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Abstract

Often when participants have missing scores on one or more of the items comprising a scale, 

researchers compute prorated scale scores by averaging the available items. Methodologists have 

cautioned that proration may make strict assumptions about the mean and covariance structures of 

the items comprising the scale (Schafer & Graham, 2002; Graham, 2009; Enders, 2010). We 

investigated proration empirically and found that it resulted in bias even under a missing 

completely at random (MCAR) mechanism. To encourage researchers to forgo proration, we 

describe an FIML approach to item-level missing data handling that mitigates the loss in power 

due to missing scale scores and utilizes the available item-level data without altering the 

substantive analysis. Specifically, we propose treating the scale score as missing whenever one or 

more of the items are missing and incorporating items as auxiliary variables. Our simulations 

suggest that item-level missing data handling drastically increases power relative to scale-level 

missing data handling. These results have important practical implications, especially when 

recruiting more participants is prohibitively difficult or expensive. Finally, we illustrate the 

proposed method with data from an online chronic pain management program.

Researchers frequently collect item-level data using questionnaires and compute scale scores 

by summing or averaging the items that measure a single construct. For example, clinical 

psychologists use the Beck Depression Inventory (BDI-II) to measure symptoms of 

depression, personality psychologists use the NEO Personality Inventory (NEO-PI-3) to 

measure the Big Five personality traits, educational researchers use the Child Behavior 

Checklist (CBCL) to measure behavioral problems in children, and health psychologists use 

the Brief Pain Inventory (BPI) to measure pain severity and interference. As with almost all 

research involving quantitative methods, missing data on the items comprising these scales 

are inevitable. Participants may inadvertently skip items, refuse to answer sensitive items, or 

skip items that do not apply to them. Item-level missing data can also result from a planned 

missing data design (Graham, Taylor, Olchowski, & Cumsille, 2006). Despite the 
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widespread use of questionnaire data, very little research focuses on item-level missing data 

handling.

Often when participants have missing scores on one or more of the items comprising a scale, 

researchers compute prorated scale scores by averaging the available items (e.g., if a 

participant answers eight out of ten items, the prorated scale score is the average of the eight 

responses). Averaging the available items is equivalent to imputing each participant’s 

missing scores with the mean of his or her observed scores, which is why it is sometimes 

referred to as person mean imputation. Averaging the available items does not have a well-

recognized name (Schafer & Graham, 2002), but we have commonly seen it referred to as 

“proration” or as computing a “prorated scale score” in the applied literature. Thus, we 

adopt the name “proration” throughout the rest of this paper. An informal search of 

PsycARTICLES for the keyword “prorated” revealed that researchers regularly employ this 

procedure, with applications ranging from adolescent sleep (Byars & Simon, 2014), eating 

disorder risk (Culbert, Breedlove, Sisk, Burt, & Klump, 2013; Culbert et al., 2015), anxiety 

and depression (Forand & DeRubeis, 2013, 2014; Hazel, Oppenheimer, Technow, Young, & 

Hankin, 2014; Howe, Hornberger, Weihs, Moreno, & Neiderhiser, 2012), personality 

disorders (Krabbendam, Colins, Doreleijers, van der Molen, Beekman, & Vermeiren, 2015), 

posttraumatic stress (Neugebauer et al., 2014), violence risk (Olver, Nicholaichuk, Kingston, 

& Wong, 2014; Rice, Harris, & Lang, 2013), sex offender risk (Smid, Kamphuis, Wever, & 

Van Beek, 2014), and social climate (Tonkin, Howells, Ferguson, Clark, Newberry, & 

Schalast, 2012), to name a few. Researchers were quite inconsistent in their application of 

proration; the procedure was routinely applied with 20% of the item responses missing, with 

some studies reporting much higher thresholds (e.g., 50%). Interestingly, when the number 

of incomplete items exceeded the stated threshold, researchers tended to treat the entire 

record as missing (deletion). Collectively, these references suggest that researchers routinely 

encounter item-level missing data, and they often apply proration to deal with the problem.

Methodologists have raised several important concerns about proration. Schafer and Graham 

(2002) stated that “averaging the available items is difficult to justify theoretically either 

from a sampling or likelihood perspective” (p. 158). Proration redefines a scale such that it 

is no longer the sum or average of the k items comprising the scale; the definition of the 

scale now varies across participants and depends on the missing data patterns and rates in 

the sample. Schafer and Graham (2002) further warned that proration may produce bias 

even under a missing completely at random (MCAR) mechanism. Consistent with this 

statement, previous research has suggested that proration inflates estimates of internal 

consistency reliability under an MCAR mechanism and under a missing at random (MAR) 

mechanism (Downey & King, 1998; McDonald, Thurston, & Nelson, 2000; Huisman, 2000; 

Sijtsma & van der Ark, 2003; Enders, 2003). However, very little research examines 

proration for other analyses.

Graham (2009) speculated that proration may be reasonable when (1) a relatively high 

proportion of the items (and never fewer than half) are used to form the scale score, (2) the 

item-total correlations are similar, and (3) the internal consistency reliability of the scale is 

high. By contrast, methodologists have speculated that the procedure may be prone to bias 

when either the means of the items comprising a scale vary (Enders, 2010) or the inter-item 
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correlations vary (Graham, 2009; Graham, 2012). Recall that proration is equivalent to 

imputing each participant’s missing scores with the mean of his or her observed scores. For 

these imputations to be valid, the incomplete items must have the same properties as the 

complete donor items. For example, if the means of the complete donor items are lower than 

the means of the incomplete items, the resulting imputations will be too low, thus biasing the 

scale scores. Lee, Bartholow, McCarthy, Pederson, and Sher (2014) demonstrated this issue 

for the Self-Rating of the Effects of Alcohol Scale (SRE), a 12-item scale that asks 

participants how many drinks they need to consume before experiencing certain effects (e.g., 

stumbling or lacking coordination while walking, unintentionally passing out or falling 

asleep). Item-level missing data arise when participants have never experienced one or more 

of these effects from alcohol consumption, and items with higher means have higher missing 

data rates. Lee et al. (2014) found that proration resulted in negatively biased scale scores on 

the SRE because the complete items (which were used to compute the prorated scale scores) 

had lower means than the missing items. Aside from Lee et al’s (2014) study, we are not 

aware of published studies that have systematically examined the impact of heterogeneous 

means and inter-item correlations on proration. We present simulation studies that examine 

this issue later in the paper.

