape, which cardiologists 

use to match baseline and follow-up IVUS pullbacks [31].

C. Identification of Starting and Ending Frame Pairs

For the baseline and follow-up IVUS acquisition in the same vessel, the starting and ending 

positions of pullbacks are not always the same. Therefore, before applying the proposed 

registration method, we should identify the most proximal and most distal corresponding 

image frame pairs. Our strategy combines global and local costs embedded in the 3D graph-

based framework. Fig. 5 demonstrates identification of the ending frame pair, which is 

determined by the following equation:

(8)

where Gc(i, j, k) is the global cost. Gc(i, j, k) corresponds to mean cost of the optimal path 

(green solid line in Fig. 5), which backtracks from element (bli, θj, fuk) (green point in Fig. 

5) in the 3D cumulative cost matrix C (cube in Fig. 5), and is defined as:

(9)

C(i, j, k) is computed according to Eq. (1); ne is the number of elements which form the 

optimal path. Such a design of the global cost represents the average similarity between two 
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registered IVUS image sequences with (i, k) as the ending frame pair. Lc(i, j, k) is the local 

cost, associated with the similarity between the i-th image in baseline and the k-th image 

with rotation angle θj in follow-up, as defined in Eq. (6). I and K represent the last frames in 

baseline and follow-up, respectively. After the ending pair is identified, both the 3D 

cumulative cost matrix C and the cost matrix c are inverted and the same global and local 

approach is used to identify the starting pair with a searching range constrained by the 

minimal required lengths of the baseline/follow-up pullback overlap (25 mm overlap 

required in our studies).

Subsequently, the aforementioned selection order is inverted by identifying the starting pair 

first followed by obtaining the ending pair. This, two start/end pairs are available and the 

final solution is identified by choosing the lower total cost (global and local) from these two 

solutions. The 3D graph is subsequently constructed and the optimal path is determined, 

simultaneously registering the IVUS pullback with respect to location and orientation.

D. Post-processing

In clinical data, the pullback lengths (number of frames) of the imaged vessel segment at 

baseline and follow-up may differ dramatically. Reasons come from many aspects, including 

primary heart rate, different segment covered, resistance to transducer withdrawal, anatomic 

considerations, problems with the pullback device, etc. [32]. As a result, our registration of 

baseline and follow-up may generate one-to-many or many-to-one correspondences. To 

achieve one-to-one correspondence among baseline and follow-up, the registered frame pair 

with the minimal cost (Eq. (6)) is selected and used to define the overall correspondence of 

the two pullback IVUS frame pairs.

III. Experimental Methods

A. Patient Data

The performance of the proposed method was evaluated in 29 serial IVUS-VH studies of 

patients with stable coronary artery disease enrolled in the PREDICT study 

(ClinicalTrials.gov Identifier: NCT01773512) at the Charles University Hospital, Prague. 

The PREDICT study aims at prediction of extent and risk profile of coronary atherosclerosis 

and their changes during lipid-lowering therapy based on non-invasive techniques. From 33 

patients in total, 29 patients satisfied inclusion criteria [6], [32] and were selected for this 

baseline/follow-up registration study.

IVUS imaging was performed in the standard fashion using the IVUS phased-array probe 

(Eagle Eye 20 MHz 2,9F monorail, Volcano Corporation, Rancho Cordova, California), 

IVUS console, Gold standard software, and motorized pullback at 0.5mm/s (research 

pullback device, model R-l00, Volcano Corporation, Rancho Cordova, California). After 8–

14 months patients underwent repeat cardiac catheterization and IVUS of the same coronary 

artery.

The Volcano IVUS imaging system provided EKG R-wave gated IVUS image sequences 

with 8,622 gated frames in total (72 to 235 frames per pullback), 0.27 to 0.67 mm distances 

between adjacent frames depending on the heart rate, and 500 × 500 pixels per image frame. 
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Both baseline and follow-up pullbacks were at least 30 mm long, with at least 25 mm long 

mutual overlap.

