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ABSTRACT Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the
distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution
is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we
extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and
spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm
that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent
distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals.
This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the
predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual
organisms.
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FACULTATIVE sexual species, which have both partheno-
genetic and sexual stages in their life cycles, are wide-

spread in nature. They have been a focus for empirical
studies of the role of sex in evolution (Goddard et al. 2005;
D’Souza and Michiels 2008; King et al. 2009; Morran et al.
2009; Becks and Agrawal 2010; Hojsgaard and Hörandl
2015). The biology of facultative sexual organisms is also
a research field with broad applications because many
organisms of evolutionary, medical, and agricultural im-
portance undergo both sexual and asexual reproduction
(Chang et al. 2013; Ankarklev et al. 2014; Hand and
Koltunow 2014; Yoshida et al. 2014). However, our under-

standing of the structuring of genetic diversity in such organ-
isms remains limited.

For effective population genetic analysis of facultative
sexual individuals to be made, there needs to be a theo-
retical basis for predicting how neutral diversity is affected
under various demographic and reproductive scenarios.
This is so that the two are not confounded, especially
because they are strongly intertwined [reviewed by
Halkett et al. (2005) and Arnaud-Haond et al. (2007)].
A classic prediction for organisms with very low rates of
sex is that owing to the resulting lack of segregation, dip-
loid asexual organisms tend to accumulate extensive di-
versity within individuals, because the two alleles from a
single individual remain isolated by descent in the ab-
sence of sex. This phenomenon has been labeled the
Meselson effect because it was used by Meselson and col-
leagues as evidence for a lack of sex in bdelloid rotifers
(Mark Welch and Meselson 2000; Butlin 2002) [but see
MarkWelch et al. (2008) for an alternative explanation for
their original findings].

Copyright © 2016 by the Genetics Society of America
doi: 10.1534/genetics.115.178004
Manuscript received May 8, 2015; accepted for publication November 16, 2015;
published Early Online November 18, 2015.
Supporting information is available online at www.genetics.org/lookup/suppl/
doi:10.1534/genetics.115.178004/-/DC1
1Corresponding author: Department of Ecology and Evolutionary Biology, University of
Toronto, 25 Willcocks St., Toronto, Ontario, Canada M5S 3B2.
E-mail: matthew.hartfield@utoronto.ca

Genetics, Vol. 202, 297–312 January 2016 297

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.178004/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.178004/-/DC1
mailto:matthew.hartfield@utoronto.ca


One theoretical approach to quantify this effect has been
to derive how traditional diversity measures, such as the
effective population size Ne and F-statistics, are affected
when sex is rare (Balloux et al. 2003; Yonezawa et al.
2004; de Meeûs and Balloux 2005). Such studies are based
on pairwise sample comparisons, with heightened within-
individual diversity not becoming apparent unless sex is ex-
tremely rare (with frequency less than 1/N, for N the total
population size). Combining these summary statistics with
information on clonal or genotypic diversity can improve in-
ference when rates of sex are not too low (Balloux et al. 2003;
Halkett et al. 2005; Arnaud-Haond et al. 2007).

An alternative approach is to analyze polymorphisms
using coalescent theory to recreate the possible genealo-
gies of samples (Kingman 1982; Wakeley 2009). Basic cal-
culations were carried out by Brookfield (1992) and Burt
et al. (1996) to determine how partial sex affects diversity
in DNA fingerprinting analyses and isolates of a human
pathogen, respectively. More complete analyses then were
performed by Bengtsson (2003) and Ceplitis (2003) to
determine expected coalescent times for pairs of samples
taken either from the same or different individuals. These
analyses confirmed that the rate of sex has to be less than
the reciprocal of the population size for mean coalescent
times to be substantially altered compared with the classic
case of obligate sex.

With the advent of high-throughput genome sequencing
technologies, there are growing opportunities to characterize
both the demographic and reproductive histories of partially
sexual populations. However, formal theory does not yet exist
for genealogies of facultative sexual organisms that take into
account demographic factors, gene conversion, and temporal
and spatial heterogeneity in the rate of sexual reproduction.
The potential importance of gene conversion is especially
pertinent because there is growing recognition that this pro-
cess may be an important homogenizing force in diploid
asexual populations (Crease and Lynch 1991; Schön et al.
1998; Normark 1999; Schön and Martens 2003; Schaefer
et al. 2006; Flot et al. 2013). In addition, previous theoretical
studies have not accounted for cases where the rates of sex
change in either space or time. It is well known that several
organisms adjust their rate of sex in a stressful or dense en-
vironment. This mechanism is well supported both theoreti-
cally (Redfield 1988; Hadany andOtto 2007) and empirically
(Grishkan et al. 2003; Snell et al. 2006; Levin and King 2013),
but the overall consequences for patterns of genetic diversity
are not clear. Previously published theory also suffers from
ambiguities or typographical errors (explained later) that
make interpretation of existing results difficult. In addition,
no algorithm yet exists for how to recreate genealogies for
more than two sequences with a range of sexual reproduction
rates, which is essential for simulating the distribution of
neutral variation under complex scenarios.

Here we outline theory to rectify this issue. We rederive
equations of the coalescent time for pairs of samples taken
from either different or the same individuals using a struc-

tured coalescent framework (Nordborg 1997), clarifying dis-
crepancies that appear between Bengtsson (2003) and
Ceplitis (2003). We further show how additional phenom-
ena, including self-fertilization, gene conversion, population
subdivision, and heterogeneity in rates of sex, can be in-
cluded in the coalescent with partial sex. These results can
be used to derive estimators for mutation, migration, and sex
rates based on mean pairwise diversity. These initial analyses
then will inform on how to create a simulation program in
which there exists an arbitrary rate of sex that can be used to
efficiently create genealogies for more than two chromosomes.

Materials and Methods

The basic model

We begin by considering a population with an arbitrary rate
of sex but is otherwise ideal. Bengtsson (2003) and Ceplitis
(2003) derived mean coalescent times for two alleles (two-
sample mean coalescent times) from this basic model. How-
ever, we reexamine this model to clarify discrepancies
between the earlier studies, as well as to lay the groundwork
for further extensions.

Model outline

We consider a diploid Wright-Fisher population of size N
individuals so that there are 2N gene copies in total. Then
s is the rate of sex; that is, with probability s, an offspring is
produced sexually, otherwise, it is produced asexually. For a
specific individual, one can imagine that each of its gene
copies inhabits a separate genomic deme within the individ-
ual, pertaining to the left- and right-hand allele copy respec-
tively (Ceplitis 2003). We choose two of these gene copies
and track their genealogy back in time until they reach their
common ancestor. These allele pairs can be sampled from
either different individuals or the same individual. With ob-
ligate sex, this distinction is irrelevant owing to the random
segregation and union of gametes. However, if sex is infre-
quent, then pairs of alleles can remain “packaged” within an
individual lineage as a left and right haplotype for long pe-
riods of time. This structuring and the low level of exchange
between haplotypes when sex is infrequent create a funda-
mental difference from the standard coalescent.

Two sampled alleles can be found in oneof three states: (1)
oneallele in eachof twoseparate individuals, (2) two separate
alleles within the same individual, and (3) coalesced. Ceplitis
(2003) argued that it is necessary to divide the first state into
two separate states: both alleles in the same deme (either the
left or right demes of separate individuals), or one allele in
the left deme and one in the right deme. However, it can be
shown that this partitioning is unnecessary as long as the
appropriate transition probabilities are applied, which aver-
age over these possible states. We calculate the mean coales-
cent time by first determining the transition probabilities
among the three states mentioned earlier. We assume that
N is large, so terms of order 1/N2 and higher are discarded.
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The transition matrix for the process is
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Further details of all transitions and analysis are outlined in
Supporting Information, File S2A; a schematic of the basic
transitions is shown in Figure 1.

To find the expected coalescent times, we follow the
method of Slatkin (1991). Note that the 2 3 2 submatrix
G, representing the top-left corner of T (Equation 1) is a
matrix of noncoalescence; that is, it denotes the probabil-
ity that two samples do not coalesce in a single genera-
tion. The probability that two alleles from either state
have not coalesced t generations in the past is given by
aðtÞ ¼ Gtað0Þ, where að0Þ ¼ ½1; 1�T (here the T denotes
vector transposition).

Conversely, the probability that two alleles have coalesced
by time t is PðtÞ ¼ aðt2 1Þ2 aðtÞ. For now, we will focus on
the mean coalescent time; Slatkin (1991) showed that it can
be calculated by

t ¼ ðI2GÞ21 � að0Þ (2)

where t ¼ ðE½tw�; E½tb�Þ is the vector of mean between- and
within-individual mean coalescent times, and I is the identity
matrix. The noncoalescence matrix G is crucial for determin-
ing the expected coalescent times. It can be decomposed into
the relative contributions of sexual and asexual reproduction
as follows:
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This decomposition makes it easier to see how other com-
plexities (e.g., selfing and gene conversion) can be included
in this framework.

To make subsequent calculations more convenient, we
shift to working in continuous time by rescaling time by the
population size, i.e., t = 2Nt. A formal way to rescale in
continuous time is to write T ¼ A þ B=2N; i.e., A captures
transitions over “fast” timescales [which occur with probabil-
ity Oð1Þ], and B captures transitions over “slow” timescales
[which occur with probability Oð1=NÞ]. Möhle (1998)
proved that if the matrix is written in this manner, the con-
tinuous time analogue of the transition matrix T, which we
denote Q, can be written in the form

Q ¼ PeFt (4)

where

P ¼ lim
r/N

Ar

and

F ¼ PBP

If we partition T (Equation 1) while assuming that s ¼ Oð1Þ,
then we can show that the continuous-time transition
matrix tends to the obligate sex case (File S1A). If
s ¼ Oð1=NÞ, then A is equal to the identity matrix; thus
F ¼ B, where

B ¼
0
@22 1 1

V 2V 0
0 0 0

1
A (5)

Here V ¼ 2Ns, which is equal to twice the expected num-
ber of sexually reproduced offspring produced per gener-
ation. This matrix shows that with rare sex, two samples
from the same individual (the state represented by the
second row of matrix B) cannot coalesce. Instead, the
samples have to be placed within different individuals
before coalescence can occur, which requires at least one
bout of sex.

Where possible, subsequent analyses will be performed
using the discrete transition matrix T, and the resulting ex-
pressions are derived assuming that N is large and are
expressed in units of 2N generations; i.e., using the coales-
cent timescale (t ¼ 2Nt) and compound parameters [e.g.,

Figure 1 A schematic of the transition probabilities between states for
the coalescent with infrequent sex (with rate s) and gene conversion (rate
g). Only those states where the configurations have changed are shown.
Focal samples are shown as solid black lines, whereas dashed black lines
represent placeholder homologous alleles that are not sampled. Transi-
tions from the within-individual state to the between-individual state re-
quire sex, whereas the reverse transition can occur via sexual or asexual
reproduction.
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V ¼ 2Ns ¼ Oð1Þ]. Nevertheless, we will sometimes use
unscaled parameters when investigating rates of sex where
s ¼ Oð1Þ.

Mean coalescent times: Using Equations 2 and 3, we obtain
the expected coalescent times for two samples taken from
different individuals E½tb� and from the same individual E½tw�
in units of 2N generations

E½tb� ¼ 1þ 1
V

E½tw� ¼ 1þ 2
V

(6)

Results are similar in the unscaled case, so they generally hold
even ifV � Oð1Þ. Ceplitis (2003, Equation 2) derived equiv-
alent equations; Bengtsson (2003, Equations 1 and 2) pre-
sented results in terms of the eigenvalues of G, although
there appears to be typographical errors in the way these
eigenvalues are presented. File S1A shows how equivalent
results can be derived using the eigenvalues of G and how
they compare with what is presented in Bengtsson (2003).

Visual inspection of Equation 6 shows some key properties
of thewithin- and between-individualmean coalescent times.
They verify that the rate of sex will significantly affect the
expected coalescent timeonly if it is very rare, at leastOð1=NÞ,
as found in previous studies. Second, the within-individual
expected coalescent time is greater than that between indi-
viduals, formalizing the Meselson effect (Mark Welch and
Meselson 2000; Butlin 2002). Two samples from within a
single individual are, by definition, members of different
left/right sides. Sex is thererfore required to put them in
the same side before coalescence can occur (on average,

two sex events are needed). Only 50% of two-allele samples
from different individuals will be on different left/right sides,
so the increase in mean coalescent time resulting from low
rates of sex between individual samples is only half as large.

Figure 2A demonstrates how the mean coalescent times
increase rapidly as s becomes significantly less than 1=N. If
we set s ¼ 1=N (i.e., V ¼ 2) in Equation 6, then E½tb� ¼ 1:5
and E½tw� ¼ 2. That is, the between-individual mean coales-
cent times are 1.5 times higher than in Kingman (obligate
sexual) coalescent, and the within-individual mean coales-
cent times are twofold higher. We can also use analytical
methods to determine the variance and probability distribu-
tion of the coalescent process; this analysis will be left until
gene conversion is added so that its effect with rare sex can be
quantified.