Given the untenable assumptions of proration, researchers may wonder how to proceed 

when faced with item-level missing data. Methodologists currently recommend analyses that 

assume a more plausible missing at random (MAR) mechanism whereby the probability of 

missing data on a variable Y is unrelated to the would-be values of Y itself after controlling 

for other variables in the analysis. MAR-based analyses provide consistent parameter 

estimates under an MCAR or MAR mechanism and increase power relative to MCAR-based 

analyses such as listwise and pairwise deletion. Relying on MAR-based analyses is also 

preferable because methodologists have extensively researched when MAR-based analyses 

do and do not work. Multiple imputation and full information maximum likelihood (FIML) 

estimation are the predominant MAR-based analyses. Multiple imputation consists of three 

phases: the imputation phase, the analysis phase, and the pooling phase. First we create 

multiple (preferably 20 or more; Graham, Olchowski, & Gilreath, 2007) copies of the data 

set by drawing imputed scores from a distribution of plausible scores. When using a linear 

imputation model, these imputed scores can be viewed as the sum of a predicted score and a 

residual. We then analyze the imputed data sets as though they were complete data sets. 

Finally, we pool the parameter estimates and standard errors across the imputed data sets, 

which yields a single set of results. The FIML estimator investigated in this paper uses an 

iterative optimization algorithm to identify the set of parameter values that maximize the 

probability of the observed data. Rubin (1976) showed that, under an MAR mechanism, 

FIML estimation based on the available data yields appropriate likelihood-based inference. 

Unlike deletion methods, FIML does not exclude cases with missing scores. Including 

incomplete cases’ observed scores improves accuracy because associations between the 

incomplete variables and other (complete or incomplete) variables inform the estimation 

procedure about which values of the parameters are most likely.

With multiple imputation, we can address item-level missing data for a scale-level analysis 

without difficulty. Methodologists have proposed using item-level imputation, or imputing 
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the items prior to computing the scale scores (Schafer & Graham, 2002; van Buuren, 2010; 

Enders, 2010). Including all of the items in the imputation phase maximizes the information 

used to create the imputations. Gottschall, West, and Enders (2012) compared efficiency 

differences between item-level imputation (i.e., impute-then-average or impute-then-sum) 

and scale-level imputation, or computing scale scores prior to the imputation phase and then 

imputing the incomplete scale scores for participants with missing scores on one or more of 

the items comprising the scale (i.e., average-then-impute or sum-then-impute). Gottschall et 

al. (2012) concluded that item-level imputation drastically increases power relative to scale-

level imputation. Item-level imputation uses other observed items to predict the missing 

items whereas scale-level imputation uses other observed variables or scale scores to predict 

the missing scale scores. Because within-scale item correlations tend to be much stronger 

than between-scale correlations, scale-level imputation excludes the strongest predictors of 

the incomplete scale scores. Consequently, scale-level imputation reduces precision (i.e., 

increases standard errors, thus decreasing power) relative to item-level imputation. For 

measures of association in Gottschall et al.’s (2012) simulation study, scale-level imputation 

required a 75% increase in sample size to achieve the same precision (and thus power) as 

item-level imputation. The practical significance of these results is obvious, especially when 

recruiting more participants is prohibitively difficult or expensive.

Deciding how to address item-level missing data is much more ambiguous when using 

FIML. Assuming that researchers do not alter the analysis to accommodate the missing data, 

current implementations of FIML encourage researchers to perform scale-level missing data 

handling. For example, suppose we are interested in a bivariate regression between two scale 

scores. To estimate this regression model with FIML, we would treat a scale score as 

missing whenever one or more items comprising the scale are missing. The incomplete scale 

scores would then be used as input, and the FIML estimator would identify the set of 

parameter values that maximize the probability of the observed data. Based on the results 

from Gottschall et al. (2012), we would expect a drastic reduction in power because the 

analysis ignores the observed item responses for cases with missing scale scores. We could 

instead estimate a structural equation model that recasts the two scale scores as latent 

variables with the items as indicators. However, we find this strategy unsatisfactory because 

we believe that, when possible, researchers should apply the same analytic procedures that 

they would have used, had the data been complete.

Savalei and Rhemtulla (2014) proposed using a two-stage approach to address item-level 

missing data. The two-stage approach applies the following sequence of steps: (1) use FIML 

to estimate the item-level covariance matrix and mean vector (Stage 1a), (2) transform the 

item-level matrices into a scale-level covariance matrix and mean vector (Stage 1b), and (3) 

use a structural equation modeling software package to estimate the desired analysis from 

the scale-level matrices (Stage 2). The two-stage approach is promising because it is the true 

FIML analog of item-level imputation. However, implementing the two-stage approach is 

currently difficult because standard error computations require complex matrix 

manipulations and custom computer programming. As such, we do not investigate this 

procedure, but instead focus on an auxiliary variable method that researchers can apply with 

existing structural equation modeling software packages (Eekhout et al., in press). One of 

the major goals of this paper is to describe an FIML approach to item-level missing data 
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handling that mitigates the loss in power due to missing scale scores and utilizes the 

available item-level data without altering the substantive analysis. We provide a preliminary 

investigation of this approach, comparing it to proration, which appears to dominate applied 

research. Methodologists have cautioned that proration may make strict assumptions about 

the mean and covariance structures of the items comprising the scale (Schafer & Graham, 

2002; Graham, 2009; Enders, 2010), but few studies have formally examined this conjecture 

(Lee et al., 2014). Thus, another major goal of this paper is to investigate the performance of 

proration under different mean and covariance structures.

The organization of this paper is as follows. First we describe a simulation study evaluating 

proration. We then briefly review auxiliary variables and outline an FIML model that 

incorporates item-level information via auxiliary variables. We present two simulation 

studies that examine its performance, and we demonstrate its application with data from an 

online chronic pain management program. Finally, we explain the practical significance of 

the results and provide recommendations for addressing item-level missing data.

Simulation Study 1

As noted previously, methodologists have speculated that proration may be reasonable with 

uniform item means and inter-item correlations but not otherwise (Schafer & Graham, 2002; 

Graham, 2009; Enders, 2010). We investigated this proposition empirically, examining the 

performance of proration under different mean and covariance structures and under different 

missing data mechanisms. Based on limited existing research (Schafer & Graham, 2002; 

Graham, 2009; Enders, 2010), we hypothesized that proration would result in non-negligible 

bias when either the item means or inter-item correlations vary. This bias should be 

independent of the missing data mechanism, and we anticipated subpar performance under 

both MCAR and MAR mechanisms. By contrast, we expected proration to provide accurate 

parameter estimates when the item means and inter-item correlations are uniform. The 

simulation study described below examines these issues.

Manipulated Factors and Population Models

We implemented a full factorial design with five between-subjects factors: uniformity of the 

mean and covariance structures, number of items per scale (8 or 16), sample size (200 or 

500), item-level missing data rate (5%, 15%, 25%), and missing data mechanism (MCAR, 

MAR due to an variable external to the scales, and MAR due to complete items on the 

scales). These conditions produced 108 between-subject design cells.