B. Independent Standard

Three experts defined the ground truth for baseline/follow-up IVUS pullback registration. 

The experts were blinded to the results of the computer registration and had the following 

levels of expertise:

• Expert 1 (TK): Cardiologist with 16 years clinical experience in coronary imaging 

(mainly IVUS).

• Expert 2 (AW): IVUS analyst with 17 years of IVUS experience.

• Expert 3 (ZC): IVUS analyst with 4 years of IVUS experience.

For each frame of each IVUS pullback, luminal and EEL surfaces were automatically 

segmented using our fully three-dimensional LOGISMOS graph-based approach [23], [24], 

which shows excellent performance compared to the state-of-the-art algorithms on a public 

available IVUS image database [35]. Automatically determined surfaces were reviewed and 

algorithmically refined by an expert cardiologist using our previously reported computer-

aided refinement approach [26]. Examples of the final segmentation can be seen in Fig. 4.

To evaluate the performance of the automated registration, 262 frame pairs with well-

identifiable landmarks (baseline ↔ follow-up) were determined by Expert 1. The 262 

follow-up frames were further rotated by Expert 1 to make their circumferential positions 

coincide with their corresponding baseline frames, where 5° steps were used. Expert 1 

devoted about 50 minutes to each baseline/follow-up registration; 24 hours of expert effort 

were needed to define the ground truth in all 29 baseline/follow-up pairs. The remaining two 

experts (Experts 2 and 3) were provided the 262 landmarks in baseline pullbacks and were 

asked to find corresponding follow-up frames and properly rotate them to determine inter-

observer variability of manual registration.

C. Registration Accuracy and Statistical Analysis

The registration results were first qualitatively evaluated by visually checking for gross 

inaccuracies. To quantify the success rate of the locational registration, distances (mm) 

between the expert-identified follow-up frames and the automatically registered frames were 

used as the performance measure (Eq. (10)). To quantitatively evaluate the orientation 

registration performance, rotational registration angles of corresponding frames were 

compared with those determined by the expert (Eq. (11)). All results are reported as the 

mean error ± the standard deviation.

(10)

(11)
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where Lx and Ox are the automatically registered location and orientation, and Ly and Oy 

denote the independent standard.

For statistical analysis, differences between manual and computer registered locations were 

determined using a Wilcoxon signed-ranks test [36] to reflect non-normal distribution, while 

angular differences between orientations were determined using a paired Students t-test, 

both with p < 0.05 deemed statistically significant. Linear regression analysis [37] and 

Bland-Altman plots [38] were used to compare the rotation angle differences. To reveal the 

true angular difference between two rotations, angular values were first transformed to the 

range [−180°, 360°].

D. Comparison with Other Methods

Performance of our method was compared to the inter-observer variability of manually-

performed registration, the work of Timmins et al. [9], our earlier-reported side-branch 

guided (SBG) approach [10], the DTW framework [14] with area-based costs [11], [12], and 

DTW framework [14] with correlation-based costs (Eq. (6)). For the method in [9], the 

location registration is actually the same as SBG (piecewise distance normalization) [10], 

the manual co-registration angle was derived from the first corresponding side-branch pairs 

obtained in [10]. Other parameters were set as in [9]. In the DTW framework, due to the 

sliding window approach [11], the method is not designed to register pullbacks of different 

length; the extremes of path search strategy [12] did not work well on our data set in a 

preliminary experiment (e.g., failed in 8 out of the 29 pullback pairs). Therefore, we used 

our automatically-determined start/end frame pairs to initialize the DTW framework for a 

relatively fair comparison of the registration performance. For DTW framework with area-

based costs, the first four features used in [11], [12] were employed and the areas of 

calcified and fibro-lipidic plaque were derived from VH in our implementation, and the 

directional penalty [11], [12] was set as 0.05 by optimizing the accuracy using Expert 1 

landmark frame registration as the ground truth. For DTW framework with correlation-

based costs, we first optimized the orientation for each frame pair followed by locational 

registration in the DTW framework for which the orientation was used as a single fixed cost.

