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Abstract

Purpose—MR fingerprinting (MRF) is a technique for quantitative tissue mapping using 

pseudorandom measurements. To estimate tissue properties such as T1, T2, proton density, and B0, 

the rapidly acquired data are compared against a large dictionary of Bloch simulations. This 

matching process can be a very computationally demanding portion of MRF reconstruction.

Theory and Methods—We introduce a fast group matching algorithm (GRM) that exploits 

inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. 

During matching, a group specific signature is first used to remove poor matching possibilities. 

Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 

Tesla brain data were used to validate the accuracy of our approach.

Results—For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, 

and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard 

vendor computational resources. This is an order of magnitude faster than global PCA and nearly 

two orders of magnitude faster than direct matching, with comparable accuracy (1–2% relative 

error).

Conclusion—The proposed GRM method is a highly efficient model reduction technique for 

MRF matching and should enable clinically relevant reconstruction accuracy and time on standard 

vendor computational resources.
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INTRODUCTION

NMR based techniques are commonly used in both clinical and medical research settings to 

investigate tissue properties related to disease (1–4). Many of the most commonly used 

imaging and spectroscopy techniques provide weighted measurements or images from 

which quantitative tissue relationships are estimated. There have been several attempts at 

efficient quantitative or multiparameter acquisitions in MR (5–8). A promising new 

approached called MR fingerprinting (MRF) has been introduced (9) as an acquisition and 

reconstruction strategy to estimate multiple tissue properties (such as T1, T2, and off-

resonance B0). MRF experiments involve the creation of a time series evolution, which is 

later compared or “matched” against simulation. This time series of measurements is created 

by changing acquisition parameters such as flip angle and TR in a pseudorandom manner. 

The optimization of the acquisition parameters is an active research topic and the feasibility 

of schemes can be constrained by limitations in signal to noise and reconstruction artifacts. 

Bloch simulations across a range of physical parameters are completed a priori and used to 

assign multiple quantitative values to the observed signals. In this way, MRF builds upon 

compressed sensing (10–15) principles that allow for the fitting of underdetermined data 

through prior assumptions.

A bottleneck for the clinical usefulness of such approaches is often the computational 

complexity of the image reconstruction or matching of patient observations against 

precomputed tissue models. In the case of MRF, clinically acceptable resolutions for the 

tissue properties will translate into hundreds of thousands of dictionary elements. This 

creates a demanding computational problem as correlation between these dictionary 

elements, each with thousands of time points, will need to be compared against thousands of 

voxel time courses per image. For example, the direct MRF matching corresponding to a 

clinically relevant protocol can take several minutes for a single slice (9,16). This is 

approaching the total desired acquisition time for a whole brain accelerated clinical scan.

In this work, we introduce a fast group based matching algorithm (GRM) that exploits 

inherent clustering properties of the Bloch simulation dictionary used for MRF (9,17). 

Unlike drawing from random distributions that can produce uncorrelated time series, MRF 

signals are tied to the underlying physics of the tissue types. Similar tissue responses can 

require a large number of samples to differentiate accurately. In GRM, tissues that produce 

similar time courses are automatically grouped and assigned a unique signature that will lead 

to early identification in the matching process. Group principal component analysis (PCA) is 

then used to efficiently evaluate only meaningful dictionary comparisons. GRM allows for 

the accurate reconstruction of T1, T2, and B0 quantities orders of magnitude faster than 

direct matching. We will demonstrate that GRM removes a major computational bottleneck 

associated with MRF acquisitions and enables clinically relevant reconstruction times on 

standard vendor’s computational hardware.
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THEORY

There is a rich history of algorithms for combinatorial problems that focus on iteratively 

reducing optimization search spaces to achieve good solution quality in practical time. Some 

of the most classic are mixed integer programming solutions focusing on branching choices 

for optimization variables and pruning/cutting of the solution space (18–20). In this work, 

we leverage these principles through the use of a compact MRF matching method. We will 

demonstrate that pruning techniques can be quickly applied based upon a compact MRF 

dictionary, enabling a 99% reduction in the total number of comparisons required to match. 

Finally, group PCA can be used to quickly evaluate the dictionary candidates still under 

consideration. The efficiency of the proposed GRM technique is a result of the inherent 

clustering properties found in Bloch simulations of standard tissue types.

