Table 5.
Simulation Study 3, MSE Ratios Comparing FIML Approaches to Item-Level Imputation
|
MSE Ratio |
|||||
|---|---|---|---|---|---|
| Parameter | Items Per Scale |
Item-Level Missing Data Rate |
All But One Item from Each Scale as Auxiliary Variables |
Incomplete Items and Composite of Complete Items as Auxiliary Variables |
Half of the Items from Each Scale as Auxiliary Variables |
| Mean of X | 8 | 15% | 1.0000 | 1.0000 | 0.9643 |
| 25% | 0.9655 | 0.9655 | 0.8182 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8800 | |
| 25% | 0.9565 | 0.9565 | 0.6875 | ||
| Mean of Y | 8 | 15% | 0.9600 | 0.9600 | 0.8889 |
| 25% | 1.0000 | 1.0000 | 0.7742 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8571 | |
| 25% | 0.9600 | 0.9600 | 0.6857 | ||
| Variance of X |
8 | 15% | 0.9825 | 0.9825 | 0.9180 |
| 25% | 0.9672 | 0.9833 | 0.8116 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8824 | |
| 25% | 0.9787 | 0.9787 | 0.7541 | ||
| Variance of Y |
8 | 15% | 1.0000 | 1.0000 | 0.8871 |
| 25% | 0.9655 | 0.9655 | 0.7746 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8621 | |
| 25% | 1.0200 | 1.0200 | 0.7500 | ||
| Covariance | 8 | 15% | 0.9459 | 0.9459 | 0.8974 |
| 25% | 0.9737 | 0.9737 | 0.8333 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8788 | |
| 25% | 1.0000 | 1.0000 | 0.7895 | ||
| Correlation | 8 | 15% | 0.9474 | 0.9474 | 0.9000 |
| 25% | 0.9500 | 0.9500 | 0.8182 | ||
| 16 | 15% | 1.0000 | 1.0000 | 0.8947 | |
| 25% | 0.9444 | 1.0000 | 0.7391 | ||
| Regression Coefficient |
8 | 15% | 0.9500 | 0.9500 | 0.9048 |
| 25% | 0.9524 | 0.9524 | 0.7917 | ||
| 16 | 15% | 1.0000 | 0.9474 | 0.8571 | |
| 25% | 1.0000 | 1.0000 | 0.7917 | ||
Note. The table contains MSE ratios for conditions with a sample size of 500. We can interpret the MSE ratios by saying that the FIML approach is (MSE Ratio × 100)% as efficient as item-level imputation.