
RESEARCH ARTICLE

Transient Accumulation of NO2
- and

N2O during Denitrification Explained by
Assuming Cell Diversification by Stochastic
Transcription of Denitrification Genes
Junaid Hassan1☯*, Zhi Qu1‡¤, Linda L. Bergaust2‡, Lars R. Bakken1☯

1 Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway, 2 Chemistry,
Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway

☯ These authors contributed equally to this work.
¤ Current address: College of Natural Resources and Environment, Northwest A&F University, Shaanxi,
China
‡ ZQ and LLB also contributed equally to this work.
* junaid.hassan@nmbu.no

Abstract
Denitrifying bacteria accumulateNO�

2 , NO, and N2O, the amounts depending on transcrip-

tional regulation of core denitrification genes in response to O2-limiting conditions. The

genes include nar, nir, nor and nosZ, encoding NO�
3 -, NO

�
2 -, NO- and N2O reductase,

respectively. We previously constructed a dynamic model to simulate growth and respira-

tion in batch cultures of Paracoccus denitrificans. The observed denitrification kinetics were

adequately simulated by assuming a stochastic initiation of nir-transcription in each cell with

an extremely low probability (0.5% h-1), leading to product- and substrate-induced transcrip-

tion of nir and nor, respectively, via NO. Thus, the model predicted cell diversification: after

O2 depletion, only a small fraction was able to grow by reducingNO�
2 . Here we have

extended the model to simulate batch cultivation with NO�
3 , i.e., NO

�
2 , NO, N2O, and N2

kinetics, measured in a novel experiment including frequent measurements of NO�
2 . Pa.

denitrificans reduced practically all NO�
3 to NO�

2 before initiating gas production. TheNO�
2

production is adequately simulated by assuming stochastic nar-transcription, as that for
nirS, but with a higher probability (0.035 h-1) and initiating at a higher O2 concentration. Our

model assumes that all cells express nosZ, thus predicting that a majority of cells have only

N2O-reductase (A), while a minority (B) has NO�
2 -, NO- and N2O-reductase. Population B

has a higher cell-specific respiration rate than A because the latter can only use N2O pro-

duced by B. Thus, the ratio B
A is low immediately after O2 depletion, but increases throughout

the anoxic phase because B grows faster than A. As a result, the model predicts initially low

but gradually increasing N2O concentration throughout the anoxic phase, as observed. The

modelled cell diversification neatly explains the observed denitrification kinetics and tran-

sient intermediate accumulations. The result has major implications for understanding the

relationship between genotype and phenotype in denitrification research.
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Author Summary

Denitrifiers generally respire O2, but if O2 becomes limiting, they may switch to anaerobic
respiration (denitrification) by producing NO�

3 -, NO
�
2 -, NO- and/or N2O reductase,

encoded by nar, nir, nor, and nosZ genes, respectively. Denitrification causes transient
accumulation of NO�

2 and NO/N2O emissions, depending on the activity of the four
reductases. Denitrifiers lacking nosZ produce ~100% N2O, whereas organisms with only
nosZ are net consumers of N2O. Full-fledged denitrifiers are equipped with all four reduc-
tases, genetic regulation of which determines NO�

2 accumulation and NO/N2O emissions.
Paracoccus denitrificans is a full-fledged denitrifying bacterium, and here we present a
modelling approach to understand its gene regulation. We found that the observed tran-
sient accumulation of NO�

2 and N2O can be neatly explained by assuming cell diversifica-
tion: all cells expressing nosZ, while a minority expressing nar and nir+nor. Thus, the
model predicts that in a batch culture of this organism, only a minor sub-population is
full-fledged denitrifier. The cell diversification is a plausible outcome of stochastic initia-
tion of nar- and nir transcription, which then becomes autocatalytic by NO�

2 and NO,
respectively. The findings are important for understanding the regulation of denitrification
in bacteria: product-induced transcription of denitrification genes is common, and we sur-
mise that diversification in response to anoxia is widespread.

Introduction
The dissimilative reduction of nitrate (NO�

3 ) to nitrite (NO
�
2 ), nitric oxide (NO), nitrous oxide

(N2O), and finally to N2 (denitrification) is an indispensable process in the nitrogen cycle,
returning N to the atmosphere as N2. However, denitrification significantly leaks the gaseous
intermediates NO and N2O, both with serious consequences for the environment. N2O cataly-
ses depletion of the stratospheric ozone [1] and causes global warming, contributing ~10% to
the anthropogenic climate forcing [2]. Data suggests that since the 1950s, the atmospheric N2O
has been increasing, and before being photolysed in the stratosphere, the gas persists for an
average ~120 years in the troposphere [3]. ~70% of global N2O emissions are tentatively attrib-
uted to microbial nitrification and denitrification in soils [4], where denitrification, generally, is
considered a more dominant source [5].