Multisequence coalescent simulations

The two-sample results are useful for clarifying how neutral
drift should operate in facultative sexual populations. How-
ever, when analyzing empirical data, one would normally
obtain many samples from a population and then estimate
neutral diversity based on those samples. For obligate sexual
organisms, coalescent simulations have proved to be essential
for modeling expected neutral diversity levels caused by
complex demographic scenarios, such as population bottle-
necks or expansions (Hudson 2002). Equivalent analysis on
sequence data from facultative sexual species is not possible
using existing coalescent simulation software. This is so be-
cause gene samples remain paired within individual lineages
if sex is rare, a type of genetic isolation not considered in
existing simulation packages. Therefore, it is necessary to
create a new coalescent algorithm to account for partial rates

Figure 2 Expected coalescent
times with different reproductive
systems. The population size for
all plots is N = 10,000. (A)
Expected mean coalescent time
according to Equation 6 in coales-
cent time units as a function of sex
s. The blue line represents between-
individual mean coalescent time
E½tb�, and the red line is within-
individual mean coalescent time
E½tw�. The vertical line repre-
sents s ¼ 1=N (V ¼ 2), and the
horizontal solid lines show the pre-
dicted mean coalescent times for
this value (E½tb� � 1:5; E½tw� � 2
on the coalescent timescale),
whereas the horizontal dashed line
shows E½t� ¼ 1. (B and C) Expected
coalescent time if selfing is also in-
cluded, according to Equation 9.
Line colors are the same as in A,
with (B) s = 1 or (C) s = 1/N
(V ¼ 2).
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of sex. Our goal is to develop an algorithm that would remain
valid under all rates of sex, including high rates [as opposed
to purely under the low sex limit V ¼ 2Ns � Oð1Þ].

The simulation procedure considers arbitrary rates of sex,
as well as gene conversion and migration via an island model
(whichwill be treated analytically in later sections). Themain
challenge is to consider how samples change state over time
(through coalescence, migration, splitting, or forming pairs
within individuals) while allowing an arbitrary rate of sex.
Most coalescent simulation algorithms assume that each
possible event is rare so that when an event does arise, only
one event occurs. However, if there are several paired samples
and the rate of sex is not very low (NTs � 1, for NT the total
population size), many paired samples can split up into dif-
ferent individuals in a single generation; furthermore, an
additional action (e.g., coalescence) is then possible in that
same generation. The simulation accounts for this issue by
determining the probability that a specific number of paired
samples are split by sex in a generation and then designating
what possible actions subsequently occur, given these splits.

We formalize this algorithm as follows: let there be xj
paired samples and yj single samples (i.e., where only one
of the two alleles is ancestral to the sample) in deme j, for
j 2 ½1; . . . ; d�; we can also denote the configuration for deme j
as ðxj; yjÞ. Let xT ¼Pd

j¼1xj and yT ¼Pd
j¼1yj; then the total

number of ancestral allele copies over all demes is
n ¼ 2xT þ yT, with the configuration for all demes denoted
ðxT; yTÞ. If the rate of sex in deme j is sj (to account for spatial
heterogeneity in rates of sex), then the probability that kj of xj
samples are split by sex, with each part of the paired sample
assigned to different adults back in time, is drawn from a
binomial distribution

pðkjjxj;sjÞ ¼
�
xj
kj

�
s
kj
j ð12sjÞxj2kj

This event changes the configuration for all demes by
producing 2kj new single samples in that deme:
ðxj; yjÞ/ðxj 2 kj; yj þ 2kjÞ. The kj splits are chosen inde-
pendently in each deme, without replacement, from the
existing paired samples. This process creates a vector
k ¼ ðk1; k2; . . . ; kdÞ of paired samples that split in each deme.

Once this intermediate step is complete, there can be 10
other outcomes, which are outlined in Table 1. All additional
outcomes (events 2–9 in Table 1) involve events that are of
order 1=Nd and are thus assumed to be rare (including the
gene conversion rate g and the migration ratem), so only up
to one additional event can arise. Hence, when an event
occurs, it involves at least one paired sample splitting by
sex, followed by an additional event. Alternatively, no sex
occurs, in which case only events 5–10 in Table 1 can happen.

Building on this logic, we unite the preceding actions into a
coalescent algorithm as follows:

1. In a single generation, an event occurs if either at least one
paired sample is split by sex or no sex occurs, but one of
events 5–10 in Table 1 happens regardless. The probabil-
ity of no paired samples splitting via sex in any of the
demes is pðkT ¼ 0Þ ¼Qd

j¼ið12sjÞxj . If no sex occurs, we
need to consider the possibility that one of events 5–10 in
Table 1 has happened. Let pE0 be the sum of the probabil-
ities of events 5–10 (given that kT = 0) across all demes
represented by the sample.

2. The total probability of any event occurring in a genera-
tion is psum ¼ ½12 pðkT ¼ 0Þ� þ pðkT ¼ 0ÞpE0. Standard

Table 1 Possible events in facultative sexual coalescent simulation

kj samples split by sex in deme j: pðkjjxj;sjÞ ¼
�
xj
kj

�
s
kj
j ð12sjÞxj2kj

Event Description Configuration change in a deme Probability

1 New single samples remain single ðxj; yjÞ/ðxj 2 kj; yj þ 2kjÞ 1–all other probabilities

2 One of the paired samples is re-created ðxj; yjÞ/½xj 2 kj þ 1; yj þ 2ðkj 21Þ� kjyj
Nd

þ
�
2kj
2

�
1

2Nd

3 A new single sample coalesces with an existing single sample ðxj; yjÞ/ðxj 2 kj þ 1; yj þ 2kj 21Þ kjyj
Nd

þ
�
2kj
2

�
1

2Nd

4 A new single sample coalesces with an existing paired sample ðxj; yjÞ/ðxj 2 kj; yj þ 2kj 21Þ 2kjðxj 2 kjÞ
Nd

5 Two existing single samples form a new paired sample ðxj; yjÞ/½xj 2 kj þ 1; yj þ 2ðkj 21Þ�
�
yj
2

�
1

2Nd

6 Two existing single samples coalesce ðxj; yjÞ/½xj 2 kj; yj þ 2kj 21�
�
yj
2

�
1

2Nd

7 Two remaining paired samples doubly coalesce asexually ðxj; yjÞ/ðxj 2 kj 21; yj þ 2kjÞ
�
xj 2 kj
2

�
1
Nd

8 One remaining paired sample coalesces with a single sample ðxj; yjÞ/ðxj 2 kj; yj þ 2kj 21Þ ðxj 2 kjÞyj
Nd

9 Paired sample coalesces via gene conversion ðxj; yjÞ/ðxj 2 kj 21; yj þ 2kj þ 1Þ gðxj 2 kjÞ

10 A sample migrates to another deme ðxj; yjÞ/ðxj 2 kj; yj þ 2kjÞ mðxj þ yj þ kjÞ
(before migration)

The listed probabilities for events 1–4 are conditional on sex having occurred and are otherwise zero.
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probability theory (Wakeley 2009) tells us that the time
until an event occurs is geometrically distributed with
mean psum. Hence, psum is used to draw the time until
the next event arises, which is then scaled by 2NT gener-
ations so that it is on the coalescent timescale.

3. Once the time to the next event is drawn, it involves sex
with probability

12 pðkT ¼ 0Þ
½12 pðkT ¼ 0Þ� þ pðkT ¼ 0ÞpE0 (7)

If sex does occur, the number of sexual events is drawn
independently from each deme from a binomial distribu-
tion, discarding cases where no paired samples split by
sex across all the demes represented by the sample.

4. Given the vector of paired samples affected by sex k, one
then calculates the probability of subsequent events occur-
ring in each deme using the probabilities outlined in Table
1. Let pE,j be the probability that event E occurs in deme j
(if E= 1, where split samples remain split, then this event
occurs over all demes by definition). The probability that
event E occurs in any deme is pE ¼Pd

j¼1pE;j. Therefore,
the probability that event E is chosen is pE=

P10
e¼1pe, and

the probability that this event occurs in deme j is
pE;j=

Pd
i¼1pE;j. These probabilities are used to form multi-

nomial distributions, from which the next event and deme
of occurrence then can be drawn.

5. The configurations of all demes are then changed based
on the outcome. If it is a migration event, an individual is
chosen from the deme of event occurrence, and its migra-
tion target is chosen at random from the d 2 1 other
demes.

6. The process is repeated until all samples coalesce into a
single common ancestor. Mutations are then added to
each branch of the genealogy assuming a Poisson distri-
bution with mean ð1=2Þuti, where u ¼ 4NTm, and ti is the
length of branch i.

We have implemented this algorithm into a simulation
program for R (RDevelopment Core Team2014), as shown in
File S3, or it can be downloaded from http://github.com/
MattHartfield/FacSexCoalescent. The simulation performs
the preceding process, and for each run it outputs the co-
alescent times and a genealogy in Newick tree format
(Felsenstein 2004). It alsodropsmutationsalong thegenealogy
according to the infinite-sites model, which can be used to
determine how accurate summary statistics are at inferring
the rate of sex and demography. We have rigorously tested
this simulation to ensure that it replicates two-sample behav-
ior. Outputs are similar to those presented by ms (Hudson
2002) to make it easier to compare simulation outputs be-
tween the two programs, if needed. Note that ms uses a
timescale of 4N units, but our program uses a coalescent
timescale of 2N.

In addition,wewroteavariant of theprogramthatdoesnot
require population size to be defined as an input and operates

solely on scaled coalescent time. This program is faster than
the full programbut requires thatall parameters, including the
rates of sex, are assumed to be on the same order as 1/N [i.e.,
V ¼ 2Ns ¼ Oð1Þ]. In this case, instead of first resolving the
number of sexual reproductions in a generation, a single bout
of sex is defined as one of the possible outcomes were an
action to arise. To consider any rate of sex, all simulation
results presented here were produced using the full simula-
tion, which can take values of s between 0 and 1.

Results

Simulation results of summary statistics

Using the full simulation, we investigated how traditional
populationgeneticsparametersareaffectedunder lowratesof
sex to determine whether there is a risk that they show
spurious signs of selection or demography. We ran our co-
alescent algorithmwhile varying the rate of sex and analyzed
the mutational outputs to calculate summary statistics. One
thousand trees were run for each point for all simulation
results throughout. Confidence intervals were calculated us-
ing a normal-distribution approximation; similar intervals
were produced if 1000 bootstrap samples were used.

Results are shown in Figure 3 for N = 10,000, u = 5 with
25 paired samples, although results are nearly identical if 50
single samples were simulated instead (File S2A).We need to
specify a fixed population size because we cannot explicitly
simulate high rates of sex [i.e., s ¼ Oð1Þ] in diploids using
only the scaled parameter (2Ns). As the rate of sex decreases
below 1/N, the number of polymorphic sites shoots up owing
to the increased overall coalescent times, especially within
individuals, creating greater diversity (Figure 3A). This leads
to an increase in traditional estimates of u that are much
higher than the true mutation rate (Figure 3B). With rare
sex, Tajima’s D also increases to high values (Figure 3C),
while Fay and Wu’s H drops despite a small increase for
s � 1=N (Figure 3D). Both of these behaviors are caused
by an increase in the number of intermediate-frequency var-
iants, especially within individuals, as sex becomes rare. Fi-
nally, the number of unique haplotypes increases (Figure 3E)
and the number of unique genotypes decreases (Figure 3F) as
s drops. Both plots reflect how the lack of sex creates new
haplotypes within individuals but homogenizes individual
genotypes, in line with theory previously reported by Balloux
et al. (2003). These results make clear that if one does not
account for rare rates of sex, spurious signatures of selection
or demography can arise that can confound analyses. Deeper
branches also can lead to an overestimation of the mutation
rate or effective population size.

Sex with selfing

Wecanextend the preceding analysis to consider a casewhere
an individual that reproduces sexually can self-fertilize with
probability S and outcross with probability 1 2 S. The co-
alescent for obligate sexuality with selfing has been well
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investigated (Milligan 1996; Nordborg and Donnelly 1997;
Nordborg 1997, 2000; Nordborg and Krone 2002); the key
result is that the genealogy is equivalent to a Kingman co-
alescent, but with the population size scaled by the selfing
rate Ne ¼ Nð22 SÞ=S so that the expected coalescent time is
reduced. We can implement similar methods to determine
how inbreeding and asexuality interact to affect coalescent
times.