Grouping of MRF Dictionaries

There are many approaches for the clustering of elements based upon strength of correlation. 

Sparse methods such as K-way partitioning (21) repetitively solve minimum cut problems to 

sub-divide elements in a hierarchical manner. K-way partitioning has many advantages but 

can be computationally demanding for large problems. In this work, we apply a highly 

scalable greedy grouping scheme toward the MRF dictionary elements. Figure 1A shows the 

flow diagram of the grouping process. For simplicity of illustration, we will assume the 

normalized MRF dictionary with M dictionary elements can be evenly spread across N 

groups.

The GRM process begins with the choice of an initial signal S0. There are many choices 

available for this signal, e.g., a random dictionary element, the mean gray/white matter 

signals, etc. As there have been no dictionary elements assigned to groups, the signal S0 is 

compared against all other dictionary elements. Based upon a predetermined group size 

(M/N), the top correlations to the signal S0 are assigned to the first group. A new signal S1 is 

then created to best represent the time courses contained within the first group. In this work, 

we define S1 to be the mean signal for the group. This will allow for a quick evaluation of 

the average correlation of the acquired signal against all elements within a grouping. In a 

similar manner to the global PCA approach of (22), smaller group level PCA are computed 

using the singular value decomposition. The group PCA will be later used as part of the 

matching process. It is important to note that PCA will be highly effective on these group 

signals as they were chosen based upon strength of correlation or linear dependence. The 

grouping process repeats until all dictionary elements have been assigned. Figure 2A shows 

the histogram of compression rates on 280 (nearly evenly sized) groups that contain 196,000 

typical dictionary elements considered for a true fast imaging with steady state precession 

(true-FISP) based MRF sequence. Assuming a conservative 10−5 PCA truncation tolerance, 

the average compression rate is over 7×. In comparison, if this truncation level was applied 

to the full dictionary there would be nearly no compression as it would require 999 of 1000 

of the singular vectors to be retained.
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Matching with Grouped MRF Dictionaries

Figure 1B shows the flow diagram for the fast group matching algorithm. After the 

acquisition of patient data, an initial compact matching is performed against the 

representative group signals [S1 ⋯ SN]. This allows for efficient pruning of groups from 

consideration, i.e., if a voxel’s signal cannot reasonably be matched to the representative 

signal for several groups, the signals within these groups should no longer be considered as 

candidates. The pruning criteria can be determined through a relative or absolute correlation 

threshold (relative threshold is used in this work). Finally, the remaining groups under 

consideration for a voxel are evaluated for quality of fit through PCA projection. The best fit 

for each voxel is used to assign T1, T2, and B0 tissue properties.

In practice we observed that the relative pruning criteria of 5 × 10−3 below the best group 

match for the voxel ensured good final matching accuracy. Figure 2B shows a histogram of 

groups remaining under consideration after the initial compact matching for a representative 

single-slice trueFISP MRF acquisition, using the 280 group dictionary described above. 

Across the 128 × 128 voxels in this example, the average number of groups remaining was 

2.3 of the 280 total groups. This corresponds to a pruning of over 99% of possible dictionary 

comparisons.

METHODS

To investigate the efficiency of the proposed GRM method, in vivo data were acquired from 

a single healthy volunteer subject to institutionally approved protocol consent. The data 

were acquired on a 3 Tesla (T) Siemens Skyra with the standard Siemens 16-channel head 

array coil. A trueFISP sequence was used to acquire data at 1000 time points, where each 

data point was acquired using one of 48 highly undersampled (40×) variable density spiral 

interleaves (9,23–26). The choice of balanced SSFP was based upon the efficiency of the 

sequence with respect to SNR. Unlike a spoiled GRE sequence, the temporal dependency 

between the T1, T2, and B0 parameters in the balanced SSFP sequence allows for a larger 

variance across the fingerprint dictionary. The number of samples used in this work was 

determined by comparing the estimated maps to those found through longer acquisitions. A 

sufficient number of samples were chosen to ensure accuracy.