To mitigate N2O emissions, we need to understand the physiology of
denitrifiers
To devise robust strategies for mitigating global N2O emissions, a good understanding of its
primary source is imperative, i.e., genetics, physiology, and regulatory biology of denitrifiers.
Any knowledge of the environmental controllers of N2O is incomplete without understanding
the causal relationships of such controllers at the physiological level [6].

The biogeochemical models developed for understanding the ecosystem controls of denitri-
fication and N2O emissions treat the denitrifying community of soils and sediments as a single
homogenous unit with certain characteristic responses to O2 and NO

�
3 concentrations [6,7].

Natural denitrifying communities, however, are mixtures of organisms with widely different
denitrification regulatory phenotypes [8]. The regulatory response of such mixtures is not nec-
essarily equal to the ‘sum of its components’ because there will be interactions, not the least, via
the intermediates NO and NO�

2 . Hence, it is probably a mission impossible to predict the regu-
latory responses of complex communities based on their phenotypic composition.

Cell Diversification in Response to Anoxia in Paracoccus denitrificans

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004621 January 5, 2016 2 / 24



Nevertheless, investigations of the regulation in model organisms like Pa. denitrificans provide
us with essential concepts, enhancing our ability to understand the regulatory responses of
mixed communities and to generate meaningful hypotheses. Thus, future biogeochemical
models of N2O and NO emissions are expected to have more explicit simulations of the regula-
tory networks involved, and a first attempt has recently been published [9].

Simulating the cell diversification in response to impending anoxia to
analyse its implications forNO�

2 , N2, and N2O kinetics

Dynamic modelling has been used to a limited extent to analyse various denitrification pheno-
types; for example, to analyse NO�

3 and NO�
2 reduction and gas-kinetic data for individual

strains [10] and mixtures of selected phenotypes [11]; to model the consequence of competi-
tion for electrons between denitrification reductases [12,13]; to investigate the control of O2 on
denitrification enzymes and inhibition of cytochrome c oxidase by NO in Agrobacterium tume-
faciens [14]; and to examine the effect of copper availability on N2O reduction in Paracoccus
denitrificans [15]. In our previous model [16], we simulated O2 and N2 kinetics from batch
incubations of Pa. denitrificans [8,17] to test if a postulated cell diversification, driven by sto-
chastic initiation of nirS, could explain the N2 production kinetics in NO�

2 -supplemented
media. The available data also contained NO�

3 -supplemented treatments but NO�
3 and NO�

2

were not monitored, and the experiment provided no information about the N2O kinetics,
except that the concentrations were extremely low (below the detection limit of the thermal
conductivity detector used). Recently, a neat dataset was generated from batch incubations
supplemented with NO�

3 , with frequent measurements of NO�
2 and a more sensitive detection

of N2O by an electron capture detector [18]. That encouraged us to extend our previous model
and simulate the cell diversification during transition from oxic to anoxic conditions, targeting
the regulation of Nar and cNor/NosZ (N2O emissions) in Pa. denitrificans.

Regulatory network of denitrification in Paracoccus denitrificans
Pa. denitrificans is a facultative anaerobe capable of reducing NO�

3 all the way to N2:

NO�
3!

Nar
NO�

2!
NirS

NO!cNor N2O!
NosZ

N2

In response to impending anoxic conditions, the organism sustains respiratory metabolism
by producing the membrane-bound cytoplasmic nitrate reductase (Nar), cytochrome cd1
nitrite reductase (NirS), cytochrome c dependent nitric oxide reductase (cNor), and nitrous
oxide reductase (NosZ). Transcription of the genes encoding these reductases (narG, nirS,
norBC, and nosZ, respectively) are regulated by the FNR-type proteins FnrP, NarR, and NNR.
FnrP contains a 4Fe-4S cluster for sensing O2, and NNR harbours a NO-sensing haem; NarR,
however, is poorly characterised and is most likely a NO�

2 -sensor [19–21]. All these sensors
remain inactive during aerobic growth conditions [19].

