Skip to main content
. Author manuscript; available in PMC: 2016 Jan 5.
Published in final edited form as: Multivariate Behav Res. 2015 Sep-Oct;50(5):504–519. doi: 10.1080/00273171.2015.1068157

Table 5.

Simulation Study 3, MSE Ratios Comparing FIML Approaches to Item-Level Imputation

MSE Ratio
Parameter Items
Per
Scale
Item-Level
Missing
Data Rate
All But One
Item from Each
Scale as
Auxiliary
Variables
Incomplete Items
and Composite of
Complete Items as
Auxiliary Variables
Half of the
Items from Each
Scale as
Auxiliary
Variables
Mean of X 8 15% 1.0000 1.0000 0.9643
25% 0.9655 0.9655 0.8182

16 15% 1.0000 1.0000 0.8800
25% 0.9565 0.9565 0.6875

Mean of Y 8 15% 0.9600 0.9600 0.8889
25% 1.0000 1.0000 0.7742

16 15% 1.0000 1.0000 0.8571
25% 0.9600 0.9600 0.6857

Variance of
X
8 15% 0.9825 0.9825 0.9180
25% 0.9672 0.9833 0.8116

16 15% 1.0000 1.0000 0.8824
25% 0.9787 0.9787 0.7541

Variance of
Y
8 15% 1.0000 1.0000 0.8871
25% 0.9655 0.9655 0.7746

16 15% 1.0000 1.0000 0.8621
25% 1.0200 1.0200 0.7500

Covariance 8 15% 0.9459 0.9459 0.8974
25% 0.9737 0.9737 0.8333

16 15% 1.0000 1.0000 0.8788
25% 1.0000 1.0000 0.7895

Correlation 8 15% 0.9474 0.9474 0.9000
25% 0.9500 0.9500 0.8182

16 15% 1.0000 1.0000 0.8947
25% 0.9444 1.0000 0.7391

Regression
Coefficient
8 15% 0.9500 0.9500 0.9048
25% 0.9524 0.9524 0.7917

16 15% 1.0000 0.9474 0.8571
25% 1.0000 1.0000 0.7917

Note. The table contains MSE ratios for conditions with a sample size of 500. We can interpret the MSE ratios by saying that the FIML approach is (MSE Ratio × 100)% as efficient as item-level imputation.