As described in Ma et al (9), gridding was used to reconstruct each time point and channel 

sensitivity maps were estimated using the average image across the initial 100 reconstructed 

time points. The MRF experiment was performed with a TR ranging from 7.84 ms to 10.56 

ms and the flip angle was restricted to be within 0° to 60° to ensure good quality slice 

profiles (see Figures 3D,E for illustration of the acquisition strategy used in this work). The 

choice of flip angle and TR variation was selected based upon robustness with respect to 

signal to noise and artifact levels. Heavily undersampled spiral readouts were used in this 

work, leading to aliasing artifacts at each time point. The slow varying flip angle trends 

allow for us to exploit temporal dependencies to reduce the influence of artifact/noise from 

the measurements. The regions with flip angle of 0° degrees are inserted to allow for T1 

recovery. By combining this strategy with small random fluctuations, we are able to 

differentiate tissues with similar responses. This trade-off between coherent and random 

parameter components can change based upon the artifact/noise level in the measurements.
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The field of view was 300 × 300 mm2, with an image matrix of 128 × 128, slice thickness of 

5mm, and TI=12.7ms. As was described in Ma et al (9), the initial inversion pulse is 

included to increase the sensitivity to T1. The MRF dictionary was created using 1435 

combinations of T1 and T2 values, each of which are considered against 137 possible B0 

values. Varying step sizes were used to cover T1, T2 and B0 values in the ranges of [100, 

5000], [20, 1900], and [−300, 290] respectively, see Figures 3A–C. To experimentally tune 

the GRM algorithm, several computational experiments were performed in MATLAB on a 

cluster of AMD Opteron 6282 SE 2.6 GHz processors. To demonstrate the trade-off between 

matching time, MRF reconstruction accuracy, PCA group compression factors, and group 

mean signal independence we performed a sensitivity analysis for the GRM method. These 

numeric parameters were then used as part of a multithreaded C++ implementation of the 

GRM method that has been implemented within Siemens ICE framework and tested on the 

standard Siemens Skyra computational hardware.

RESULTS

Figure 2C shows the relationship between the numerical condition number for the dictionary 

of group mean signals [S1 ⋯ SN] as the number of groups N increases. The condition 

number of the group dictionary is the ratio of the largest to the smallest singular value. A 

high condition number suggests that there is linear dependency between these signals. The 

inverse of the condition is related to the PCA drop tolerance used in this work. The number 

of groups can be determined using the stability of the condition number as the metric, i.e., 

different grouping levels can be tested until the appropriate condition number is achieved. 

This process is nondata dependent and can be performed offline. Even when considering 

280 groups the condition number remains stable, i.e., there is almost no redundancy in the 

group signals. This is based upon the reciprocal relationship between condition number and 

a PCA based truncation threshold (10−5 in our experiments). Figure 2D shows the average 

PCA compression rate across varying numbers of groups. As the size of a group decreases 

(number of groups increases), it becomes more unlikely to observe redundancy in the 

elements within the group. However, the inherent clustering of MRF dictionary elements is 

still strong when considering 280 groups (see Figure 2B for a finer breakdown of the 7× 

average compression ratio in this case).

Figures 4A and C illustrate the computation and accuracy trade-off when increasing the 

number of the groupings. Here, accuracy is measured as the mean relative error across 

typical white and gray matter regions (T1, T2 under 1300 and 150, respectively). Similarly, 

Figures 4B and D illustrate the computation and accuracy trade-off when increasing the 

global PCA drop tolerance. Next, the robustness of the direct matching and 280 group GRM 

methods for T1 and T2 estimation are evaluated in the presence of increased noise levels. 

Figures 4E and F show the mean relative error assuming 100 random experiments with 

complex Gaussian noise included at the illustrated noise level. Figure 5 shows the 

reconstructed T1, T2, and B0 images for the direct matching, global PCA using a tolerance of 

0.02, and GRM with 220 groups. The gray/white matter masked difference images are 

provided. The direct matching time was over 70× longer than GRM with an average relative 

error difference of less than 2% (see Figure 4). The global PCA matching time was over 10× 

longer than GRM with similar error levels.
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As a final computational experiment, we have integrated a multithreaded C++ 

implementation of GRM within Siemens online reconstruction framework. The 280 group 

GRM dictionary information was loaded into the scanner memory during the data 

acquisition, and the total time for matching T1, T2, and B0 for the slice was under 2 s using 

the standard CPU hardware.