The transition matrix Twith selfing and asexuality is writ-
ten as (see File S1A for further information)

T¼

2
6666664

12
1
N

1
2N

1
2N

sð12 SÞ
 
12

1
N

!
12s

 
12

1
2N

!
þsS

2

 
12

1
N

!
sð12 SÞ

2N
þsS

2

0 0 1

3
7777775

(8)

This equation demonstrates that self-fertilization only affects
within-individual configurations. If a bout of selfing arises,
then the samples coalescewith probability½; otherwise, they
will remain paired within the same individual. Using the ma-

trix-inversion method of Slatkin (1991) and rescaling to the
coalescent timescale (t ¼ 2Nt), the mean coalescent times
are obtained as

E½tb� �
 
12

S
2

!
þ 1
V

E½tw� � 12 Sþ 2
V

(9)

This equation makes explicit how selfing reduces the mean
coalescent times. Ceplitis (2003, Equation 5) also derived
equivalent equations in the limit of low rates of sex. However,
there appears to be a typographical error in his term for co-
alescence for two samples taken from different individuals
and different chromosome arms. Similarly, Bengtsson (2003)
derived accurate terms for the eigenvalues ofG in the limit of
weak sex, but plots of the effect of selfing appear to be in-
accurate (compare his Figure 2 with our Figure 2C). These
differences are discussed further in File S1A.

Selfing and asexual reproduction have opposing effects
on the mean coalescent times and hence differently affect
E½tb� and E½tw�. With selfing, E½tb�. E½tw�when rates of sex

Figure 3 How classic genomic summary statistics are affected by infrequent sex in a nonsubdivided population. All graphs are as a function of s;
parameters are N = 10,000, u = 5 (black points by default) or u = 2 (red points by default), based on 25 paired samples, averaged over 1000 coalescent
simulations. Error bars are 95% confidence intervals; if they cannot be seen, they lie within the points. (A) Mean number of segregating sites in a
sample; the horizontal bar shows the expectation for s = 1 (obligate sex). (B) Estimates of u using Watterson’s u (black or red points for u = 5 or 2) or the
mean pairwise differences between pairs of samples (blue or orange points for u = 5 or 2). (C) Tajima’s D. The horizontal line at zero is the unbiased
expectation for obligate sex. (D) Fay and Wu’s normalized H statistic. (E) The mean number of unique haplotypes present: the obligate sex expectation
(dashed line) is calculated using Equation 3.85 of Ewens (2004). (F) The mean number of unique genotypes present.
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are high, but the reverse is true when rates of sex are low
(Figure 2, B and C). With obligate sexual reproduction,
complete selfing reduces the between-individual mean co-
alescent time by half, while the within-individual mean
coalescent time is instantaneous (Figure 2B). For V ¼ 2,
both mean coalescent times equal 1 with complete selfing
(Figure 2C).

Note that because the main focus of this study is on the
effects of sexual relative to asexual reproduction on diversity
patterns, we did not implement self-fertilization in the facul-
tative sexual coalescent simulation.

Gene conversion

Mitotic gene conversion can strongly affect the genetic architec-
ture of organisms and can be especially important in facultative
sexual organisms, as shown recently in the genome sequence of
bdelloid rotifers (Flot et al. 2013). If a gene conversion event
arises in which one allele sample replaces another during re-
production (irrespective of reproduction type), only one of the
two samples is effectively passed onto its offspring.

We assume that unbiased gene conversion occurs at rate g.
The transition matrix becomes

We can solve this matrix as usual; we further set S = 0 to
simplify the analysis (solutions with selfing are provided in
File S1A). Furthermore, we make the substitutions V ¼ 2Ns
and G ¼ 2Ng and rescale to the coalescent timescale [so that
G;  V ¼ Oð1Þ]. The mean coalescent times then can be writ-
ten as

E½tb� �
�
1þ f

2þ f

�
þ 1
Gð2þ fÞ

E½tw� �
�

f

2þ f

�
þ 2
Gð2þ fÞ

(11)

where f ¼ V=G. Assuming that f is not too small, each result
in Equation 11 is dominated by the first term on the right-
hand side. If sex is rare relative to gene conversion (f/0),
the leading terms go to 1 and 0, respectively, for E½tb� and
E½tw�. For E½tw�, we must then consider the second term,
which goes to 1=G as the first term goes to 0. This shows that
low sex with comparatively high gene conversion behaves
similarly to selfing in that E½tb� is half the standard value,
and E½tw� is much smaller than E½tb�. The dependence on
the ratio f means that a reduction in expected coalescent
time with gene conversion can occur at much larger rates

of sex relative to population size (s � 1=N) than the increase
in mean coalescent time that we discussed earlier, although
the absolute rate of sex must be low (s � 1).

The reason that gene conversion is important when sex is
low can be understood by considering coalescence from two
samples taken from separate individuals. In the absence of
gene conversion, two samples are put into the same individ-
ual, on average, two separate times (requiring at least one
bout of sex) before coalescing (e.g., the first time the two
samples descended from different homologous chromo-
somes, but the second time they descended from the same
chromosome).When the rate of sex is low, each time the two
samples are put into the same individual, they persist to-
gether in that genotype for many asexual generations. If
gene conversion is high relative to the rate of sex, the sam-
ples are likely to coalesce via gene conversion before the
genotype is broken apart by sex. Thus, two samples need
only be put into the same individual once before coalescing,
so the coalescent time is half what it would be otherwise. If
two samples start in the same individual, then the time to
coalescence is simply the waiting time until gene conversion
1=G. This waiting time can be much lower than that for two

alleles in separate individuals to enter the same ancestral
individual (equal to half a time unit on the coalescent scale)
if G � 1.

Note that when gene conversion is rare relative to sex
(G/0), Equation 11 collapses to the results assuming no
gene conversion (Equation 6). The effect of gene conversion
on mean coalescent time is shown in Figure 4 (A and B),
demonstrating how mean coalescent time is greatly reduced
when gene conversion is strong compared to sex.

Gene conversion rates are generally weak, with Flot et al.
(2013) estimating gene conversion rates of 1025 to 1026 per
site in bdelloid rotifers. However, these rates are feasibly the
same order (or higher) as 1=Ne for most species, which is the
same rate at which infrequent sex starts affecting expected
coalescent times. Thus, the strong impact of gene conversion
when sex is rare can explain why little within-individual di-
vergence has been reported in facultative and obligate sexual
genomes despite very low (or zero) rates of sex (Crease and
Lynch 1991; Schön et al. 1998; Normark 1999; Schön and
Martens 2003; Flot et al. 2013).

As with selfing, gene conversion reduces the mean co-
alescent times by increasing the probability that two samples
within an individual will coalesce. However, there are

T ¼

12
1
N

12 g

2N
1þ g

2N

sð12 SÞ
�
12

1
N

�
ð12 gÞð12sÞ þ sð12 SÞð12 gÞ

2N
þ sSð12 gÞ

2
sð12 SÞð1þ gÞ

2N
þ sSð1þ gÞ

2
þ ð12sÞg

0 0 1

2
666664

3
777775 (10)
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important distinctions between the two processes and their
interaction with asexual reproduction. Selfing occurs as a
reproductive alternative to asexual reproduction, and the
effects of selfing and low sex on mean coalescent time are
additive, as shown in Equation 9. In contrast, gene conversion
interacts with asexual reproduction rather than being an
alternative to it. Gene conversion is only a significant force
when asexual reproduction is sufficiently common that two
samples within an individual are kept together for many
generations; this is why f, the ratio of sex to gene conversion,
is important. Nonetheless, both selfing and gene conversion
reduce coalescence times and increase homozygosity. Distin-
guishing between themmay be possible through examination
of multilocusmodels because the two processes affect linkage
disequilibrium differently.

Variance and probability distribution with and without
gene conversion: Asexuality and gene conversion alter not
only the mean coalescent time but also other aspects of the
probability distribution. Previously, Bengtsson (2003) de-
rived the distribution for the case with partial sex and selfing;
here we present a derivation to extend these results to con-
sider gene conversion. We achieve this by following the
method of Herbots (1997) and set up a series of linear equa-

tions to find the Laplace transform, and therefore the proba-
bility distribution, of the coalescent process. The method is
outlined in File S2A.

If we denote the random variable of the between- and
within-individual expected coalescent times as tb and tw,
respectively, the variances of these times are

var½tb� ¼
3þ 2Vþ ðGþVÞ2

ð2GþVÞ2

var½tw� ¼ 4þVð2þ 2GþVÞ
ð2GþVÞ2

(12)

Furthermore, the probability density functions of each time
f ðtbÞ and fðtwÞ can bewritten as amixture of two exponential
distributions

f ðtbÞ ¼ ðAbÞl1expð2l1tbÞ þ ðBbÞl2expð2l2tbÞ
f ðtwÞ ¼ ðAwÞl1expð2l1twÞ þ ðBwÞl2expð2l2twÞ (13)

where l1;2 ¼ 2 ð1=2Þ½222G2V6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG22Þ2 þ 2GVþV2

q
�

are the rate parameters of the exponential functions
(where 1 and 2 refer to the plus and minus variants of
the second term), and the A and B terms are scaling con-
stants, i.e.,

Figure 4 (A and B) Expected coalescent time as a function of the rate of sexual reproduction. The population is of size N = 106 for two samples taken
from separate individuals (A) or the same individual (B). This value of Nwas used so that 1/N is on the same order as gene conversion rates obtained from
empirical data (see text for details). Gene conversion rates of G ¼ 0 (black), 0.2 (red), 2 (blue), and 20 (magenta) are shown. (C) The variance of the
coalescent process as a function of the scaled rate of sex (V ¼ 2Ns), scaled to that for the fully sexual coalescent. Red lines are for tb; blue for tw; solid
lines for G ¼ 0; dashed line for G ¼ 2. Horizontal dashed line is the variation with complete sex. (D) Probability density of the partial sex coalescent
(assuming that V ¼ 2 for red and blue lines and s = 1 for the black line, i.e., obligate sex) as a function of coalescent time units. Line colors are as in C,
with the addition of the obligate sexual distribution (black solid line).

Facultative Sexual Coalescent 305

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.178004/-/DC1/FileS2.pdf


Ab ¼ 2
Vþ 2G2 l1
l1ðl1 2 l2Þ

Bb ¼ Vþ 2G2 l2
l2ðl1 2 l2Þ

Aw ¼ 2
Vþ Gð22 l1Þ
l1ðl12 l2Þ

Bw ¼ Vþ Gð22 l2Þ
l2ðl1 2 l2Þ

(14)

Figure 4C plots the variance (Equation 12) with and without
gene conversion. With no gene conversion, the variance
greatly increases as the rate of sex decreases, reflecting the
greatly increased and sporadic coalescent times that result
with infrequent sex. However, with gene conversion present
at rate G ¼ 2, the variance is lower than for the obligate sex
coalescent. Figure 4D plots the corresponding probability
distributions. Without gene conversion, the probability den-
sity distributions for tb and tw are qualitatively similar to
those for two-allele samples from either different demes or
the same deme in a subdivided population model (Herbots
1997). f ðtbÞ has a mode at zero, whereas f ðtwÞ has a nonzero
mode. This result is indicative of how paired samples have to
be split by sex before they are able to coalesce, just as samples
from different demes must migrate into the same deme be-
fore coalescence can occur. Hence, coalescence at early times
is not possible. If gene conversion is present, the distribution
of tb is weakly affected by the distribution of tw and becomes
strongly skewed with a mode at zero. Both the variance and
probability distributions with gene conversion provide fur-
ther evidence that low rates of gene conversion greatly re-
duce the coalescent times.

Effect of gene conversion on summary statistics: In multi-
sample simulations, we found that relatively low rates of gene
conversion (G ¼ 2) generally lead to the opposite behavior of
the summary statistics shown in Figure 3 owing to increased
homozygosity. That is, most estimators decrease with lower
sex, except for Fay and Wu’s H. The number of unique hap-
lotypes also decreases for low rates of sex, as in cases without
gene conversion (File S2B). Therefore, the simultaneous re-
duction in both haplotype and sequence diversity with de-
creased rates of sex, in contrast to observing allelic sequence
divergence, can be used to determine the presence of gene
conversion (or a similar effect such as selfing) in facultative
sexual organisms.

Sequence-dependent gene conversion

The preceding section assumes that gene conversion is pos-
sible, but if enough differences accumulate between alleles,
then gene conversion may no longer operate. Here we consi-
der the time needed for two sequences to achieve sufficiently
high divergence to halt gene conversion. Using a different
approach, we reach the same finding as Walsh (1987). He
considered duplicated gene sequences diverging at a certain

rate, with possible gene conversion homogenizing the two
sequences. If each gene acquires kc mutations, further con-
version is prevented, and each sample begins to act
independently.

Assume that gene conversion occurs at rate G and that
ud ¼ 2Nmd is the scaled mutation rate for a gene that can
lead to sequence divergence. If kc such mutations occur, then
no further gene conversion is possible. We further assume
that sex is sufficiently rare (i.e.,V � 1) that it does not affect
this process. Conditional on an event occurring, the probabil-
ity that it is a conversion is G=ðGþ 2udÞ, and the probability
that it is a mutation is ud=ðGþ 2udÞ (note that the factor of 2
exists because mutation can occur on either of the two gene
copies). For complete divergence to occur, kc mutations must
arise before gene conversion homogenizes both sequences.
Hence, following from a conversion event, the probability pc
that sufficient divergence occurs before another gene conver-
sion event is pc ¼ ½2ud=ðGþ 2udÞ�kc . Thus, pc is equivalent to
Equation 6 of Walsh (1987), which was obtained by a differ-
ent approach.