For the population models, we used a two-factor confirmatory factor analysis model to 

generate correlated continuous variables. The two factors were correlated at r = .30. We set 

the factor variances to 1 and set the residual variances for the items to (1 − λ2) such that the 

items were standardized to the z-score metric. The factor means were set to zero. The 

population model also included a variable external to the X and Y scales that correlated with 

each factor at r = .50. As described in the next section, we categorized the items and used 

scale scores (computed as the mean of the items) for the analyses, which were performed in 

Mplus 7.
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To vary the uniformity of the mean and covariance structures, we (1) set all of the item 

means to be equal and set all of the inter-item correlations to be equal, (2) set the item means 

to be equal but varied the inter-item correlations, and (3) varied the item means but set all of 

the inter-item correlations to be equal. With uniform item means and inter-item correlations, 

we set all of the measurement intercepts (i.e., item means) to zero and fixed all of the 

standardized factor loadings to λ = .75. When varying the inter-item correlations, we set the 

measurement intercepts to zero and fixed half of the standardized factor loadings to λ = .75 

and the other half to λ = .50. This configuration of loadings produced inter-item correlations 

of .56, .38, and .25. Finally, when varying the item means, all standardized factor loadings 

were set to λ = .75, and we set half of the measurement intercepts to zero and the other half 

to 0.50. Because the items were standardized, this difference in measurement intercepts 

corresponds to a medium effect size (Cohen, 1988). Graham (2009) speculated that 

proration may be reasonable when internal consistency reliability of the scale is high. We 

chose to implement a population model that produced scale scores with high internal 

consistency reliability (with eight items, the population reliability values were 

approximately .91 and .84 for the equal and unequal loading conditions, respectively) in 

order to demonstrate that proration can produce problematic parameter estimates, even 

under optimal conditions.

Data Generation

We used Mplus 7 to generate 1000 data sets with continuous variables for each of the 108 

between-subjects design cells. Although we could have used continuous variables for the 

simulations, we used ordinal variables to more closely mimic Likert scale items that 

researchers would typically use when applying proration. We used the IML procedure in 

SAS 9.4 to categorize the underlying continuous variables (from Mplus 7) into seven-point 

discrete scales based on thresholds of z = −1.64485, −1.03643, −0.38532, 0.38532, 1.03643, 

and 1.64485. These thresholds produced symmetric ordinal distributions with category 

proportions of 5%, 10%, 20%, 30%, 20%, 10%, and 5%. We chose symmetric thresholds 

because doing so allowed us to more easily control mean differences via the measurement 

intercepts in the underlying continuous variable population model. The simulation scripts, 

raw results, and all other materials pertaining to the simulations are available upon request.

In all conditions, we imposed missing data on half of the items from each scale, deleting 5%, 

15%, or 25% of the scores from each incomplete item. Although this choice was somewhat 

arbitrary, our informal review of published articles suggests that researchers do not apply 

proration when more than half of the items are missing. Thus, this missingness pattern likely 

represents an upper bound for the application of proration in practice. This design choice 

also aligns with Graham’s (2009) suggestion that proration may be reasonable when scale 

scores are based on at least half of the items. Considering the within-subject missing data 

rates, cases with at least one missing item had approximately 12%, 15%, and 19% of the 

items missing per scale, on average, when the proportion of missing scores on each 

incomplete item equaled 5%, 15%, and 25%, respectively. Our informal review of published 

articles suggests that researchers typically apply proration to individuals with 20% or fewer 

items missing (e.g., Hazel et al., 2014; Howe et al., 2012; Olver et al., 2014; Smid et al., 

2014; Tonkin et al., 2012), although we found examples that employed higher cutoffs (Byars 
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& Simon, 2014; Krabbendam et al., 2015; Rice et al., 2013). Thus, we believe that our item-

level missing data rates produced missingness patterns that are fairly representative of 

published studies. When varying the item means or standardized factor loadings, we 

imposed missing data such that the complete items were not representative of the incomplete 

items. In the former case, items with a measurement intercept of zero were complete and 

items with a measurement intercept of 0.50 were incomplete (i.e., incomplete items had 

higher means, as in Lee et al., 2014). In the latter case, items with a standardized factor 

loading of λ = .50 were complete and items with a standardized factor loading of λ = .75 

were incomplete (i.e., incomplete items had higher inter-item correlations).

As noted previously, we investigated three missing data mechanisms: an MCAR mechanism 

where missingness was unrelated to measured variables and to the values of X and Y, an 

MAR mechanism where missingness on half of the items was related to an external variable 

(henceforth abbreviated as an MAR-E mechanism), and an MAR mechanism where 

missingness on half of the items was related to a subset of complete items on the same scale 

(henceforth abbreviated as an MAR-I mechanism). For the MCAR mechanism, we 

generated a set of binary indicators for each case by sampling from a binomial distribution 

with success probabilities equal to the proportion of missing data (i.e., 5%, 15%, or 25%). 

We drew the indicators independently, such that each item from the incomplete subset could 

either be missing or complete, and we coded the target item as missing if its corresponding 

indicator equaled unity.

For the MAR mechanisms, the probability of missing data was positively related to scores 

on another variable (either an external variable or a complete item from the same scale). The 

deletion procedure for both MAR mechanisms worked as follows. Using a latent variable 

formulation for logistic regression (Agresti, 2012; Johnson & Albert, 1999), we derived the 

intercept and slope coefficients that produced an R2 of approximately .40 between the cause 

of missingness (i.e., the external variable or the complete item) and the underlying latent 

missingness probabilities (we chose .40 to ensure a relatively strong selection mechanism). 