DISCUSSION AND CONCLUSIONS

In this work, we propose an efficient group based matching for MRF dictionaries. The GRM 

method leverages techniques from discrete optimization and numerical linear algebra to 

match quantitative values within clinically relevant time. GRM is an order of magnitude 

faster than global PCA techniques (22) and nearly two orders of magnitude faster than direct 

matching, with comparable accuracy (1–2% relative error).

We have demonstrated the accuracy of the GRM method across a wide range of group sizes. 

In addition, we have introduced a guiding principal for determining appropriate group sizes. 

It can be observed from Figure 2 that there is an important balance between the condition 

number for the group mean signals and the average PCA compression rate within the 

groups. While it is advantageous to add more groups for early pruning, a lack of 

compression within the groups will lead to increased time for final evaluation. In addition, if 

there is redundancy across the mean group signals then the pruning efficiency will be 

degraded. In our experiments, we observed a condition number for the group mean signals 

matching the PCA truncation level of 10−5 resulted in good computational performance and 

reconstruction accuracy. It is important to note that the choice of GRM pruning threshold 

used in this work may not generalize to all types of MRF dictionaries. However, the 

threshold can easily be relaxed from an empirical setting to investigate convergence in the 

map estimation. That is, additional group comparisons (corresponding to a relaxed pruning 

threshold) can easily be appended to update previously computed GRM solutions.

Finally, the group based model reduction exploited in GRM should be a valuable tool in 

reducing the complexity of many dictionary reconstruction and optimization problems for 

MRF. This includes forward modeling of the entire reconstruction/matching process, where 

the number of optimization variables can be prohibitive. That is, a parallel imaging forward 

model could be regularized through the addition of a sparsity constraint against the smaller 

number of group mean signals (as opposed to the full dictionary). The sparsity across the 

group mean signals is currently being used to guide the pruning stage of GRM, see Figure 2. 

We also think group based analysis methods similar to GRM are the key to reducing the 

complexity associated with the difficult optimization of MRF acquisition parameters such as 

TR and flip angle. For example, with a fixed grouping scheme across the tissue properties, 

the strength of correlation between the group mean signals could be used to quickly evaluate 

the quality of acquisition scenarios.
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FIG. 1. 
Greedy grouping process for GRM is illustrated in (A). The MRF dictionary elements are 

iteratively assigned to groups based upon inherent correlation between Bloch simulations. 

The GRM process is shown in (B). An early pruning stage removes unnecessary 

comparisons and group PCA enables fast evaluation of dictionary elements that remain 

under consideration.
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FIG. 2. 
A: Shows the distribution of compression factors for 280 groups through the GRM process. 

The compression factor is the ratio of the number of dictionary elements in the group against 

the number of singular vectors retained using a 10−5 relative truncation tolerance. B: Shows 

the number of groups that each voxel will need to be evaluated against after the GRM 

pruning stage. The inclusion of groups for matching consideration is based upon a relative 

truncation level of 5 × 10−3 below the best group mean signal correlation for each voxel. C: 
Shows the condition number for the group mean signals assuming varying group sizes. As 

the number of groups increases the linear independence of the group signals is degraded. D: 
shows the average compression rate across the group PCA, where smaller group sizes are 

less likely to be highly compressible.
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FIG. 3. 
A–C: Show the T1, T2, and B0 values considered in the trueFISP dictionary. All possible 

combinations of these parameters produce the over 196,000 dictionary elements. D,E: 
Respectively show the flip angle and TR acquisition strategies used in this work.
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FIG. 4. 
A: Shows the decrease in GRM matching time (MATLAB implementation) as the number 

of groups is increased. B: Shows the decrease in matching time as the global PCA drop 

tolerance is increased. C: Shows the accuracy of GRM with respect to the number of groups. 

D: Shows the accuracy of global PCA with respect to the drop tolerance. E,F: Shows the 

robustness of the T1 and T2 estimations respectively. Both the direct matching and 280 

group GRM algorithms are evaluated with respect to increases in noise level. Each figure 
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point represents mean error assuming 100 random experiments with complex Gaussian noise 

included at the illustrated noise level.
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FIG. 5. 
The reconstructed quantitative T1, T2, and B0 images for GRM using 220 groups, global 

PCA using a tolerance of 0.02, and the direct matching. The difference maps are masked to 

only consider white and gray matter regions, see Figure 4 for average relative error level.
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