Given that pc. 0, the critical level of divergence will occur
eventually, but we can ask how long we expect this process to
take. Let n denote the number of conversion events that hap-
pen before divergence eventually occurs. Thus, n follows a
geometric distribution with expectation EðnÞ ¼ ð12 pcÞ=pc
or ½1þ ðG=2udÞ�kc 2 1 (Walsh 1987, Equation 7). For exam-
ple, if G=ud ¼ 10 and kc = 10, then there are expected to be
�6 3 107 gene conversion events before sufficient diver-
gence is reached. Given that both G=ud and kc are likely to
be greater than 10, EðnÞ is likely to be even larger than in this
example. Hence, situations where divergence stops gene con-
version are highly unlikely to occur.

Coalescent times for an island model

Here we show how a simple demographic model, the island
model, also can be implemented into the facultative sexual
analysis. The population consists of d demes with Nd individ-
uals in each, so the total population size is NT ¼ d3Nd. In
each generation, an individual can migrate to another deme
with probability m ¼ Oð1=NdÞ � 1; this assumption ensures
that no more than one sample migrates per generation. We
also can write this migration rate as M ¼ 2NTm so that
processes can be considered in continuous time. To keep so-
lutions tractable, we do not consider selfing in this analysis.

In this model, two alleles can be found in three noncoal-
esced states. Pairs of samples can be taken either from differ-
ent demes, from different individuals within a deme, or from
the same individual. File S2A shows how the transitionmatrix
G is formed and solved to obtain mean coalescent times for
different demes td, within demes tb, andwithin individuals tw.
Conveniently, in the continuous timescale [V;G;M ¼ Oð1Þ],
E½tb� and E½tw� are exactly as in Equation 11 with N ¼ Ndd,
and E½td� is the same as E½tb� but with an additional
ðd2 1Þ=2M term to denote isolation by distance (Slatkin
1991) (see also File S1B). Hence, the effects of population
structure, as well as the joint effect of gene conversion and
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Figure 5 Examples of typical genealogies produced by facultative sex coalescent simulations. For all simulations, NT ¼ 10; 000, and 25 paired samples
were simulated. Scale bars indicate time in past in units of 2NT generations. Subdivision by either allelic copy or deme is shown in the legend. (A)
Traditional (Kingman) coalescent in a nonsubdivided population with obligate sex. (B) Obligate sexual population in an island model, with d = 5 and
M ¼ 2NTm ¼ 0:01. (C and F) Nonsubdivided population with low sex V ¼ 2NTs ¼ 0:02. (D and G) Low-sex population (V ¼ 2NTs ¼ 0:02) in an island
model with a relatively high migration rate (d = 5,M ¼ 2NTm ¼ 1). (E and H) Low-sex population (V ¼ 2NTs ¼ 0:02) in an island model with a relatively
low migration rate (d = 5, M ¼ 2NTm ¼ 0:01). No gene conversion is present for A–E, but it is present at a rate G ¼ 2 in F–H.
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low sex, are simply additive. As in a nonsubdivided popula-
tion, sex has to be on the order of the inverse of the total
population size V ¼ Oð1Þ to have a significant impact on the
expected coalescent time. If gene conversion is present with
rateG ¼ Oð1Þ, thenmean coalescent times are greatly reduced.
Hence, even a small rate of gene conversion reduces within-
individual diversity that otherwisewould be caused by low rates
of sex. Further information is available in File S1B.

For multisample genealogies without gene conversion,
several distinct types of tree topologies can occur depending
on the relative rates of sex and migration. A standard gene-
alogy with obligate sex and highmigration is shown in Figure
5A. It is well known (Wakeley 2000; Wakeley and Aliacar
2001) that with obligate sex and limited migration, samples
separate themselves into subclades principally by their geo-
graphic location (Figure 5B), meaning that most of the var-
iation is among demes; the same result occurs with
facultative sex, provided that sex is not too rare. However,
if sex is low, then there tends to be two deep lineages, present
within all demes, representing the long expected coalescent
times between left/right haplotypes, assuming that gene con-
version is rare relative to sex (Figure 5C). That is, most of the
variation is within individuals created by excess heterozygos-
ity. When migration and sex are both low but migration is
high relative to sex [i.e., V � M � Oð1Þ], then principally
two major subclades arise based on the chromosome arm of
the sample. Within these major clades, five further clades are
apparent owing to the geographic location of the samples
(Figure 5D). A large fraction of the genetic variance is within
individuals, but there is also a considerable amount of varia-
tion among populations. Finally, if migration rates are of the
same order or lower than the rate of sex, the opposite pattern
is seen: there are five clades owing to geographic separation,
with pairs of subclades then forming as a result of the lack of
genetic segregation (Figure 5E). The frequency spectra for
each of these five examples are shown in File S2C (a–e). With
low sex, sequences present in half the allelic samples are very
common, representing ongoing divergence at the two differ-
ent allele copies. Furthermore, once isolation by distance is
additionally prevalent, polymorphisms tend to arise in mul-
tiples of five (because d = 5 in our example), reflecting seg-
regation both by deme and by allelic copy.

With even small rates of gene conversion [G ¼ Oð1Þ], spa-
tial structure remains, but little genetic partitioning is evi-
dent, leading to greater mixing of the two chromosome
arms (Figure 5, F–H). Such trees give a misleading appear-
ance of either a higher overall rate of sex or spatially hetero-
geneous rates of sex. File S2C (f and h) shows the relevant
site-frequency spectra: low-frequency variants are much
more likely to be produced as in the obligate sex case, high-
lighting how even weak gene conversion creates spurious
genomic signatures of frequent sex.

Diversity measurements and parameter estimation: In the
absence of gene conversion and with low rates of sex, it is
possible to use the migration model results with G = 0 to

derive diversity-based estimators for the mutation, migra-
tion, and sex rates. File S2A outlines how to derive the fol-
lowing scaled estimators for the mutation rate u ¼ 4NTm, sex
rate V ¼ 2NTs, and migration rate Me ¼ 2NTm=ðd2 1Þ (we
use different notation to differentiateMe from the parameter
M ¼ 2NTm introduced earlier):

û ¼ 2pb2pw

V̂ ¼ 2pb2pw

ðpw 2pbÞ
¼ û

ðpw 2pbÞ

M̂e ¼ 2pb2pw

2ðpd 2pbÞ
¼ û

2ðpd 2pbÞ

(15)

where pd is the average between-deme pairwise diversity, pb

is the average within-deme diversity, and pw is the average
within-individual diversity. We also investigate what sam-
pling strategies should be used to most accurately estimate
these parameters. Briefly, paired within-individual samples
should be used as much as possible, and if the means of V̂
and M̂e are taken from multiple chromosomes, the ratio of
means should be taken instead of the mean of ratios. How-
ever, these estimators assume that within-individual coales-
cent times are the longest owing to low rates of sex. If gene
conversion occurs on the same order or greater than the rate
of sex, within-individual diversity would be removed, so
these estimators perform badly. Hence, such estimators
would work only in the case where G � V � Oð1Þ, which
may not apply to many partially asexual species that have
large population sizes.

Heterogeneity in rates of sex

Results so far have assumed that the rate of sex remains
constant over genealogic time. However, this assumption
may not be realistic for a broad range of taxa. Facultative
sexual organisms are known to adjust their rate of sexual
reproduction depending on certain biotic and abiotic condi-
tions that can vary in time and space.We describe here how to
extend the preceding derivations to account for either tem-
poral or spatial heterogeneity. Unless otherwise stated, we do
not consider gene conversion in these derivations. For brevity,
we only outline key results, with further explanation available
in File S2A.

Temporally heterogeneous sexual reproduction: Consider a
case in which there is a single population, but the rates of sex
vary over time. At time t in the past, the rate of sex is st, and
the noncoalescent matrix for that generation Gt is given by
Equation 10, replacing s with st. The distributions of coales-
cent times (in generations) forwithin- and between-individual
samples are given by

PbðtÞ ¼ ð1; 0Þ
� Qt21

t9¼0
Gt

��
cb;t
cw;t

�

PwðtÞ ¼ ð0; 1Þ
� Qt21

t9¼0
Gt

��
cb;t
cw;t

� (16)
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where

cb;t ¼
1þ g

2N

cw;t ¼ st

2N
þ g

�
12st

�
12

1
2N

��
þ S

�
ðN2 1Þð1þ gÞst

2N

�
(17)

are the probabilities that two samples that are between in-
dividuals or within individuals at time t2 1 coalesce at time t.

Numerical evaluation of various scenarios involving tem-
poral heterogeneity indicates that the distribution of coales-
cent times can be well approximated using the arithmetic
average rate of sex and otherwise ignoring temporal hetero-
geneity. Thisworkswell provided that thefluctuations in rates
of sex are fast relative to the average coalescent time so that
lineages can be expected to experience “average” rates of sex
over their coalescent history. When very long periods (�N
generations) of low sex are punctuated by very brief periods
of high rates of sex, use of the average rate of sex can be
misleading. For example, we consider a species that repro-
duces exclusively asexually most of the time, but once every g

generations a fraction s* of offspring is produced sexually,
giving an average rate of sex of s ¼ s*=g. As illustrated in
Figure 6, when s* = 1/10 and g = N/10 (i.e., s ¼ 1=N), the
distributions closely follow those expected in a population
with a constant rate of sex of s = 1/N. However, the distri-
butions are notably different when s* = 1 and g = N (i.e.,
s ¼ 1=N). During the periodic episodes of sex, within-indi-
vidual samples are converted to between-individual samples,
allowing for their subsequent coalescence; this creates peri-
odic spikes in the distribution of coalescent times.

Spatially heterogeneous sexual reproduction:Wenext con-
sider the case inwhich there is an islandmodel, but rates of sex
occur at a lower ratesL in some demes and at a higher rate sH

in others (and these rates stay constant within each deme
over time). There are dL low-sex demes and dH high-sex
demes, with dL þ dH ¼ dT. Although we have assumed only
two rates of sex, the same approach can be extended to con-
sider an arbitrary number of rates. Given the variation in
sex rates considered, we will work with unscaled parameters
of s.

When calculating mean pairwise coalescent times, there
are now seven states to consider. For between-deme compar-
isons, two samples can be taken from either two different low-
sexdemes, twodifferent high-sexdemes, or one froma low-sex
deme and the other from a high-sex deme. In addition, for
within-deme samples (either from the same or separate indi-
viduals), the two samples can be from either a high-sex deme
or a low-sex deme.

One can form the 73 7Gmatrix, but in this case, deriving
each term is complicated, and the overall solutions are cum-
bersome. Hence, the full derivation is saved for File S1D.
Simpler equations can be obtained if it is assumed that mi-
gration m � 1 and sL � sH � 1. These simpler terms are
described in File S2A. In particular, elegant terms can be
obtained for the difference inmean coalescent times between
high- and low-sex demes

Dtw ¼ E
�
tw;L
�
2 E

�
tw;H

� � dT 2 1
2dHm

Dtb ¼ E
�
tb;L
�
2 E
�
tb;H
� � 2þ dT

	
d2T 23



2dTmfdT ½1þ dTð1þ 2mNdÞ�2 2g

(18)

These equations illustrate two points regarding the differ-
ences in expected coalescent times between samples from
low-sex demes compared with those from high-sex demes.
The differences increase asmigration rates decrease, and they
are also independent of the rates of sex. This is so because we
have assumed that sL � sH � 1. Consequently, alleles from
different left/right haplotypes cannot or are extremely un-
likely to coalesce within the low-sex demes. Such alleles must
first move to high-sex demes before coalescence can occur.
The difference shown in Equation 18 represents the waiting
time for alleles in low-sex demes to migrate to high-sex

Figure 6 Distribution of coalescent times with temporal heterogeneity in
rate of sex, assuming no self-fertilization or gene conversion. The rate of
sex is assumed to be zero most of the time, but once every g generations,
a fraction s* of offspring is produced sexually, giving an average rate of
sex of s ¼ s*=g. Here s ¼ 1=N (N = 106) for all cases, but this is achieved
via very high heterogeneity (s* = 1 and g = N; black dashed line), mod-
erate heterogeneity (s* = 0.1 and g = 0.1N; blue line), or no heteroge-
neity (s* = 1/N and g = 1; red line). The first sexual episode occurs g/2
generations in the past. The upper and lower panels show the distribu-
tions of coalescent times for between- and within-individual samples,
respectively.
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demes before coalescence can occur. Equation 18 reflects the
true differences as long as sL is low enough compared to the
migration rate (File S1D).