A custom Excel spreadsheet was developed for this purpose, which is available upon 

request. After determining the appropriate intercept and slope coefficients, we used a 

logistic regression equation to generate an N-row vector of missingness probabilities for 

each item. We then drew binary missing data indicators from a binomial distribution with a 

success rate equal to the missingness probability. We drew the indicators independently, 

such that each item in the incomplete subset could either be missing or complete, and we 

coded the target item as missing if its corresponding indicator equaled unity. In the condition 

where missingness was due to an external variable, all predicted probabilities for a given 

case were identical because all variables shared a common cause of missingness. However, 

the second MAR condition used multiple causes of missingness. Two complete items were 

used to generate item-level missing data for eight-item scales, and four complete items were 

used to generate item-level missing data for 16-item scales. In both cases, each complete 

item was responsible for missingness on two incomplete items.
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Analysis and Outcomes

For the first simulation, we computed prorated scale scores for each data set by averaging 

the available items, and we subsequently used Mplus 7 to estimate seven parameters: the 

mean of X, the mean of Y, variances of X and Y, covariance between X and Y, correlation 

between X and Y, and regression coefficient. We examined standardized bias and mean 

square error (MSE) within each design cell. Bias refers to the difference between the average 

parameter estimate across the 1000 replications within a given design cell and the 

corresponding population parameter. Because the categorization procedure makes it difficult 

to derive the population values, we generated 1000 complete data sets within each design 

cell, and we used the average parameter estimates from these data sets as the population 

parameters. To compute standardized bias, we divided raw bias by the standard deviation of 

the complete-data parameter estimates (i.e., the empirical complete-data standard error) in 

each design cell. Standardized bias increases as sample size increases because parameters 

are more precisely estimated. However, this property of standardized bias is not concerning 

given that we investigated conditions with a sample size of 200. Collins, Schafer, and Kam 

(2001) suggested that standardized bias adversely affects efficiency, confidence interval 

coverage, and error rates when standardized bias exceeds 40% in either the positive or 

negative direction. Thus, we flagged standardized bias values greater than .40 in absolute 

value.

MSE is the average squared distance between the parameter estimates and the corresponding 

population parameter:

(1)

where θ̂ is the parameter estimate, θ is the population parameter, and 1000 is the number of 

replications within a given design cell. MSE equals the squared bias plus the sampling 

variance of the parameter estimate, and thus captures the accuracy and precision of an 

estimator. In later simulation studies, we computed MSE ratios to compare two missing data 

handling methods. As we explain later, MSE ratios are practically useful because they 

express efficiency differences between two unbiased estimators on the sample size metric. 

Finally, we checked for outliers at the replication level for each outcome, but no replications 

were excluded due to extreme values.

Simulation Study 1 Results

We focus on standardized bias because we only examined one missing data handling method 

(proration) in this simulation study. Standardized bias values for conditions corresponding to 

a 25% item-level missing data rate are reported in Tables 1 to 3. (Values of absolute bias 

and relative bias for these conditions are reported in Tables A1 to A3 of the online 

appendix.) The influences of the other manipulated factors were relatively uniform across 

the three item-level missing data rates (5%, 15%, 25%).

Table 1 reports standardized bias values when the item means and inter-item correlations 

were uniform. Recall that this set of conditions should be optimal for proration because the 
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observed items used to compute each case’s scale score are identical to the missing items. 

Although the standardized bias values noticeably depart from zero, very few design cells 

resulted in standardized bias values greater than .40 in absolute value. With an MCAR 

mechanism or MAR-E mechanism, none of the standardized bias values exceeded .40 in 

absolute value, though a number exceeded .10 in absolute value (i.e., 10% of the empirical 

complete-data standard error). However, standardized bias values were greater with an 

MAR-I mechanism.Table 2 reports standardized bias values when the item means were 

uniform but the inter-item correlations varied. Recall that the standardized factor loadings 

equaled λ = .50 for the complete items and λ = .75 for the incomplete items, such that the 

intercorrelations among the complete items differed from those among the incomplete items. 

The literature suggests that proration may be problematic under these conditions (Graham, 

2009; Enders, 2010; Graham, 2012). Comparing Table 2 to Table 1, varying the inter-item 

correlations increased standardized bias. More design cells resulted in standardized bias 

values greater than .40 in absolute value (i.e., 40% of the empirical complete-data standard 

error). When the inter-item correlations varied, proration resulted in non-negligible bias 

even with an MCAR mechanism (range = 0 to 0.6121, or up to 61.21% of the empirical 

complete-data standard error). As shown in Table 2, standardized bias values were greater 

with an MAR-E mechanism than with an MCAR mechanism or MAR-I mechanism (range = 

0.2169 to 0.8162, or 21.69% to 81.62% of the empirical complete-data standard error). As 

expected, standardized bias increased as sample size increased, likely because the 

parameters were more precisely estimated. However, we observed non-negligible values of 

standardized bias even with a sample size of 200.

Finally, Table 3 reports standardized bias values when the inter-item correlations were 

uniform across items but the item means varied. Comparing Table 3 to Table 1, varying the 

item means drastically increased standardized bias. All design cells resulted in standardized 

bias values greater than .40 in absolute value for the mean of X and mean of Y (range = 

0.6906 to 2.2608, or 69.06% to 226.08% of the empirical complete-data standard error). 

Standardized bias values were greater with an MAR-E mechanism or MAR-I mechanism 

than with an MCAR mechanism. For the means and variances of X and Y, standardized bias 

values were greatest with an MAR-I mechanism. For measures of association (i.e., 

covariance, correlation, regression coefficient), standardized bias values were greatest with 

an MAR-E mechanism. As shown in Table 3, all of the design cells with an MAR-E 

mechanism resulted in standardized bias values greater than .40 in absolute value for all of 

the parameters (range = 0.4670 to 1.2916, or 46.70% to 129.16% of the empirical complete-

data standard error).

In sum, our simulations show that the mean and covariance structures dictate the 

performance of proration more than the missing data mechanism and that proration can 

introduce substantial bias even under an MCAR mechanism. Given the bias resulting from 

proration, we do not consider this method for the remainder of this paper. Instead we focus 

on an FIML approach that uses auxiliary variables to preserve item-level information. We 

outline this method in the next section and then examine its performance with two 

simulation studies.
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FIML Model with Items as Auxiliary Variables—Given that proration often resulted in 

non-negligible bias, we recommend forgoing proration and treating the scale score as 

missing whenever one or more items comprising the scale are missing. We can then address 

the missing scale scores using MAR-based approaches that have been extensively 

investigated in the past. As noted previously, we can use item-level imputation to mitigate 

the loss in power due to missing scale scores (Gottschall et al., 2012; Graham, 2012). In this 

paper, we describe an FIML model that incorporates items as auxiliary variables. This 

method is an FIML approximation to item-level imputation, but it is arguably easier for 

researchers to implement in practice.

When addressing missing data, methodologists recommend an inclusive analysis strategy 

that incorporates auxiliary variables into the analysis (Collins et al., 2001). Auxiliary 

variables would not appear in the complete-data analysis but are important for missing data 

handling because they correlate with the incomplete variable(s) and/or predict missingness. 

Previous research has demonstrated that strong correlations between auxiliary variables and 

the incomplete analysis variables can increase power—sometimes dramatically—by 

increasing precision (Collins et al., 2001; Graham, 2012). Items serve as useful auxiliary 

variables for increasing power because they tend to be highly correlated with the incomplete 

scale scores.