E. Computational Resources

The proposed system was tested on an HP Z400 workstation with 3.33 GHz Xeon W3680 

CPU, 24 GB of RAM, running Windows 7 SP1 Enterprise. The mean execution times are 

reported in terms of the complete registration process, the identification of starting/ending 

frame pairs, and the frame-by-frame registration, respectively.

F. Registration Method Parameters

According to our earlier studies, the node connection parameters θtwist used for the 

registration graph construction need not exceed 15° [34]. Others reported that the average 

rotation between consecutive EKG-gated IVUS image frames is 5.74°±0.15° [9]. Generally, 

the registration solution is more constrained for lower values of θtwist and thus less 

computationally demanding. Here, θtwist = 6° was experimentally set as a trade-off between 

accuracy and efficiency and its exact value was not critical for the method’s performance. 

The smoothness penalty weight ω was set as 0.1. Considering that perivascular landmarks 
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(side-branch, small vein, myocardium proximity, etc.) can provide more consistent 

correspondence than plaque appearance and plaque thickness between baseline/follow-up, α 

was set to 0.5 to emphasize the importance of the perivascular tissue term; both β and γ were 

set to 0.25 to let the plaque appearance term and plaque thickness term contribute equally.

IV. Results

A. Qualitative Assessment of Registration Performance

Fig. 6 shows the automated registration of the pullback pairs shown in Fig. 1. Prior to 

registration, the reconstructed baseline and follow-up longitudinal views looked quite 

different (Fig. 1). After registration (Fig. 6), both the longitudinal and cross-sectional views 

show good correspondences between baseline and follow-up. The automatically (fourth row 

in Fig. 6) and manually (fifth row in Fig. 1) registered follow-up cross-sectional images are 

visually comparable in both appearance and orientation. Fig. 7 shows a 3D reconstruction of 

the lumen and EEL surfaces before and after automated registration. It can be visually 

appreciated that two segments become narrower (blue arrows in Fig. 7) and that plaque 

rupture is shown at follow-up (red circle in Fig. 7).

Fig. 8 shows six examples of registration results obtained by a) our new method and b) three 

experts. When visually comparing our results with expert registration, good agreement was 

reached across a variety of image-induced challenges and morphology changes (note 

matching of the following clues in Fig. 8): side-branches (cases B, D, E, F), shadows (cases 

A, E), big and small calcifications (cases E, A, C), small veins (cases B, F), and myocardium 

proximity (cases C, F).

B. Quantitative Assessment of Registration Performance

Table I shows the location and orientation registration errors of our 3D graph based method 

and the inter-observer variability. Compared to three expert registration results, the reported 

3D-graph-based method achieved mean distance errors ranging from 0.72 mm to 0.79 mm 

with the mean angle errors ranging from 7.3° to 9.3°. There were no significant differences 

between our method and experts in location and orientation registration (p=NS). The 

maximal distance and angle errors generated by our method were 8.4 mm and 147°, 

respectively, comparable to the maximum disagreements between experts. For the 262 

baseline landmarks selected by Expert 1, our method failed to determine eight corresponding 

follow-up frames; 7 of these were the most distal landmarks from 7 patients and 1 was the 

most proximal landmark. Similarly, Expert 2 failed to identify three of the most distal 

landmarks in three patients, stating that the corresponding landmarks were beyond the 

coverage of the follow-up pullbacks.