We can ask how average coalescent times correspond to
those expected in a metapopulation without spatial hetero-
geneity in sex rates but with the same average rate of sex [i.e.,
using s ¼ ðdL=dTÞsL þ ðdH=dTÞsH]. File S2D highlights how
using the weighted mean in the homogeneous result under-
estimates true mean coalescent times. This is so because us-
ing an average rate of sex does not account for how sequences
taken from low-sex demes contribute disproportionally to the
overall coalescent time.

File S2A shows how we apply diversity-based estimators
for the rates of sex to simulation data from a spatially hetero-
geneous case in the absence of gene conversion. If migration
is not too high (2mNT � 1), then application of these esti-
mators to individual demes can give a decent estimation of
the rate of sex within them. Estimates are less accurate if
migration is higher (2mNT � 1), instead predicting a rate of
sex intermediate between the two true values.

Discussion

Wehave outlinedhere a comprehensive theoretical treatment
to consider coalescent processes with arbitrary rates of sex.
After reapplying structured coalescent theory to previous
models (Bengtsson 2003; Ceplitis 2003), we show how to
calculate expected coalescent times for pairs of samples taken
either between or within individuals (Equation 6). We show
how this structured coalescent can be further extended to
take other cases into account, such as self-fertilization (Equa-
tion 9), gene conversion (Equation 11), and migration
according to an island model. From the migration case, we
further derived statistical estimators for the rates of muta-
tion, migration, and sex (Equation 17).

Our multisample simulation results highlight that with
very low rates of sexual reproduction, strong departures from
the standard neutral model expectations for summary statis-
tics such as Tajima’s D and Fay and Wu’s H are expected,
reflecting the deep genealogical divergence between alleles
within individuals. Thus, species with very low rates of sex
can exhibit diversity patterns resembling long-term balancing
selection and/or population subdivision. This highlights the
importance of analysis of within vs. between individual pat-
terns of diversity to help untangle the relative role of demo-
graphic history and selection from partial sex on the shape of
genealogies.

To more accurately account for demographic effects, we
found two solutions. First, newly derived estimators for the
mutation, sex, andmigration rates based onpairwise diversity
(Equation 17) can be accurate if good sampling practice is
followed (File S2A). However, these simple estimators can
produce misleading results under a wide variety of scenarios
that cannot be accounted for because of insufficient degrees
of freedom in the equations. These include the presence of
gene conversion rates of similar magnitude to sex and spatial

or temporal heterogeneity in sex. We therefore suspect that
the best manner to account for complex demography would
be to use coalescent simulations in an inference framework,
such as approximate Bayesian computation (ABC) (Sunnåker
et al. (2013)), to predict how summary statistics change un-
der different regimes. Our new simulation package could be
used in an ABC-type inference while varying the rate of sex to
simultaneously infer sex and demography.

One major result is that once sex becomes on the same
order as gene conversion, the latter becomes a powerful force
in reducing within-individual diversity and therefore remov-
ing genetic signatures of rare sex. Beyond the challenges this
presents for estimating ratesof sexual reproduction, this result
also has important evolutionary consequences because the
absence of permanent heterozygosity can influence not only
the structuring of neutral diversity but also the exposure of
both deleterious and advantageous recessive mutations to
selection. Although elevated heterozygosity has been ob-
served in somepartial andobligate asexual organisms (Tucker
et al. 2013; Hollister et al. 2015), there is increasing evidence
that amajor source of highwithin-individual diversity may be
hybrid origins of asexual lineages rather than ongoing accu-
mulation of diversity owing to new mutations (Tucker et al.
2013). Under biologically realistic rates of gene conversion,
this initially high heterozygosity may be rapidly eroded by
gene conversion, decreasing neutral variation within and be-
tween individuals (Tucker et al. 2013). Furthermore, these
potentially high rates of gene conversion make it unlikely
that two allelic copies develop sufficient divergence before
conversion resets their independent evolution (see also
Walsh 1987).

These analyses provide a more thorough theoretical basis
for which the genealogies of samples from facultative sexual
organisms can be reconstructed to provide the null distribu-
tion of neutral diversity for such populations. We have out-
linedmethodology so that it is clear how the results presented
here can be extended to cover even more complex scenarios;
nevertheless, there are several apparent routes for extending
this work. Although we have shown how to implement de-
mography via an islandmodel, itwould be desirable for future
models to consider a broader array of demographic scenarios.
Real-world populations go through a bewildering array of
changes, including extinction, recolonization, population ex-
pansion, and bottlenecking (Whitlock and McCauley 1999;
Veeramah and Hammer 2014). Advanced coalescent models
for obligate sexual organisms have been developed to deter-
mine how complex demographic effects affect genealogies
(Rosenberg and Nordborg 2002; Hudson 2002); it will cer-
tainly be worthwhile to implement similar demographic sce-
narios into facultative sex coalescent simulations given the
known impact of spatial effects on clonal species distribution
(Arnaud-Haond et al. 2007).

The other major extension that will prove important is to
implement recombination. In this case, the outputs will no
longer be a genealogy, but rather a recombination graph
(Griffiths 1981, 1991), although it would still be possible to
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create genealogies for unrecombined genomic segments. Re-
combination graphs can provide greater power for detecting
demographic effects with fewer samples, although it can be
more computationally demanding to run relevant analyses
(Schiffels and Durbin 2014). Adding recombination will
prove important for facultative sexual coalescents because
while sex has to be very rare [Oð1=NÞ] to affect the nonre-
combining genealogies presented here, differences in recom-
bination graphs might become apparent with higher rates of
sex. This is so because it is expected that recombination cor-
relates linearly with sex rate. A similar result was derived for
partially selfing organisms by Nordborg (2000). Genomic
sequences of facultative sexual organisms can reveal evi-
dence of rare recombination events, providing proof of cryp-
tic sex [examples were shown by Grimsley et al. (2010) for
the marine algae Ostreococcus spp. and Signorovitch et al.
(2005) for Placozoa]. In addition, ancestral graphs would
be able to separate out areas of the genome affected by gene
conversion, leading to much more refined measurements of
how this force affects genetic architecture. In particular, gene
conversion events in the absence of sex will lead to much
higher rates of gene conversion relative to crossing over. This
will have a strong effect on short- vs. long-range linkage dis-
equilibrium along chromosomes, which may enable accurate
estimators of the rate of sex even in the presence of significant
rates of gene conversion. Recombination graphs of facultative
sexual organisms thus can greatly increase the power by
which the effects of infrequent sex and demography can be
disentangled.
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A Further information on model derivations

This section provides further information on how the transition probabilities for

individual models are derived.

Basic Model

The logic behind each entry for the transition matrix T (Equation 1 in the main

text) is as follows.

• T11: Gene 1 in one individual picks any gene copy; the probability of this is

1. Gene 2 has to pick a copy in any other of the 1 − 1/N parents. Since this

parent is distinct and produces separate offspring, the effect of reproductive

mode averages out.

• T12: Gene 1 in one individual ‘picks’ any gene copy. Gene 2 has to pick the

alternate gene copy in the same parent, with probability 1/(2N). As before,

due to production of separate offspring (in the current generation), the effect

of reproductive mode averages out.

• T13: Gene 2 has to pick the same gene copy in the same parent as gene 1,

with probability 1/(2N).

• T21: Gene 2 has to pick the a gene copy in a different parent (p = 1 − 1/N).

Reproduction must be sexual (with probability σ) in order for both copies

to be placed in the same offspring.

• T22: Either reproduction is asexual with probability 1 − σ, in which case the

state is maintained. Otherwise reproduction is sexual, with the second allele
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copy choosing the different chromosome arm in the same individual as the

first, with net probability σ/2N .

• T23: The parent reproduces sexually, and transmits the same chromosome

arm in the population to the same offspring; this occurs with p = σ/(2N).

Coalescence from this state is impossible with asexual reproduction.

Including Selfing

The discordance matrix (G) with selfing is already well-known (Nordborg and

Donnelly 1997). Selfing only affects the within-individual transition probabilit-

ies: if two samples are taken from the same individual, they are descended from

different allele samples with probability 1/2; or the same sample (coalescence) with

probability 1/2 as well. With selfing included, the discordance matrix G is written

as:

G = σ · (1 − S)

1 − 1
N

1
2N

1 − 1
N

1
2N

+ σ · S

1 − 1
N

1
2N

0 1
2

+ (1 − σ)

1 − 1
N

1
2N

0 1



=

 1 − 1
N

1
2N

σ(1 − S)(1 − 1
N

) 1 − σ(1 − 1
2N ) + σS

2 (1 − 1
N

)


(1)

Including Gene Conversion

Let the rate of gene conversion be γ, which is unbiased (so both allele copies can

be equally affected). Since the outcome of gene conversion is to transmit the same
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allele copy to all offspring, it reduces the probability of two different allele copies

being descended from the same individual by 1 − γ, and increased coalescence

probability by a factor 1 + γ.

Here, the discordance matrix is altered to be as follows:

G = σ · (1 − S)

1 − 1
N

1−γ
2N

1 − 1
N

1−γ
2N

+ σ · S

1 − 1
N

1−γ
2N

0 1−γ
2

+ (1 − σ)

1 − 1
N

1−γ
2N

0 1 − γ



=

 1 − 1
N

1−γ
2N

σ(1 − S)(1 − 1
N

) (1 − γ)(1 − σ) + σ(1−S)(1−γ)
2N + σS(1−γ)

2


(2)

Variance and probability distribution with and without gene conversion

Here we describe how to determine the probability distribution and variance of

the coalescent processes using Laplace transformations (Herbots 1997). If we

denote the random variable of the between- and within-individual coalescent times

as τb, τw respectively, then their Laplace transformations are the solution to the

equations:

E[e−sτb ] = E[e−sXb ]
(1

2 + 1
2E[e−sτw ]

)
E[e−sτw ] = E[e−sXw ]

(
Γ

Γ + Ω + Ω
Γ + ΩE[e−sτw ]

) (3)

Xb and Xw are random variables of the waiting times for between- and within-

individual samples before they change state. Standard coalescent theory (Wake-
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ley 2009) states that these variables are exponentially distributed with rates 2

and (Ω + Γ) respectively. The Laplace transform of exponential distributions

with rates λ is λ/(λ + s). Equations 3 shows that once there is a state change,

between-individual samples either coalesce or enter the same individual, each with

probability 1/2. Alternatively, if within-individual samples change state, they co-

alesce with probability Γ/(Γ+Ω), or split into separate individuals with probability

Ω/(Γ + Ω). Further information on these calculations are available in Section A of

File S1. Solving this system of equations yields the following terms for τb, τw:

E[e−sτb ] = s+ 2Γ + Ω
Ω + 2Γ + s(2 + Γ + Ω) + s2

E[e−sτw ] = Ω + Γ(2 + s)
Ω + 2Γ + s(2 + Γ + Ω) + s2

(4)

Due to similarity between moment-generating functions and Laplace transform-

ations, we can find the variance of τb, τw by finding the first and second derivatives

of Equations 4 at s = 0 to obtain (Otto and Day 2007):

V ar[τb] = 3 + 2Ω + (Γ + Ω)2

(2Γ + Ω)2

V ar[τb] = (4 + 2Ω(1 + Γ) + Ω2)
(2Γ + Ω)2

(5)

To determine the probability distribution, we split Equation 4 into partial

fractions of the following form:
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E[e−sτi ] =
(
Ai

−λ1

)( −λ1

s− λ1

)
+
(
Bi

−λ2

)( −λ2

s− λ2

)
(6)

Here, λ1, λ2 are the roots of the denominator of the Laplace transforms in

Equation 4, equal to −(1/2)(−2 − Γ − Ω ±
√

(Γ − 2)2 + 2ΓΩ + Ω2). By comparing

Equation 6 to known Laplace transformations, it demonstrates that τb, τw are

sums of exponential distributions with rate parameters λ1, λ2 respectively. Some

algebra reveals the form of A and B as given by Equation 13 in the main text.

Island Model

First, consider two samples taken from different demes. The only possible change

in state is migration of one of the two samples into the same deme as the other,

with probability 2m/(d − 1). Coalescence of the samples, or migration of one

sample into the same individual is unlikely, of O(1/N2).

For two samples taken from the same deme but different individuals, they can

either become two samples originating from different demes if one of the two mi-

grates to any other deme. This event arises with probability 2m+O(m2). Altern-

atively, the samples can either be descended from the same individual (and form

an within-individual pair), or coalesce within the deme with probability 1/2Nd.

Thus the status quo is maintained with probability 1 − 1/Nd − 2m.

When two samples are taken from the same individual, several outcomes are

possible.

• One of the two samples can migrate into a different deme (with probability
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2m), but only if the two samples are first split by sex (with probability σ).

The net probability of state change is 2σm.

• Alternatively, the two samples can split by sex (σ), enter different individuals

(1 − 1/Nd), and neither migrate (1 − 2m). Net probability of state change

to two samples from the same deme but in different individuals is σ(1 −

1/Nd)(1 − 2m).

• The two samples coalesce with probability σ/(2Nd).