When using FIML, Graham (2003) proposed incorporating auxiliary variables using the 

saturated correlates model. For analyses with only manifest variables (e.g., scale scores), the 

saturated correlates model correlates an auxiliary variable with (1) other auxiliary variables, 

(2) exogenous variables, and (3) residuals of endogenous variables (Graham, 2003). Figure 1 

shows a bivariate regression with four auxiliary variables; notice that the path diagram 

employs all three of Graham’s (2003) rules. Auxiliary variables do not change the 

interpretation of the parameter estimates, which is particularly important because the 

saturated correlates model allows researchers to implement an FIML analysis that honors the 

complete-data research goals.

As described earlier, scale-level FIML treats the scale score as missing whenever one or 

more items comprising the scale are missing. The auxiliary variable approach to scale score 

analyses with FIML again treats the scale score as missing whenever one or more of the 

items are missing but incorporates a subset of the items as auxiliary variables. The auxiliary 

variable portion of the model serves to more precisely estimate the parameters, thus 

mitigating the loss in power due to the missing scale scores. Referring back to Figure 1, X 

and Y would be incomplete scale scores, and the auxiliary variables could be a collection of 

items from each scale. The model transmits the item-level information via the correlations 

among the auxiliary variables and the incomplete scale scores, thereby improving efficiency 

in a fashion that is analogous to item-level imputation. Again, using items as auxiliary 

variables does not alter the interpretation of the parameter estimates. Rather, the items 

simply improve the efficiency of the scale score parameters.

Although the model in Figure 1 uses relatively few auxiliary variables, the simulation results 

presented later in the paper suggest using a larger set of items as auxiliary variables, as 

doing so increases power. For a k-item scale, we can incorporate at most k – 1 items as 
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auxiliary variables to avoid linear dependencies. For example, suppose that scale X consists 

of six items and scale Y consists of ten items. We could include up to five items from scale X 

and up to nine items from scale Y to address item-level missing data. We believe that 

choosing which item to omit depends on the missing data pattern. Transmitting information 

from an auxiliary variable to an incomplete analysis variable via correlations requires that 

missing scores on the analysis variable pair with observed scores on the auxiliary variable. 

As such, we recommend omitting the incomplete item that is most often concurrently 

missing with the other incomplete items because it will offer less information about the 

incomplete scale score. All else being equal, researchers could also choose to omit the item 

that is least central to the construct of interest. Finally, incorporating all but one item from 

each scale as auxiliary variables may still cause convergence issues. Consequently, it may be 

necessary to use fewer auxiliary variables to represent the item-level information. We 

discuss this issue later in the paper.

Simulation Study 2

In this simulation study, we compared the performance of scale-level FIML and FIML with 

items as auxiliary variables. We expected analyses using scale-level FIML to suffer from 

lower power when dealing with item-level missing data. However, we hypothesized that 

utilizing item-level information from the auxiliary portion of the model would mitigate the 

loss in power due to missing scale scores, much in the same way as item-level imputation. 

We first focused on FIML with all but one item from each scale as auxiliary variables 

because it incorporates as much item-level information into the analysis as possible. As 

such, we expected this method to provide the largest power gains relative to scale-level 

FIML.

We reused the data sets generated for the first simulation study, though we dropped 

conditions with an MCAR mechanism because theory and empirical research show that 

FIML performs well under an MCAR mechanism (which is not true of proration). For both 

missing data handling methods, we treated the scale score as missing whenever one or more 

of the items were missing. Recall that we imposed missing data on half of the items from 

each scale. For eight-item scales, the scale-level missing data rate equaled approximately 

16%, 38%, and 55% when the item-level missing data rates equaled 5%, 15%, and 25%, 

respectively. For 16-item scales, the scale-level missing data rate equaled approximately 

26%, 53%, and 69% when the item-level missing data rates equaled 5%, 15%, and 25%, 

respectively. As such, scales with more incomplete items (i.e., eight instead of four) had a 

higher proportion of cases with missing scale scores.

We used Graham’s (2003) saturated correlates model to incorporate auxiliary variables. 

When performing scale-level FIML, we included the variable external to the X and Y scales 

as an auxiliary variable. Including the (complete) external variable as an auxiliary variable 

forced all cases with missing X and Y scale scores into the analysis (cases with missing 

scores on both scales would otherwise be excluded). Doing so allowed us to compare power 

differences between the two methods because the analyses were based on the same sample 

size. When performing FIML with items as auxiliary variables, we included the external 

variable as an auxiliary variable along with the items. Although we would normally 
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recommend omitting the item exhibiting the lowest coverage with the scale score, we 

arbitrarily excluded the first incomplete item from each scale, as they would possess roughly 

the same coverage rate as the other incomplete items.

Simulation Study 2 Results

FIML with items as auxiliary variables encountered convergence issues in conditions with 

16 items per scale, sample size of 200, and 25% item-level missing data rate. Within these 

conditions, 78.70% of the replications successfully converged. These convergence issues are 

not surprising given the large number of parameters to estimate. In these conditions, 31 

auxiliary variables (15 of the items from each scale plus the external variable) were 

correlated with (1) each other, (2) the predictor X, and (3) the residual of the outcome 

variable Y. Following Graham’s (2003) rules for the saturated correlates model resulted in 

over 500 correlations for just the auxiliary variable portion of the model. As such, the data 

did not contain enough information to support so many parameters. We explore some 

possible strategies for reducing the size of the auxiliary variable set later in this paper.

Standardized Bias—For each missing data mechanism and method, we computed the 

average standardized bias across all other conditions for each parameter. Analyses using 

scale-level FIML provided nearly unbiased parameters with an MAR-E mechanism. The 

average standardized bias ranged from −0.0209 to 0.0731 (i.e., up to 7.31% of the empirical 

complete-data standard error). Analyses using FIML with item-level auxiliary variables also 

provided unbiased estimates with an MAR-E mechanism. The average standardized bias 

ranged from −0.0170 to −0.0052 (i.e., up to 1.70% of the empirical complete-data standard 

error), which is negligible. Although both approaches were effectively unbiased, notice that 

incorporating item-level information resulted in somewhat more accurate parameter 

estimates. We would expect these bias differences to diminish at larger sample sizes given 

that FIML is a consistent estimator.

By contrast, scale-level FIML provided highly biased parameter estimates when missingness 

was a function of complete items. Almost all of the standardized bias values exceeded .40 in 

absolute value. Although the bias might seem counterintuitive, analyses using scale-level 

FIML followed an MNAR mechanism because the complete items that were responsible for 

missingness were not included in the analysis (i.e., the probability of missing data is related 

to the would-be value of the scale score because the analysis does not condition on the 

complete items that were responsible for missingness). Because the MAR assumption of 

FIML was violated, we would expect biased parameter estimates. By contrast, analyses 

using FIML with auxiliary variables followed an MAR mechanism because the complete 

items used to generate the item-level missing data were included in the analysis. Not 

surprisingly, the item-level auxiliary information eliminated nonresponse bias.