For statistical analysis of orientation registration, linear regression analysis (Fig. 9(a)–(b)) 

demonstrated that the automatically registered frame orientations exhibited high correlation 

with expert registrations (R2 ranging from 0.97 to 0.98), comparable to inter-observer 

variability. The Bland-Altman plots (Fig. 9(c)–(d)) revealed that the rotation angles 

determined by our method and experts agreed well with bias values ranging from −1.57° to 

0.15°, comparable to inter-observer variability ranging from −1.64° to 1.08°.
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Table II summarizes the location and orientation registration errors of Timmins method [9], 

SBG approach [10], DTW framework with area-based costs [11], [12], DTW framework 

with correlation-based costs, and of our new method. The proposed 3D graph based method 

achieved lower errors in both the location and orientation registration.

The mean execution time for the complete automated registration process was 3.2 ± 1.5 

minutes per pullback pair. Identification of starting/ending frame pairs and performing 

complete 3D frame-by-frame registration required 2.3 ± 1.1 and 0.9 ± 0.4 minutes per 

pullback pair, respectively. While the computation of the cost function was time consuming 

(about 6–24 hours per patient, depending on the length of the respective IVUS pullback) and 

was computed in parallel on a computer cluster in about two days for all 29 patients, such 

training is only performed once and its computational demands do not affect the analysis 

speed.

V. Discussion

A. Importance of Automated IVUS Pullback Registration

As mentioned in Section I, current clinical studies of the natural course of plaque 

progression and regression rely on tedious, time-consuming, and subjective registration of 

location and orientation of longitudinal IVUS pullbacks. We have reported in Section III-B 

that registering IVUS baseline and follow-up IVUS pullbacks by an expert cardiologist 

(Expert 1) required 50 minutes per pullback pair – and only landmark-frame pairs were 

registered. Clearly, it is extremely time-consuming to establish frame level correspondence 

manually, and almost impossible when the patient cohort is large. Given the variety of 

challenges presented in IVUS pullback data [12], [13], [32], manual registration requires 

relatively high-level of experience and expert interpretation. It is also subject to considerable 

intra- and inter-observer variability. As a result, current clinical studies mostly rely on 

comparisons of integral features determined over relatively long vessel segments and thus 

combining large tissue areas. This regional rather than local approach hinders our ability to 

achieve better understanding of local plaque progression and local plaque vulnerability [5], 

[9].

B. Comparison with Other Methods

To automatically register frame location, some of the previous methods simply normalize 

the frame distances between manually detected side-branches [9], [10]. As demonstrated in 

Table II, the distance registration errors of this type of method are relatively large mainly 

because of the irregularities in catheter speed in IVUS acquisitions. Notably, such errors 

were observed even when many frames with branches (already manually identified in these 

approaches [9], [10]) were used as landmarks. Other methods only make use of morphology-

based features [11]–[13] such as vessel/plaque area and shape context, thus overlooking 

important image-based features such as plaque and perivascular tissue appearance, which 

demonstrated excellent performance in terms of location registration errors (see ΔL of 

“DTW-correlation” in Table II). Therefore, the registration results of such approaches [11], 

[12] are not robust enough to properly register follow-up frames with similar vessel areas or 

shape properties. Other reasons causing the DTW framework with area-based costs [11], 
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[12] not to be sufficiently accurate on our data are likely attributed to: 1) portion of patient 

data used in [11], [12] were repeatedly acquired shortly after each other and at the same 

disease and intervention stages, thus without any morphologic changes. In contrast, our 

follow-up data were acquired after 1 year with possible plaque progression-induced changes 

of morphology; 2) although some data used in [11], [12] suffered from significant 

morphologic changes, only side-branch locations were used as landmarks in their 

evaluation; 3) in our data, the numbers of IVUS frames in baseline and follow-up sequence 

pairs are frequently quite different, which makes the registration task more challenging.

To automatically register frame orientation, previous solutions [9], [10] ignore the problem 

that appears when a stuck/accelerated IVUS pullback occurs during acquisition. 