• Therefore, the status quo is maintained with probability of 1 minus the sum

of the aforementioned probabilities.

Hence, the non-identity matrix G is:

G =


1 − 2m

d−1
2m
d−1 0

2m 1 − 2m− 1
Nd

1
2Nd

2σm σ
(
1 − 1

Nd

)
(1 − 2m) 1 − σ

(
1 − 1

Nd

)
(1 − 2m) − 2σm− σ

2m


(7)

Solving to obtain mean coalescent times for different demes td, within-deme tb,

and within-individual tw:

E[td] =
(

2Ndd+ d− 1
2m

)
+
(1 − σ

σ

)(
Nd

2m+Nd

)

E[tb] = 2Ndd+
(1 − σ

σ

)(
Nd

2m+Nd

)
E[tw] = 2Ndd+

(1 − σ

σ

)( 2Nd

2m+Nd

) (8)
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Adding gene conversion to the rate matrix G is straightforward, since it is only

the within-individual transition terms that are affected. That is, the last term

of the second column is altered to (1 − γ)/(2Nd), and the coalescence probability

within-deme is altered to (σ(1 + γ))/(2Nd) − (1 − σ)γ.

Diversity measurements and parameter estimation in the

absence of gene conversion

Estimates of coalescent times can be used to determine the average pairwise di-

versity between samples. In the infinte-sites model (Hudson 1990), the total

number of new mutations accumulating along a branch is Poisson distributed with

mean µT , for µ the per-site mutation rate and T the branch length. Therefore,

the expected number of pairwise differences between two samples is 2µT .

If we use the approximate terms for the average coalescent time between

samples in an island model (Equation 8), mean pairwise diversity estimates are

obtained:

πd = θ

(
1 + d− 1

4mNdd
+
( 1

2Ndd

)(1 − σ

σ

))

πb = θ
(

1 +
( 1

2Ndd

)(1 − σ

σ

))
πw = θ

(
1 +

( 1
Ndd

)(1 − σ

σ

)) (9)

Here, θ = 4NTµ = 4Nddµ is a standard compound parameter for the scaled

population mutation rate. We can solve the system of Equations (9) to obtain

estimators for the mutation rate θ̂, the population-level rate of sex Ω̂ = 2Nddσ,
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and the scaled migration rate M̂e = (2Nddm)/(d− 1):

θ̂ = 2πb − πw

Ω̂ = 2πb − πw
(πw − πb)

= θ̂

(πw − πb)

M̂e = 2πb − πw
2(πd − πb)

= θ̂

2(πd − πb)

(10)

Note that the estimator Ω̂ further assumes that the net population size NDd �

θ̂. Unfortunately, it is not possible to obtain an estimator for gene conversion,

since there are not enough degrees of freedom, and because effects of sex and gene

conversion are connected when both are rare. Ceplitis (2003) derived equivalent

expressions for Ω̂, however they were not tested by simulations.

The above estimators are based on pairwise diversity. However, it is also pos-

sible to obtain estimators based on the expected homozygosity (Hudson 1990;

Nordborg and Donnelly 1997). We show in Section B how these alternat-

ive estimators of θ̂ and Ω̂ can be derived, but are very poor estimators of key

population parameters.

Sampling and estimating mutation and sex rates in a non-subdivided

population

Using the coalescent simulation, we tested the accuracy of the estimators for the

scaled mutation rate, θ̂, and rate of sex Ω̂, based on average pairwise diversity

(Equation 10). We analysed output from simulations with 25 paired samples, but

also investigated the output from 30 single samples and 10 paired samples, as

well as 10 single samples and 20 paired samples. Hence one can investigate what

8



sampling regime is best to obtain the most accuracy in estimating mutation and

sex rates.

Without gene conversion. Results are outlined in Table A. We see that,

broadly, θ̂ accurately matches the true θ for all the parameter range, except when

some single samples are present and the rate of sex is very low (Nσ � 1). How-

ever, measures of Ω fare less well, if we simply take the mean of estimates across

simulations. For θ = 5, estimates are only of the same order of magnitude if 25

paired samples are taken: even then, the mean estimates usually overestimate the

true Ω value by a factor of two. If θ = 2, the estimator Ω̂ fares better for all

sampling schemes, but still overestimates the true Ω value.

We next tested whether more accurate estimates of Ω can be obtained by not

taking the mean of values, but instead first calculating the mean of the numerator

and denominators in Equation 10, then take the ratio of means. This approach

was advocated by Weir and Cockerham (1984) to improve estimates of popu-

lation subdivision using F -statistics. Confidence intervals were calculated for such

statistics using 1000 bootstrap samples. For high rates of sex (Nσ � 1) estimates

are inaccurate and have a high absolute value. This results is reflective of the

fact that for Nσ � 1 it is hard to discern between obligate and facultative sex,

meaning the denominator will be close to zero since there is little difference for

between- and within-individual variation measures. Hence very noisy estimates

are produced. However, for low rates of sex (Nσ = O(1) or lower), Ω̂ with ratio of

means matches up extremely well with the true value, with estimates being most

accurate if only paired samples are used.

We also tested estimators for an island model scenario. In these simulations, the

total population size was fixed at 10, 000 and θ = 5; as well as varying rates of sex,

9



Table A: Estimates of θ and Ω from coalescent simulations for a non-subdivided
population. Values in parentheses are 95% confidence intervals.

N = 10, 000, True θ = 5
Sampling Regime True 2Nσ = Ω Mean θ̂ Mean Ω̂ Ω̂, Ratio of Means

20000 5.08 (± 0.197) -0.213 (± 5.58) -172 (-1197, 1551)
200 5.05 (± 0.199) 4.65 (± 13.3) -354 (-2584, 2398)

30 single samples, 2 4.99 (± 0.250) 0.430 (± 3.41) 1.99 (1.77, 2.26)
10 paired samples 0.2 4.83 (± 0.516) 0.420 (± 0.334) 0.195 (0.172, 0.218)

0.1 4.91 (± 0.842) 0.370 (± 0.185) 0.0962 (0.0785, 0.115)
0.02 2.64 (± 2.76) 0.0501 (± 0.0743) 0.0108 (0.00211, 0.0240)

20000 5.00 (± 0.183) 6.77 (± 9.56) -194 (-2355, 1383)
200 4.85 (± 0.170) 0.0502 (± 7.88) 112 (-755, 1087)

10 single samples, 2 5.16 (± 0.260) 4.17 (± 3.84) 2.14 (1.91, 2.41)
20 paired samples 0.2 5.10 (± 0.450) 0.608 (± 0.169) 0.205 (0.183, 0.229)

0.1 4.75 (± 0.616) 0.274 (± 0.160) 0.0942 (0.0815, 0.109)
0.02 4.27 (± 1.39) 0.224 (± 0.251) 0.0174 (0.0123, 0.0237)

25 paired samples

20000 4.87 (± 0.179) -15.2 (± 14.3) 705 (-3322, 2394)
200 5.02 (± 0.174) -3.91 (± 12.0) 105 (-396, 717)
2 5.05 (± 0.213) 2.25 (± 1.80) 2.01 (1.84, 2.21)

0.2 4.84 (± 0.436) 0.489 (± 0.183) 0.183 (0.164, 0.203)
0.1 4.85 (± 0.566) 0.357 (± 0.0723) 0.0965 (0.0844, 0.111)
0.02 5.30 (± 1.54) 0.0929 (± 0.0496) 0.0213 (0.0159, 0.0289)

N = 10, 000, True θ = 2
Sampling Regime True Nσ = Ω Mean θ̂ Mean Ω̂ Ω̂, Ratio of Means

20000 2.01 (± 0.0869) 1.40 (± 7.49) 539 (-1081, 2072)
200 2.02 (± 0.0910) 2.02 (± 8.77) 156 (-1501, 1697)

30 single samples, 2 2.04 (± 0.110) -1.19 (± 2.44) 2.09 (1.85, 2.38)
10 paired samples 0.2 1.94 (± 0.215) 3.41 (± 4.28) 0.190 (0.166, 0.218)

0.1 1.91 (± 0.279) 0.180 (± 0.200) 0.0959 (0.0806, 0.113)
0.02 1.08 (± 0.670) -0.218 (± 0.546) 0.0108 (0.00457, 0.0178)

20000 2.02 (± 0.0887) -35.1 (± 43.3) 125 (-1048, 1245)
200 1.94 (± 0.0753) 0.162 (± 17.9) 135 (-827, 1417)

10 single samples, 2 1.97 (± 0.112) 3.00 (± 2.62) 2.18 (1.94, 2.48)
20 paired samples 0.2 2.16 (± 0.252) 0.680 (± 0.919) 0.224 (0.194, 0.256)

0.1 1.67 (± 0.168) 0.417 (± 0.169) 0.0842 (0.0751, 0.0953)
0.02 1.51 (± 0.632) -0.109 (± 0.289) 0.0155 (0.0101, 0.0226)

25 paired samples

20000 1.99 (± 0.0856) 3.23 (± 7.49) -215 (-2291, 1950)
200 2.00 (± 0.0788) -1.85 (± 4.89) 175 (-2038, 2354)
2 2.03 (± 0.0924) 4.72 (± 2.72) 1.93 (1.78, 2.12)

0.2 1.94 (± 0.173) 0.787 (± 0.323) 0.190 (0.169, 0.214)
0.1 2.19 (± 0.284) 0.381 (± 0.237) 0.109 (0.0950, 0.126)
0.02 1.88 (± 0.427) 0.0857 (± 0.0296) 0.0191 (0.0149, 0.0241)

10



individuals were split across either 2 or 5 equally-sized demes. The net migration

rate 2NTm is fixed at 1 or 0.01. For simplicity, we only simulated 25 paired

samples. If the ratio of means are taken to estimate Ω and Me = 2NTm/(d − 1),

then these estimates seem to match up very well with true values, with the known

exception of estimating Ω when sex is common (Table B).

Table B: Estimates of θ, Ω, and Me from coalescent simulations in an island model.
All simulations use 25 paired samples. Values in parentheses are 95% confidence
intervals.

NT = 10, 000, d = 2, True θ = 5, 2NTm = M = 1
True 2Nσ = Ω Mean θ̂ Mean Ω̂ Mean M̂e Ω̂, Ratio of Means M̂e, Ratio of Means

20000 4.90 (± 0.180) -5.32 (± 10.1) 1.45 (± 3.18) -551 (-2397, 3231) 0.904 (0.838, 0.980)
200 5.07 (± 0.191) 4.17 (± 5.33) 2.63 (± 6.84) 151 (-1581, 1714) 1.05 (0.965, 1.14)
2 4.89 (± 0.224) 1.93 (± 1.58) 0.00603 (± 3.48) 1.94 (1.75, 2.18) 0.957 (0.875, 1.05)

0.2 5.69 (± 0.575) 0.598 (± 0.177) 4.10 (± 2.27) 0.224 (0.198, 0.254) 1.18 (1.03, 1.34)
0.1 4.69 (± 0.526) 0.489 (± 0.468) 2.57 (± 1.58) 0.0870 (0.0771, 0.0994) 0.939 (0.773, 1.16)
0.02 5.27 (± 1.13) 0.0655 (± 0.0122) 3.29 (± 1.10) 0.0209 (0.0167, 0.0257) 0.783 (0.572, 1.08)

NT = 10, 000, d = 5, True θ = 5, 2NTm = M = 1 (Me = 0.25)
True 2Nσ = Ω Mean θ̂ Mean Ω̂ Mean M̂e Ω̂, Ratio of Means M̂e, Ratio of Means

20000 4.94 (± 0.217) -2.07 (± 2.72) 0.322 (± 0.0167) -707 (-1725, 1658) 0.241 (0.229, 0.253)
200 4.87 (± 0.232) 2.93 (± 4.13) 0.345 (± 0.0239) 536 (-1130, 1855) 0.246 (0.233, 0.261)
2 5.00 (± 0.295) 2.28 (± 2.14) 0.370 (± 0.0304) 1.95 (1.72, 2.24) 0.249 (0.233, 0.266)

0.2 5.11 (± 0.433) 0.427 (± 0.850) 0.404 (± 0.0366) 0.198 (0.179, 0.221) 0.253 (0.232, 0.275)
0.1 5.28 (± 0.547) 0.228 (± 0.0785) 0.427 (± 0.0379) 0.104 (0.0921, 0.117) 0.280 (0.254, 0.306)
0.02 5.43 (± 1.07) 0.0487 (± 0.00706) 0.401 (± 0.0454) 0.0220 (0.0179, 0.0264) 0.251 (0.206, 0.304)

NT = 10, 000, d = 2, True θ = 5, 2NTm = M = 0.01
True 2Nσ = Ω Mean θ̂ Mean Ω̂ Mean M̂e Ω̂, Ratio of Means M̂e, Ratio of Means