MSE Ratio—The MSE ratios described here are specific to conditions with an MAR-E 

mechanism. We did not compute or interpret the MSE ratios for conditions with an MAR-I 

mechanism given that scale-level FIML provided biased parameter estimates. Recall that 

MSE equals the squared bias plus the sampling variance of the parameter estimate. For two 

unbiased methods, the MSE ratios indicate differences in the sampling variances. Thus, a 
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lower MSE corresponds to lower sampling variance and higher power. We computed MSE 

ratios by dividing the MSE from scale-level FIML by the MSE from FIML with items as 

auxiliary variables, such that values greater than 1 indicate that incorporating item-level 

information increased power (i.e., the sampling variance is higher for the model without 

item-level information).1

To illustrate, MSE ratios for conditions with uniform item means and inter-item correlations 

and a sample size of 500 are reported in Table 4. We focus on these conditions because the 

MSE ratios were largely unaffected by sample size (200 or 500) and uniformity of the mean 

and covariance structures. Overall, the MSE ratios suggest that incorporating items as 

auxiliary variables drastically increases power relative to scale-level FIML. Notice that all of 

the MSE ratios are greater than 1. As seen in Table 4, the benefit of incorporating item-level 

information was greater with a higher item-level missing data rate. For example, for 

conditions with eight items per scale, the MSE ratio for the regression coefficient was 1.32 

with a 5% item-level missing data rate, 2.00 with a 15% item-level missing data rate, and 

3.00 with a 25% item-level missing data rate. As stated earlier, MSE ratios are useful 

because they express efficiency differences on the sample size metric. MSE ratios of 1.32, 

2.00, and 3.00 indicate that the sample size for an analysis using scale-level FIML would 

need to be increased by 32%, 100%, and 200%, respectively, to yield the same sampling 

variance (and thus power) as FIML with items as auxiliary variables. These findings are 

consistent with those from Gottschall et al. (2012), which showed that item-level imputation 

drastically increases power relative to scale-level imputation. Finally, incorporating item-

level information appears to result in greater power gains with more items per scale. 

However, this effect is difficult to interpret because the proportion of cases with missing 

scale scores was somewhat higher with 16 items per scale than with eight items per scale.

Simulation Study 3

Methodologists have explained that incorporating too many auxiliary variables via the 

saturated correlates model can lead to convergence issues (Enders, 2010; Graham, 2012), 

perhaps due to the structure of the saturated correlate model’s error covariance matrix 

(Savalei and Bentler, 2009). As noted previously, we observed up to a 30% failure rate in 

conditions with 16 items per scale, a sample size of 200, and a 25% item-level missing data 

rate. As such, the purpose of the third simulation study is to investigate strategies that 

preserve item-level information while reducing the size of the auxiliary variable set. One 

potential solution is to define an auxiliary variable set that includes incomplete items and a 

composite of the complete items (e.g., a parcel computed as the mean of the complete 

items). Another potential solution is to incorporate fewer items as auxiliary variables (e.g., 

half rather than all but one of the items from each scale). Our review of proration 

applications suggests that authors rarely describe exact patterns of item-level missingness, 

so we have no way of knowing which of these two alternatives is more applicable in 

practice. Thus, we examined both strategies in this simulation study. Because the goal of this 

1MSE ratios comparing FIML with items as auxiliary variables to proration are reported in Table B1 of the online appendix. Because 
proration resulted in non-negligible bias when either the item means or inter-item correlations varied, the MSE ratios express bias and 
efficiency differences between the two estimators.
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simulation is to examine the efficiency achieved by reducing the complexity of the auxiliary 

variable model, we use item-level imputation as a gold standard against which to compare 

the FIML approaches.

As before, we reused the data sets generated for the first simulation study to investigate 

three between-subject factors—number of items per scale (8 or 16), sample size (200 or 

500), and item-level missing data rate (15% or 25%)—for conditions with uniform item 

means and inter-item correlations and an MAR-E mechanism. We limit our attention to 

conditions with uniform item means and inter-item correlations because varying the item 

means and inter-item correlations had no impact on the FIML model with items as auxiliary 

variables. We compared the following methods: (1) FIML with all but one item from each 

scale as auxiliary variables (i.e., the strategy from Study 2 that suffered from convergence 

problems), (2) FIML with all but one of the incomplete items from each scale plus a parcel 

based on the average of the complete items as auxiliary variables, (3) FIML with only the 

complete items (i.e., 50% of the items from each scale) as auxiliary variables, and (4) item-

level imputation. Item-level imputation was implemented via chained equations imputation 

in the BLImP software program (Keller & Enders, 2014). After examining convergence 

diagnostics, we generated ten imputed data sets from an MCMC algorithm with 1000 burn-

in and 500 thinning iterations. We then used Mplus 7 to perform the scale-level analyses and 

to pool the resulting parameter estimates and standard errors. Although BLImP implements 

a latent variable imputation scheme that accommodates ordinal variables, we imputed the 

items as though they were continuous because this procedure is consistent with Gottschall et 

al. (2012) and because it is analogous to FIML’s treatment of the item-level auxiliary 

information. As before, we included the external variable as an auxiliary variable in all 

analyses to satisfy the MAR assumption of FIML.

Simulation Study 3 Results

The standardized bias values were negligible across all conditions, so we focus strictly on 

MSE ratios. We computed MSE ratios by dividing the MSE from item-level imputation by 

the MSE from each FIML approach. Recall that for two unbiased methods, the MSE ratios 

indicate differences in the sampling variances. In this simulation, values less that unity occur 

when item-level imputation is more efficient (e.g., a value of .95 means that the item-level 

imputation sampling variance is 95% as large as that of FIML), and values greater than unity 

result when FIML is more efficient. MSE ratios for conditions with a sample size of 500 are 

reported in Table 5. We focus on conditions with a sample size of 500 because the MSE 

ratios did not appreciably differ across the two sample sizes (200 and 500).

As might be expected, comparing item-level imputation to the FIML approach that used all 

but one item produced MSE ratios quite close to 1, indicating that these two methods 

provide virtually the same power; values ranged from 0.936 to 1.020, and the average MSE 

ratio across all design cells and parameters was 0.979. Averaging the complete items and 

using the resulting composites and incomplete items as auxiliary variables gave very similar 

results, with MSE ratios ranging from 0.944 to 1.020 and an average MSE ratio of 0.981. 