Additionally, for methods relying on local optimization [9], if there is an incorrect 

locationally registered frame pair, the rotation angle may also be incorrect and using this 

incorrect angle to constrain consecutive image pair orientation registration will affect the 

result (refer to the relatively large ΔO of [9] in Table II). Furthermore, due to the lack of 

prior information about limited angular twisting, the DTW framework with correlation-

based costs approach exhibited large orientation registration errors (refer to ΔO of “DTW-

correlation” in Table II). In our globally optimal approach, the final orientation registration 

was not affected in this way.

C. Advantages of the Reported Method

An important advantage of the reported method is that it simultaneously registers locations 

and orientations of all frames in the two longitudinal IVUS pullbacks in a geometrically 

feasible manner. Subsequently, it is more robust than methods which register location or 

orientation separately. Furthermore, our system is designed to be highly automated as long 

as segmentation of lumen and EEL borders is available for all frames of the two image 

sequences. While our method was only tested on IVUS data, it may be easily extended to 

other intravascular imaging modalities solely by modifications of the objective function, 

including intracororonary optical coherence tomography (OCT) [39] or OCT-IVUS data co-

registration [40] [41].

The contributions of our new method can be summarized as follows.

1. To the best of our knowledge, this is the first approach to simultaneously establish 

frame-to-frame correspondence in location and orientation between two image 

sequences using a 3D graph-based method.

2. The proposed 3D graph structure allows incorporating rotation-related features and 

catheter twisting prior for registration, and the designed clinical knowledge-based 

cost function is robust to vessel morphologic changes.

3. The reported method can automatically identify the starting and ending frame pairs 

in two image sequences.

D. Limitations

Similar to most of previous IVUS pullback registration approaches, our method relies on the 

segmentation of lumen and EEL, which is used to determine plaque and perivascular regions 
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and also provides a common lumen centroid for both the baseline and follow-up image pairs 

to calculate the correlation terms in Eq. (6). Inaccurate or ambiguous segmentation may 

result in incorrect final registration. Sensitivity of the registration to such segmentation 

inaccuracies need further evaluation in our future work. A potential solution for avoiding 

segmentation dependency may be to identify discriminative regions to measure the structural 

similarity between two images as used in video-volume registration for endoscopic 3D 

motion tracking [20]. Nevertheless, accurate IVUS segmentation is a common pre-requisite 

to any quantitative IVUS-based studies of coronary atherosclerosis and as such must always 

be accomplished regardless of the registration needs [1]–[6], [8], [31], [32].

Even though our proposed method outperforms previous methods especially in handling 

irregular catheter speeds and dealing with morphologic change, it may not perform well if 

the IVUS pullback include images with a pronounced frame-to-frame “jump,” in which a 

large number of image frames is missing in one of the paired pullbacks either due to gating 

issues or a sudden movement of the catheter (e.g., after being slowed down by local plaque’s 

resistance). A possible approach to solve this problem is to increase the node-connection 

distance during the graph construction. The trade-off, however, may be a loss of image 

sequence continuity. Alternatively, utilizing branch detection algorithms either 

automatically [42] or semi-automatically [43] may help constrain the range of frames 

considered for registration.

Another limitation of our method is that the computation burden of cost function calculation 

may increase noticeably with increasing length of the registered IVUS sequences. 

Potentially, such a problem could be overcome by employing an acceleration algorithm [44]. 

However, integration of such a speed-up delivering solution is beyond the scope of this work 

and may be attempted in the future. Recently, we have developed an efficient, integrated, 

side-branch constrained framework that is not subject to length-dependent computational 

complexity increases [45].

VI. Conclusion

The presented results demonstrate that our automated 3D graph-based registration method 

outperforms recent semiautomated approaches and achieves registration accuracy closely 

approaching inter-observer variability. The presented 3D graph-based framework yields 

globally optimal registration of location and orientation of baseline and follow-up IVUS 

pullbacks, which is achieved in a single optimization step by using a 3D dynamic 

programming algorithm. By incorporating rotation-related features and catheter twisting 

prior in the graph structure, designing a comprehensive knowledge-based cost function, and 

extracting global and local graph information for identification of starting/ending image 

pairs, our work delivers highly automatic, accurate and robust IVUS pullback registration. 