20000 4.71 (± 0.689) -3.81 (± 14.3) 0.0507 (± 0.0173) 226 (-904, 540) 0.00968 (0.00831, 0.0114)
200 4.88 (± 0.928) -11.8 (± 10.1) 0.0464 (± 0.0109) 33.1 (-212, 314) 0.0101 (0.00831, 0.0124)
2 4.52 (± 0.897) 1.44 (± 1.78) 0.0571 (± 0.0236) 1.77 (1.23, 2.67) 0.00951 (0.00757, 0.0117)

0.2 6.33 (± 1.57) 0.0914 (± 0.0772) 0.0549 (± 0.0171) 0.257 (0.191, 0.339) 0.0132 (0.0102, 0.0167)
0.1 4.77 (± 1.55) -0.0863 (± 0.226) 0.0528 (± 0.0421) 0.0978 (0.0705, 0.135) 0.00877 (0.00610, 0.0120)
0.02 6.63 (± 2.41) 0.110 (± 0.278) 0.0845 (± 0.0436) 0.0262 (0.0172, 0.0362) 0.0130 (0.00872, 0.0183)

NT = 10, 000, d = 5, True θ = 5, 2NTm = M = 0.01 (Me = 0.0025)
True 2Nσ = Ω Mean θ̂ Mean Ω̂ Mean M̂e Ω̂, Ratio of Means M̂e, Ratio of Means

20000 5.55 (± 1.81) -7.26 (± 16.1) 0.00329 (± 0.000898) -26.5 (-203, 166) 0.00270 (0.00189, 0.00355)
200 4.55 (± 1.76) 5.87 (± 5.65) 0.00303 (± 0.00111) -9.67 (-96.0, 59.2) 0.00225 (0.00142, 0.00322)
2 4.40 (± 2.58) 0.640 (± 0.128) 0.00267 (± 0.00112) 1.87 (0.629, 7.80) 0.00223 (0.00110, 0.00386)

0.2 5.18 (± 2.26) 0.0199 (± 0.0544) 0.00345 (± 0.00147) 0.202 (0.119, 0.311) 0.00253 (0.00151, 0.00369)
0.1 3.70 (± 1.39) 0.0256 (± 0.0506) 0.00327 (± 0.00141) 0.0745 (0.0484, 0.107) 0.00184 (0.00124, 0.00255)
0.02 5.21 (± 3.51) 0.0287 (± 0.0297) 0.00346 (± 0.00171) 0.0217 (0.00996, 0.0407) 0.00269 (0.00125, 0.00472)
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Including gene conversion. The estimators presented in Equation 10 are

based on the assumption of no gene conversion. In reality, gene conversion is always

present but there are not enough degrees of freedom from the two-sample model

to independently estimate its rate. We hence examined how well these estimators

(derived assuming no gene conversion) perform when applied to simulation data

in which gene conversion is present (Table C). Consistent with the results of

Equation 11 in the main text, we find that gene conversion does not have much

effect on the estimates if γ � σ. However, if γ becomes large relative to σ then Ω

can be badly underestimated. Hence, even if only a low rate of gene conversion is

present in facultatively-sexual species, this will create an excess of homozygosity

and low genotype diversity, and will cause these estimators to perform badly.

Table C: Estimates of θ and Ω from a non-subdivided population, N = 10, 000, true
θ = 5, Ω = 0.2 (σ = 0.1/N) and variable rates of gene conversion. All simulations
use 25 paired samples. Values in parentheses are 95% confidence intervals.

Rate of Gene Conversion γ Mean θ̂ Mean Ω̂ Ω̂, Ratio of Means
0.01 × σ 5.01 (± 0.426) 0.617 (± 0.0957) 0.196 (0.178, 0.217)
0.1 × σ 5.00 (± 0.450) -1.42 (± 3.57) 0.247 (0.221, 0.278)
1 × σ 4.98 (± 0.292) 0.0914 (± 5.47) 0.779 (0.709, 0.865)
10 × σ 5.13 (± 0.219) 0.460 (± 3.90) -4.00 (-4.26, -3.79)
50 × σ 4.92 (± 0.182) -2.38 (± 0.262) -2.25 (-2.26, -2.23)
100 × σ 5.00 (± 0.203) -2.05 (± 0.226) -2.12 (-2.12, -2.11)
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Approximations with spatially heterogeneous rates of sex

This section outlines approximations for coalescent times if assuming that migra-

tion m � 1 and σL � σH � 1. Here, the between-deme mean coalescent times for

two high-sex demes (tD,HH), a high-sex and low-sex deme (tD,HL), and two low-sex

demes (tD,LL) are obtained as:

E[tD,HH ] ≈ D1

fH
+ 1
fHσH

E[tD,HL] ≈ E[tD,HH ] + D2

fH

E[tD,LL] ≈ E[tD,HH ] + 2D2

fH

(11)

where fH is the fraction of high-sex demes dH/dT , and D1, D2 are compound

parameters:

D1 = (dT (1 + 4mNd) − 1)((dT − 1)(dH + dT (1 + dH)) + 2dHd2
TmNd)

2mdT (dT (1 + dT (1 + 2mNd)) − 2)

D2 = (dT − 1)2

2dTm(dT (1 + dT (1 + 2mNd)) − 2) ≈ 1
2dTm(1 + 2mNd)

(12)

The approximation for D2 arises as dT becomes large. Similarly, the approx-

imate mean coalescent times between-individuals in a high- or low-sex deme (tb,H

and tb,L respectively), and within-individual times (tw,H and tw,L) can be built up

as:
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E[tw,H ] ≈ 2
(
dTNd

D3

fH
+ 1
fHσH

)

E[tw,L] ≈ E[tw,H ] + 2
fH

(
dT − 1
2dTm

)

E[tb,H ] ≈ 2dTNd
D3

fH
+ 1
fHσH

E[tb,L] ≈ E[tb,H ] + D4

fH

(13)

with D3, D4 being further compound parameters:

D3 = (1 − dT + fH(1 − d2
T (1 + 2mNd)))

2 − dT (1 + dT + 2dTmNd)
≈ fH

D4 = 2 + dT (d2
T − 3)

2dTm(dT (1 + dT (1 + 2mNd)) − 2) ≈ dT (1 + 2mNd) − 1
2dTm(1 + 2mNd)2

(14)

Again, approximations are for large dT . Furthermore, due to the recursive

nature of Equation 13, elegant terms can also be obtained for the difference in

mean coalescent times between high-sex and low-sex demes (given as Equation 16

in the main text):

∆tw = E[tw,L] − E[tw,H ] ≈ dT − 1
2dHm

∆tb = E[tb,L] − E[tb,H ] ≈ 2 + dT (d2
T − 3)

2dTm(dT (1 + dT (1 + 2mNd)) − 2)

(15)

Another simple case we can consider is where there exists a single deme of

each type (dL = dH = 1), and where both σL and σH are small but of the same

order. Here, the difference in mean coalescent times for samples from low-sex
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demes compared to those from high-sex demes becomes:

∆tw ≈ 2(1 + 2mNd)(σH − σL)
σHσL + 4m2Nd(σH + σL) + 2m(σH + σL + 2NdσHσL)

∆tb ≈ σH − σL
σHσL + 4m2Nd(σH + σL) + 2m(σH + σL + 2NdσHσL)

(16)

In this case, we can see that the difference in expected coalescent times grows

with the difference in sex rates, and decreases with migration.

Comparison with non-heterogeneous results. We can ask how average

coalescent times correspond to those expected in a metapopulation without spa-

tial heterogeneity in sex rates, but with the same average rate of sex (i.e., using

σ = (dL/dT )σL + (dH/dT )σH). Figures D(a) and D(c) demonstrate that if the rate

of migration and low-sex rates are not too low (2NTm = 1 and NTσL ≈ 1 respect-

ively), then the average spatially heterogeneous within-individual coalescent time

can be well-approximated by using a mean of sex rates. However, as both the

migration rate and low-sex rates decrease, then using non-heterogeneous results

with the mean rate of sex greatly underestimates the true mean coalescent time.

Plotting the ratio of the coalescent times for low- and high-sex demes respectively

demonstrate that coalescent times in the low-sex case increases disproportionally

with reduced σL and m, compared to those in high-sex demes (Figures D(b), D(d)).

Similar results arise for between-deme cases, as well as those for σH = 1 (Section

D of File S1).
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Simulation Results with spatially heterogeneous rates of sex

We ran coalescent simulations over a four-deme island model, either with or

without heterogeneity. With heterogeneity, two of the demes had a high rate

of sex, while the other two had a low rate. In a homogeneous scenario ran for

comparison, the single rate of sex is that used in the heterogeneous case, averaged

over demes. Note that none of these simulations consider gene conversion, which

could invalidate these results if present at a sufficiently high frequency.

Table D shows that, if migration is relatively high (2NTm = 1) and both rates

of sex are small (σ = O(1/NT )), estimates of sex Ω are close to the average over

demes, albeit mean values tend to be underestimates. With lower migration rates

though (2NTm = 0.01), Ω estimates are substantially lower than the average over

demes, and are negative on average if σL is very low (0.01/NT ). Furthermore, if

the high-sex demes exhibit obligate sex (σH = 1), then measures of Ω predict that

the population only has a low rate of sex, even though the population-wide average

tends towards obligate sex. All these results are again reflective of the analytical

solutions (Figure D); with spatial heterogeneity (especially with low migration

rates), low-sex demes contribute disproportionally to the coalescence time.

However, if one were to instead estimate Ω separately for just the high-sex and

low-sex demes, then in cases of low migration, the estimates do seem to accurately

measure the true σ values used in these demes, with the additional caveat that

obligate sex demes have large, noisy Ω estimates (Table E). With higher rates

of migration, the two separate estimates of Ω are less accurate and appear to

converge towards each other, reflecting higher rates of gene flow between distinct

areas. Such partitioning demonstrates that, with low rates of migration, accurate
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estimates of sex in each area are possible if there are enough samples in each deme.

Table D: Estimates of θ, Ω, and Me from coalescent simulations with spatially
heterogeneous rates of sex. All simulations used 25 paired samples with N =
10, 000 over four demes.

Two high-sex, two low-sex demes
Parameters Used Mean θ̂ Mean Ω̂, Ratio of Means Mean M̂e, Ratio of Means

Me = 1/3, σL = 0.1/N , σH = 1/N 4.80 (± 0.286) 0.810 (0.735, 0.895) 0.310 (0.289, 0.334)
Me = 1/3, σL = 0.01/N , σH = 1/N 5.26 (± 0.349) 0.785 (0.712, 0.870) 0.335 (0.313, 0.361)
Me = 0.01/3, σL = 0.1/N , σH = 1/N 4.12 (± 1.84) 0.321 (0.182, 0.519) 0.00278 (0.00162, 0.00419)
Me = 0.01/3, σL = 0.01/N , σH = 1/N -1.36 (± 4.02) -0.0175 (-0.0583, 0.04259) -0.000902 (-0.00298, 0.00220)

Me = 1/3, σL = 0.1/N , σH = 1 4.79 (± 0.266) 2.43 (2.15, 2.80) 0.318 (0.297, 0.339)
Me = 0.01/3, σL = 0.1/N , σH = 1 2.05 (± 0.489) -265 (-1236, 1106) 0.00134 (0.00103, 0.00170)
Me = 1/3, σL = 0.01/N , σH = 1 5.09 (± 0.268) 2.36 (2.09, 2.68) 0.322 (0.301, 0.343)
Me = 0.01/3, σL = 0.01/N , σH = 1 -4.08 (± 1.16) -0.0523 (-0.0654, -0.0361) -0.00273 (-0.00350, -0.00190)

All demes have same rate of sex, average rates of heterogeneous case
Parameters Used Mean θ̂ Mean Ω̂, Ratio of Means Mean M̂e, Ratio of Means

Me = 1/3, σL = 0.1/N , σH = 1/N 4.88 (± 0.265) 1.02 (0.935, 1.13) 0.321 (0.299, 0.342)
Me = 1/3, σL = 0.01/N , σH = 1/N 4.73 (± 0.284) 0.957 (0.865, 1.06) 0.316 (0.295, 0.339)
Me = 0.01/3, σL = 0.1/N , σH = 1/N 5.27 (± 1.92) 1.17 (0.664, 2.26) 0.00349 (0.00236, 0.00486)
Me = 0.01/3, σL = 0.01/N , σH = 1/N 4.39 (± 2.11) 1.03 (0.481, 2.27) 0.00292 (0.00176, 0.00459)

Me = 1/3, σL = 0.1/N , σH = 1 5.01 (± 0.229) -606 (-2618, 1464) 0.336 (0.317, 0.357)
Me = 0.01/3, σL = 0.1/N , σH = 1 5.10 (± 1.78) -28.4 (-164, 195) 0.00327 (0.00230, 0.00449)
Me = 1/3, σL = 0.01/N , σH = 1 4.97 (± 0.213) 434 (-1819, 2350) 0.325 (0.307, 0.344)
Me = 0.01/3, σL = 0.01/N , σH = 1 5.46 (± 1.68) -37.0 (-391, 238) 0.00365 (0.00262, 0.00487)

Table E: Estimates of Ω from the coalescent simulations in Table D, but if estim-
ating over only the high-sex or low-sex demes respectively.