These results are not surprising given that the two FIML approaches essentially transmit the 

same item-level information, albeit with a different number of parameters (i.e., with 
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complete data, the correlation between a scale score and a parcel is a function of the 

correlations between the scale score and items that form the parcel). As expected, the FIML 

analysis that used just the complete items (i.e., 50% of the items) resulted in lower power 

than the other methods under investigation. Specifically, MSE ratios ranged from 0.667 to 

0.964 and the average MSE ratio was 0.831 (i.e., this FIML approach was 83% as efficient 

as item-level imputation, on average). These results show that there is clearly a benefit to 

using incomplete items as part of the auxiliary variable set. We return to these results later in 

the paper, where we provide some practical recommendations for researchers.

Analysis Example—To illustrate the use of items as auxiliary variables, we used a subset 

of data from an online chronic pain management program (Ruehlman, Karoly, & Enders, 

2012). At pretest, the researchers collected a number of demographic variables (e.g., age, 

gender), psychological variables (e.g., depression), and a pain severity scale. Participants in 

the treatment group participated in the online chronic pain management program for several 

weeks, whereas participants in the waitlist control group received no treatment. At the end 

of the intervention period, researchers administered (along with other measures) a scale 

assessing pain interference with daily life. For the purposes of this illustration, we consider a 

regression model where pain interference is predicted by pretest measures and treatment 

group membership, as follows.

(2)

Note that pain severity is measured by a three-item scale, and depression and pain 

interference are each measured by a six-item scale.

We started with a subset of 200 participants with complete data, and we used this group to 

illustrate the application of FIML to a planned missing data design. As seen in Table 6, the 

planned missing data design consisted of four test forms (missing data patterns), with 25% 

of the sample randomly assigned to each form. The design is similar to the standard three-

form design described by Graham and colleagues (Graham, Hofer, & MacKinnon, 1996; 

Graham et al., 2006), except that we included a complete-data pattern to ensure that all 

bivariate associations among the scales were estimable. Importantly, the scale items are 

distributed across forms, such that each participant provides data for at least one scale item. 

We chose this configuration because the missing data literature does not provide a clear 

prescription for dealing with items in these designs; some sources recommend keeping items 

together (e.g., participants provide data on some questionnaires but not others), whereas 

other sources recommend distributing items across forms, as in Table 6 (Graham et al., 

1996; Graham et al., 2006; Gottschall et al., 2012). It is important to note that incorporating 

item-level information via auxiliary variables is only possible when items from the same 

questionnaire appear on different test forms.

After generating the missingness patterns in Table 6, we used Mplus 7 to estimate the 

regression model using scale-level FIML and FIML with all but one item from each scale as 

auxiliary variables. In addition to the regression analyses, we estimated bivariate 

correlations among the three scale scores. The appendix gives the Mplus 7 input file for the 

FIML analysis with items as auxiliary variables. Table 7 gives the correlation coefficients 
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and 95% confidence intervals based on 2000 bootstrap samples; although the analyses 

included all variables from the regression model, we restrict our attention to the correlations 

among the scales. As seen in the table, the point estimates differed slightly across the two 

methods, presumably due to efficiency differences. The most striking aspect of the table is 

the width of the 95% confidence intervals. The confidence intervals from FIML with items 

as auxiliary variables were much narrower than those from scale-level FIML; confidence 

intervals were between 33% and 48% narrower. Not surprisingly, this increase in precision 

would translate into a substantial increase in power.

Turning to the regression model from Equation 2, Table 8 gives the regression coefficients 

and 95% confidence intervals based on 2000 bootstrap samples. The regression analyses 

produced a similar pattern of results. The FIML analysis with auxiliary variables had 

confidence intervals that were between 28% and 50% narrower than those from scale-level 

FIML. To compare these results to those from the simulation studies, we computed the ratio 

of squared standard errors (i.e., the ratio of sampling variance estimates), which is analogous 

to the MSE ratio reported in the simulation studies. For the treatment group regression 

coefficient, the ratio of squared standard errors equaled 2.57 when using items as auxiliary 

variables. This ratio suggests that scale-level FIML would require a sample size 2.57 times 

larger to achieve the same sampling variance as the FIML analysis with item-level auxiliary 

information. Overall, the analysis results in Tables 6 and 7 closely follow those from the 

simulation studies.

Discussion

Researchers routinely rely on proration to address item-level missing data. Understandably, 

researchers do not want to lose power or ignore potentially useful data from a partially-

complete set of item responses. As such, researchers are reluctant to treat a scale score as 

missing whenever one or more of the items are missing. However, our simulations suggest 

that proration often results in bias. Consistent with suggestions from the literature, our 

results indicate that proration can produce accurate parameter estimates when the 

mechanism is MCAR and the item means and inter-item correlations are similar in value 

(Enders, 2010; Graham, 2009; Graham, 2012). However, consistent with Lee et al. (2014), 

proration is prone to substantial bias when either the correlations or the means differ. This 

feature of proration is problematic because questionnaire items are often designed to 

discriminate at different levels of the latent trait. For example, when measuring depression 

with the BDI-II, the item asking about suicidal ideation will naturally have a different mean 

than the item asking about feeling sad. We would also expect some pairs of items (e.g., the 

two items pertaining to fatigue and loss of energy on the BDI-II) to be more highly 

correlated than others (e.g., the fatigue item and the suicidal ideation item). Under these 

common conditions, proration can produce severe bias, even when the mechanism is 

MCAR.

Given its propensity for bias, we recommend forgoing proration in favor of an FIML 

analysis with item-level auxiliary information. Using item-level information for missing data 

handling is intuitively appealing because within-scale item correlations tend to be much 

stronger than between-scale correlations. Gottschall et al. (2012) reported rather drastic 
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power gains from item-level imputation, and we observed very similar results from an FIML 

analysis that used items as auxiliary variables. Not only did the auxiliary variable method 

improve power, but it also eliminated bias that resulted when items were the cause of 

missingness.

In our simulations, the FIML analysis that used the largest possible auxiliary variable set (all 

but one item per scale) provided virtually the same efficiency as item-level imputation. By 

contrast, using only half of the items in the auxiliary variable model produced a noticeable 

drop in power, such that FIML was roughly 83% as efficient as the gold standard imputation 

procedure. As noted previously, the two-stage approach proposed by Savalei and Rhemtulla 

(2014) may prove to be an ideal option because it uses all of the available item-level data. 

However, until this procedure becomes available in software packages, our results suggest 

that researchers should strive to include as much item-level information as possible. One 

strategy that worked well in Study 3 is to average the complete items and use the resulting 

parcel in the FIML analysis (in addition to using the incomplete items). This procedure 

eliminated convergence problems while achieving the same efficiency as the all-but-one-

item approach. It is difficult to give good rules of thumb because data-specific features 

likely dictate the number of items that can be included before estimation problems result. 

Nevertheless, the message from Study 3 is clear: more is better.