The new method was tested in 29 in vivo IVUS pullback pairs from 29 patients. The 

experimental results yielded location and orientation registration errors that were close to the 

inter-observer variability. Our method has a potential to enable large-volume focal studies of 

natural course of plaque development in human coronary arteries in vivo.
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Fig. 1. 
Example of IVUS pullback registration. From top to bottom: Baseline pullback in 

longitudinal view; follow-up pullback in longitudinal view; baseline landmark frames in 

cross-sectional view; corresponding IVUS frames; corresponding IVUS frames in proper 

orientation. In this case, the correspondences were determined visually by a human expert.
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Fig. 2. 
Construction of a 3D graph used for solving the registration problem. This illustrative 

example assumes a baseline pullback (4 frames) and a follow-up pullback (3 frames). Green 

lines depict the optimal path through the graph determining the registration solution.
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Fig. 3. 
Node connections for three different graph locations are shown as red, green, and blue 

dashed lines. This illustrative example assumes θtwist = 3°. Note that the graph node 

connections seamlessly connect nodes at any location, including connections across the 

graph boundaries.
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Fig. 4. 
Cost function designed for IVUS pullback registration. (a) Longitudinal and cross-sectional 

views of a baseline IVUS pullback with expert-defined segmentation (lumen - yellow, EEL - 

red). (b) Longitudinal view of corresponding follow-up IVUS pullback. (c) Cost function of 

1 − Corrpv, 1 − Corrpa, and 1 − Corrpt. Costs are calculated by comparing the IVUS image 

frame given in panel (a) with all follow-up IVUS image frames in panel (b). Each value on a 

curve corresponds to the minimal value with respect to all possible rotations of a follow-up 

frame. In the cross-sectional view, the perivascular tissue and plaque are overlaid with green 

and orange colors, respectively. (d) Cost function c considering all follow-up images.
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Fig. 5. 
Schema of the proposed global and local method for identification of ending pair. Given a 

baseline and follow-up IVUS sequence pair, our method constructs a 3D graph and follows 

two tracks: In the first track, the last baseline frame is fixed and the follow-up frame 

iteratively shifted by the minimal required length of baseline–follow-up overlap (25 mm in 

our case). In each iteration, global and local costs embedded in the 3D graph are extracted 

and combined. By fixing the last follow-up frame and iteratively shifting the baseline frame, 

another series of costs are obtained in the second track. The frame pair providing minimal 

cost is chosen as the ending pair.
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Fig. 6. 
Automated registration of pullback pair from Fig. 1. From the first to the fourth row: 

Registered baseline pullback; registered follow-up pullback; baseline landmarks selected by 

Expert 1; registration results obtained by our automated method. Optimal path (green path) 

in 3D (bl, θ, fu) space and its projections (red paths) on 2D (bl, fu) plane and 2D (θ, fu) plane 

generated by our method for this example are shown in the upper-right panel.
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Fig. 7. 
Three-dimensional visualization of IVUS pullback registration. (a) Original pullback pair. 

(b) Automatically registered pullback pair. Lumen shown in orange, EEL surface in green. 

Notice that two segments become narrower (blue arrows) and that plaque rupture is visible 

at follow-up (red circle, in which two registered IVUS image pairs are shown on the right 

side).
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Fig. 8. 
IVUS pullback registration. From the first row to the seventh row: our baseline/follow-up 

registration results in longitudinal views, baseline landmarks selected by Expert 1, 

corresponding follow-up registration obtained by our method, Expert 1, Expert 2, and Expert 

3. White dotted lines indicate positions of the landmark locations shown in cross-sectional 

views.
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Fig. 9. 
Linear regression analysis and Bland-Altman plots comparing frame orientation differences 

among experts (a,c), and between our method and experts (b,d).
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