Parameters Used Mean Ω̂ from high-sex demes Mean Ω̂ from low-sex demes
M = 1/3, σL = 0.1/N , σH = 1/N 1.27 (1.10, 1.46) 0.560 (0.495, 0.640)
M = 1/3, σL = 0.01/N , σH = 1/N 1.37 (1.19, 1.56) 0.515 (0.454, 0.590)
M = 0.01/3, σL = 0.1/N , σH = 1/N 2.15 (0.862, 9.43) 0.278 (0.00241, 0.00650)
M = 0.01/3, σL = 0.01/N , σH = 1/N 5.58 (-64.4, 30.3) 0.0255 (0.0113, 0.0422)

M = 1/3, σL = 0.1/N , σH = 1 137 (-1191, 1112) 1.07 (0.931, 1.23)
M = 0.01/3, σL = 0.1/N , σH = 1 -265 (-859, 681) 0.211 (0.111, 0.344)
M = 1/3, σL = 0.01/N , σH = 1 99.5 (-587, 1100) 1.10 (0.946, 1.28)
M = 0.01/3, σL = 0.01/N , σH = 1 6.08 (3.64, 18.5) 0.0209 (0.0106, 0.0326)
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B Additional Results

(a) (b)

(c) (d)

(e)

Figure A: How classic genomic summary statistics are affected by infrequent sex
in a non-subdivided population, if based on 50 single samples. All graphs are as a
function of σ; parameters are N = 10, 000, θ = 5 (black points by default) or θ = 2
(red points by default), averaged over 1000 coalescent simulations. Error bars are
95% confidence intervals; if they cannot be seen, they lie within points. (a) Mean
number of segregating sites in a sample; the horizontal bar shows the expectation
for σ = 1 (obligate sex). (b) Estimates of θ using Watterson’s θ (black or red
points for θ = 5 or 2), or the mean pairwise differences between pairs of samples
(blue or orange points for θ = 5 or 2). (c) Tajima’s D. The horizontal line at
zero is the (unbiased) expectation for obligate sex. (d) Fay and Wu’s normalised
H statistic. (e) The mean number of unique haplotypes present: the obligate-sex
expectation is calculated using Equation 3.85 of Ewens (2004). Since only single
samples were simulated, it was not possible to measure mean genotype diversity.
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(a) (b)

(c) (d)

(e) (f)

Figure B: How classic genomic summary statistics are affected by infrequent sex
in a non-subdivided population, with gene conversion present at rate γ = 1/N
(or Γ = 2). All graphs are as a function of σ; parameters are N = 10, 000,
θ = 5 based on 25 paired samples, averaged over 1000 coalescent simulations.
Similar results are in File S1 (Section A) for 50 individual samples. Error bars
are 95% confidence intervals. (a) Mean number of segregating sites in a sample;
the horizontal bar shows the expectation for σ = 1 (obligate sex). (b) Estimates
of θ using Watterson’s θ (black points), or the mean pairwise differences between
pairs of samples (blue points). (c) Tajima’s D. The horizontal line at zero is the
(unbiased) expectation for obligate sex. (d) Fay and Wu’s normalised H statistic.
(e) The mean number of unique haplotypes present: the obligate-sex expectation is
calculated using Equation 3.85 of Ewens (2004). (f) The mean number of unique
genotypes present.
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Figure C: The equivalent site frequency spectra (SFS) produced by the same simu-
lations that created the genealogies in Figure 5 in the main text. Parameter values
are the same.
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Figure D: Contour plots of the ratio of either the exact within-individual mean
coalescent times in a spatially heterogeneous population to those predicted by a
weighted mean of sex rates ((a) and (c)), or the ratio of the exact mean coalescent
times in low-sex demes compared to high-sex demes ((b) and (d)). Plots are
presented as functions of the migration rate m and the low rate of sex σL. Some
contour labels are added for clarity. (a) and (b) are for the between-individual case,
with (c) and (d) are the within-individual case. Other parameters are N = 10, 000,
σH = 1/N , dT = 4 with dH = dL = 2.
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(a) Estimators based on homozygosity

Estimators for mutation and sex rates can also be derived based on the average

pairwise homozygosity in the population. That is, if two samples were picked at

random, what is the probability that they are identical by descent? The basic idea

is that, over a pair of branches of time t, the average number of polymorphisms

is Poisson distributed with mean 2µt. Hence the probability that no mutations

arise between them is e−2µt. This term can be included into to the probability

distribution of coalescence times, to calculate the mean homozygosity. A classic

result for the Kingman coalescent is that the homozygosity probability is 1/(1+θ)

(Hudson 1990).

Accordingly, one can calculate the expected between- and within-individual

homozygosity in a facultative sexual population, using the unscaled mean coales-

cent times (see section A of File S1). For between-individual homozygosity Hb, we

integrate e−2µt over an exponential distribution with mean tb:

E(Hb) = H̃b =
t=∞∫
t=0

e
− t

2N(1− 1
2N )+ 1

σ e−2µt

2N
(
1 − 1

2N

)
+ 1

σ

dt

= 2NΩ
2N(θ + Ω(1 + θ)) − θΩ

(17)

with θ = 4Nµ and Ω = 2Nσ as before. In the limit of large N , Equation 17

simplifies to:

H̃b ≈ Ω
θ + Ω(1 + θ) (18)

Similarly, one can derive the expected within-individual homozygosity H̃w as
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follows:

H̃w =
t=∞∫
t=0

e
− t

2N(1− 1
N )+ 2

σ e−2µt

2N
(
1 − 1

N

)
+ 2

σ

dt

= NΩ
N(2θ + Ω(1 + θ)) − θΩ

≈ Ω
2θ + Ω(1 + θ)

(19)

Solving Equation 18 and 19 leads to estimates of Ω and θ based on homozy-

gosity:

θ̃H = 2
H̃b

− 1
H̃w

− 1

Ω̃H = 2H̃w − H̃b(1 + H̃w)
H̃b − H̃w

(20)

Table F shows estimates of θ and Ω using Equation 20. Irrespective of the

sampling scheme, estimates are extremely poor, rarely matching up with the true

values, and are often inadmissible (less that zero), especially for Ω. Unlike those

based on polymorphism, measurements become worse if the ratio of means are

used. As coalescent times are extended with low rates of sex, the probability of

homozygosity is greatly reduced compared to obligate sex cases. As a consequence,

the denominators of Equation 20 can be very low, consequently causing massively

inflated estimates of θ and Ω. For this reason, homozygosity-based estimators are

not recommended at all for genealogies with low rates of sex.
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Table F: Estimates of θ and Ω from coalescent simulations for a non-subdivided
population, using homozygosity-based estimators. Values in parentheses are 95%
confidence intervals.

N = 10, 000, True θ = 5
Sampling Regime True 2Nσ = Ω Mean θ̃H Mean Ω̃H θ̃H , Ratio of Means Ω̃H , Ratio of Means

20000 5.92 (0.315) -2.27 (1.58) 3.85 (3.38, 4.32) 284 (-605, 469)
200 5.72 (0.299) 0.131 (1.73) 3.97 (3.56, 4.44) -28.2 (-273, 163)

30 single samples, 2 4.57 (0.337) -0.854 (0.487) 31.3 (26.3, 38.2) -2.29 (-2.34, -2.24)
10 paired samples 0.2 6.52 (0.530) -0.757 (0.439) 608 (384, 1146) -2.02 (-2.03, -2.01)

0.1 4.91 (0.404) -1.22 (0.431) 921 (533, 2101) -2.01 (-2.02, -2.00)
0.02 1.73 (0.250) -0.996 (0.00621) 8538 (3281, 35963) -2.00 (-2.00, -2.00)

20000 5.08 (0.348) -0.442 (1.62) 3.80 (3.49, 4.10) 32.9 (-152, 253)
200 4.39 (0.346) -1.62 (2.08) 4.04 (3.66, 4.44) -37.7 (-469, 210)

10 single samples, 2 0.341 (0.443) 0.310 (2.43) 24.6 (20.4, 30.3) -2.35 (-2.41, -2.30)
20 paired samples 0.2 -0.152 (0.527) -1.05 (0.180) 201 (141, 303) -2.04 (-2.05, -2.02)

0.1 -0.979 (0.523) -0.854 (0.261) 323 (163, 805) -2.02 (-2.03, -2.02)
0.02 -5.14 (0.593) -0.992 (0.0146) 6169 (2489, 32478) -2.00 (-2.00, -2.00)

25 paired samples

20000 4.60 (0.334) -0.937 (1.36) 3.59 (3.28, 3.94) 273 (-1061, 755)
200 4.32 (0.370) -0.642 (1.29) 4.12 (3.78, 4.46) -23.33 (-78.0, -14.5)
2 -1.67 (0.536) -1.44 (0.636) 25.8 (21.2, 31.9) -2.32 (-2.37, -2.27)

0.2 -4.49 (0.555) -1.03 (0.0717) 232 (142, 425) -2.03 (-2.05, -2.02)
0.1 -4.39 (0.583) -1.03 (0.0610) 417 (266, 818) -2.02 (-2.03, -2.01)
0.02 -5.64 (0.302) -0.997 (0.00327) 4594 (2179, 30691) -2.00 (-2.00, -2.00)

N = 10, 000, True θ = 2
Sampling Regime True 2Nσ = Ω Mean θ̃H Mean Ω̃H θ̃H , Ratio of Means Ω̃H , Ratio of Means

20000 1.92 (0.167) 0.133 (1.80) 1.33 (1.20, 1.47) -161 (-920, 600)
200 2.08 (0.180) -2.09 (1.72) 1.48 (1.34, 1.63) -68.3 (-653, 524)

30 single samples, 2 0.599 (0.214) -1.54 (0.889) 5.89 (5.17, 6.81) -2.66 (-2.76, -2.58)
10 paired samples 0.2 -0.274 (0.194) -0.996 (0.259) 50.7 (37.6, 75.1) -2.06 (-2.07, -2.05)

0.1 0.375 (0.229) -1.06 (0.177) 123 (84.8, 191) -2.03 (-2.04, -2.02)
0.02 -0.857 (0.237) -0.988 (0.0275) 505 (236, 1981) -2.01 (-2.01, -2.00)

20000 1.91 (0.186) -1.77 (3.67) 1.53 (1.41, 1.65) -42.5 (-327, 172)
200 1.91 (0.178) -1.21 (3.90) 1.58 (1.46, 1.71) -46.7 (-449, 253)

10 single samples, 2 2.31 (0.378) -1.75 (1.80) 6.04 (5.26, 7.03) -2.59 (-2.67, -2.52)
20 paired samples 0.2 -4.75 (0.410) -0.859 (0.266) 57.3 (42.5, 82.4) -2.06 (-2.07, -2.04)

0.1 -3.60 (0.445) -0.968 (0.0564) 103 (64.7, 190) -2.03 (-2.04, -2.02)
0.02 -4.85 (0.433) -0.981 (0.0335) 600 (253, 3325) -2.00 (-2.01, -2.00)

25 paired samples

20000 2.05 (0.166) 0.402 (1.62) 1.35 (1.26, 1.45) 64.1 (-709, 751)
200 2.10 (0.176) -0.514 (1.69) 1.53 (1.42, 1.65) -51.5 (-373, 190)
2 -3.91 (0.494) -0.696 (0.874) 6.82 (6.03, 7.76) -2.56 (-2.63, -2.50)

0.2 -6.10 (0.548) -0.844 (0.263) 42.9 (32.7, 58.5) -2.06 (-2.08, -2.05)
0.1 -5.41 (0.560) -0.984 (0.0905) 97.7 (64.7, 158) -2.03 (-2.04, -2.02)
0.02 -5.60 (0.449) -0.971 (0.0478) 707 (343, 2604) -2.01 (-2.01, -2.00)
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editors, Progress in Population Genetics and Human Evolution, volume 87 of

IMA Volumes in Mathematics and its Applications. Springer, New York, 231–

255.

Hudson, R. R., 1990 Gene Genealogies and the Coalescent Process. In D. J.

Futuyma and J. Antonovics, editors, Oxford Surveys in Evolutionary Biology,

volume 7. Oxford Univ. Press, Oxford, 1–42.

Nordborg, M., and P. Donnelly, 1997 The coalescent process with selfing.

Genetics 146: 1185–1195.

Otto, S. P., and T. Day, 2007 A Biologist’s Guide to Mathematical Modeling

in Ecology and Evolution. Princeton University Press, Princeton.

Wakeley, J., 2009 Coalescent theory: an introduction, volume 1. Roberts &

Company Publishers, Greenwood Village, Colorado.

Weir, B. S., and C. C. Cockerham, 1984 Estimating F -Statistics for the

analysis of population structure. Evolution 38: 1358–1370.

25



FileS3  Simulation code, written in R. (.zip, 194 KB) 

 

Available for download as a .zip file at 
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