Although we chose conditions for the simulation studies that were representative of 

published research, the generalizability of all simulation studies is limited. First, we 

investigated three missing data mechanisms: MCAR, MAR due to a variable external to the 

scales, and MAR due to complete items on each scale. In practice, the causes of missingness 

are likely much more complex. Multiple variables may predict missingness, and the causes 

of missingness may vary across participants or across incomplete variables. Furthermore, the 

causes of missingness may not have been measured during data collection. Thus, the 

deletion procedures that we implemented may produce results that do not fully generalize to 

all scenarios. Second, as noted previously, the factor analysis model that we used as a 

population model produced scale scores with rather high internal consistency reliability. 

Although we anticipate that incorporating item-level information is beneficial in most cases, 

it may be less so when the inter-item correlations (and thus reliability) are lower. Future 

studies should investigate this issue. Third, the FIML approach assumes multivariate 

normality, but the items used as auxiliary variables in our simulations were not normally 

distributed; we chose categorization thresholds that produced symmetric distributions, but 

discrete variables are nonnormal by definition. Nevertheless, Rhemtulla, Brosseau-Liard, 

and Savalei (2012) suggested seven-category variables with symmetric thresholds may be 

treated as continuous. More severe violations of the multivariate normality assumption are 

common in practice (e.g., dichotomous items, items with highly skewed distributions). 

Future research should investigate the FIML approach with fewer response categories and 

different distribution shapes. Under these conditions, FIML may not perform as well as an 

imputation procedure that employs an appropriate model for the categorical variables (e.g., 

latent variable imputation; Keller & Enders, 2014).

In sum, our research suggests that proration results in bias even under an MCAR 

mechanism. In lieu of proration, we describe an FIML model that incorporates items as 
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auxiliary variables. Consistent with Gottschall et al. (2012), we found that addressing 

missing data at the item level rather than the scale level drastically increases power. Our 

research further indicates that item-level missing data handling can protect against MAR 

violations that occur when items determine missingness. As such, we strongly recommend 

that researchers forgo proration and perform item-level missing data handling with MAR-

based analyses.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Mplus 7 Input File

To compute the scale scores used in the analysis model, add the items using the SUM 

function and then divide by the number of items. By using the SUM function, we only 

compute scale scores for cases with observed scores on all of the items. By contrast, the 

MEAN function computes the average regardless of item-level missing data, thus creating 

prorated scale scores. Below we show how to manually incorporate auxiliary variables, but 

this process can be automated using the AUXILIARY option with (m).

TITLE:

Regression Analysis with Items as Auxiliary Variables

DATA:

file = plannedmissing.dat;

VARIABLE:

names = txgrp female age

 sever1 sever2 sever3

 dep1 dep2 dep3 dep4 dep5 dep6

 interf1 interf2 interf3 interf4 interf5 interf6;

usevariables = txgrp female age

 sever2 sever3 dep2-dep6 interf2-interf6

 severity depress interf;

missing = all(−99);

DEFINE:

severity = sum(sever1-sever3) / 3;

depress = sum(dep1-dep6) / 6;
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interf = sum(interf1-interf6) / 6;

ANALYSIS:

bootstrap = 2000;

MODEL:

interf on txgrp female age severity depress;

sever2 sever3 dep2-dep6 interf2-interf6 with

 txgrp female age interf severity depress

 sever2 sever3 dep2-dep6 interf2-interf6;

OUTPUT:

cinterval(bootstrap);
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Figure 1. 
Path diagram of a bivariate regression with four auxiliary variables.
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Table 4

Simulation Study 2, MSE Ratios Comparing FIML with All But One Item from Each Scale as Auxiliary 

Variables to Scale-Level FIML

MSE Ratio

Parameter Item-Level Missing Data
Rate 8 Items Per Scale 16 Items Per Scale

Mean of X

5% 1.1852 1.4545

15% 1.7778 3.0909

25% 2.7931 7.1304

Mean of Y

5% 1.2083 1.4583

15% 1.9600 3.0417

25% 3.4000 6.1200

Variance of X

5% 1.2727 1.5778

15% 1.8246 2.7778

25% 2.4590 4.7234

Variance of Y

5% 1.3774 1.6327

15% 1.9636 2.7400

25% 2.5345 4.4600

Covariance

5% 1.2857 1.7586

15% 1.9189 3.0345

25% 2.8684 5.3333

Correlation

5% 1.2778 1.7059

15% 1.9474 3.0000

25% 2.9500 5.1111

Regression Coefficient

5% 1.3158 1.7222

15% 2.0000 3.0556

25% 3.0000 5.1053

Note. The table contains MSE ratios for conditions with a sample size of 500. The item means and inter-item correlations were uniform. All of the 
MSE ratios are greater than 1, meaning that incorporating all but one item from each scale as auxiliary variables provided lower MSEs and thus 
higher power.
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Table 6

Planned Missing Data Design for the Analysis Example

Form

Variable Block

X A B C

Age S1 S2 S3

Gender D1, D2 D3, D4 D5, D6

Treatment PI1, PI2 PI3, PI4 PI5, PI6

1 Observed Missing Observed Observed

2 Observed Observed Missing Observed

3 Observed Observed Observed Missing

4 Observed Observed Observed Observed

Note. S = severity, D = depression, PI = pain interference. Each test form (missing data pattern) was comprised of 25% of the sample.
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Table 7

Analysis Example Scale Score Correlations and 95% Confidence Limits

Correlation Estimate LCL UCL Width

No Auxiliary Variables

Interference-Severity 0.57 0.34 0.74 0.40

Interference-Depression 0.24 −0.06 0.50 0.56

Severity-Depression 0.08 −0.24 0.35 0.59

Items as Auxiliary Variables

Interference-Severity 0.59 0.43 0.69 0.27

Interference-Depression 0.19 0.03 0.32 0.29

Severity-Depression 0.10 −0.10 0.25 0.35
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Table 8

Analysis Example Regression Coefficients and 95% Confidence Limits

Coefficient Estimate LCL UCL Width

No Auxiliary Variables

Intercept −2.75 −6.23 0.18 6.41

Treatment Group −0.28 −0.97 0.39 1.36

Female −0.19 −0.98 0.60 1.58

Age 0.02 −0.02 0.06 0.08

Severity 0.89 0.50 1.31 0.81

Depression 0.36 −0.07 0.81 0.89

Items as Auxiliary Variables

Intercept −2.77 −4.89 −0.85 4.04

Treatment Group −0.38 −0.81 0.03 0.83

Female −0.16 −0.63 0.28 0.91

Age 0.01 −0.01 0.04 0.04

Severity 0.94 0.66 1.24 0.58

Depression 0.28 0.02 0.54 0.52
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