Transcription of denitrification genes in Pa. denitrificans. FnrP and NarR facilitate a
product-induced transcription of the nar genes, and NNR facilitates a product-induced tran-
scription of the nirS genes (Fig 1, see P1 and P2): Low oxygen concentration ([O2]) activates the
self-regulating FnrP, which induces nar transcription in coaction with NarR. The self-regulat-
ing NarR was previously assumed to be activated by either NO�

3 or NO�
2 [21], but a recent pro-

teomics study indicates that NO�
2 is the activator [19]. Thus once a cell starts producing traces

of NO�
2 , nar expression becomes autocatalytic. Transcription of nirS is induced by NNR,

which is apparently inactivated by O2 [22,23], but under anoxic/micro-oxic conditions, NNR is
activated by NO. Thus, once traces of NO are produced, the expression of nirS also becomes
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autocatalytic [19,20]. In contrast, nor transcription is substrate (NO) induced via NNR while
nosZ is equally induced by NNR or FnrP [24]. High concentrations of NO may constrain nar
transcription by inactivating FnrP [25] and, like O2, render NosZ dysfunctional by inactivating
the CuZ subunit of the reductase [26], but these observations are ignored in our model because
Pa. denitrificans restricts [NO] to very low levels.

Entrapment of cells in anoxia: The underlying hypothesis and modelling
Denitrification proteome, once produced in response to an anoxic spell, is likely to linger within
the cells under subsequent oxic conditions, ready to be used if anoxia recurs. But the proteome
will be diluted by aerobic growth because the transcription of denitrification genes is inactivated
under oxic conditions [20]. Hence, a population growing through many generations under fully
oxic conditions is expected to undertake de novo synthesis of denitrification enzymes when con-
fronted with anoxia. Batch cultivations of such aerobically raised Pa. denitrificans provided indi-
rect evidence for a novel claim that, in response to anoxia, only a small fraction of the incubated
population is able to produce denitrification proteome [8,17,27,28]. Our dynamic modelling of

Fig 1. Regulatory network of denitrification in Pa. denitrificans. The network is driven by four core enzyme-complexes: Nar (transmembrane nitrate
reductase encoded by the narG gene), NirS (cytochrome cd1 nitrite reductase encoded by nirS), cNor (NO reductase encoded by norBC), and NosZ (N2O
reductase encoded by nosZ). When anoxia is imminent, the low [O2] is sensed by FnrP, which in some interplay with NarR induces nar transcription. NarR is
activated byNO�

2 ; thus once a cell starts producing traces ofNO�
2 , nar expression becomes autocatalytic (see P1). Transcription of nirS is induced by NNR,

which is activated under anoxic/micro-oxic conditions by NO; thus once traces of NO are produced, the expression of nirS also becomes autocatalytic (see
P2) [20]. The activated P2 will also induce nor and nosZ transcription via NNR. The transcription of nosZ, however, can also be induced equally and
independently by FnrP [24]. Micromolar concentrations of NOmay inactivate both FnrP [25] and NosZ [26]. These observations, however, are ignored for our
modelling because Pa. denitrificans restricts NO to nanomolar levels.

doi:10.1371/journal.pcbi.1004621.g001
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Bergaust et al.’s [17] NO�
2 -supplemented incubations corroborated this, suggesting that a proba-

bilistic function (specific probability = 0.005 h-1) resulting in the recruitment of 3.8–16.1% of all
cells to denitrification is adequate to explain the measured N2 kinetics [16].

Our model was based on the hypothesis that the entrapment of a large fraction in anoxia is
due to a low probability of initiating nirS transcription, which in response to O2 depletion is
possibly mediated through a minute pool of intact NNR, crosstalk with other factors (such as
FnrP), unspecific reduction of NO�

2 to NO by Nar, and/or through non-biologically formed
traces of NO found in a NO�

2 -supplemented medium. Regardless of the exact mechanism(s),
once nirS transcription is initiated, the positive feedback via NO/NNR (Fig 1, see P2) would
allow the product of a single transcript of nirS to induce a subsequent burst of nirS transcrip-
tion. The activated positive feedback will also help induce nor and nosZ transcription via NNR,
rapidly transforming a cell into a full-fledged denitrifier. We further hypothesised that recruit-
ment to denitrification will only be possible as long as a minimum of O2 is available because,
since Pa. denitrificans is non-fermentative, the synthesis of first molecules of NirS will depend
on energy from aerobic respiration.

The above hypothesis was modelled by segregating the culture into two pools (subpopula-
tions): one for the cells without (ND−) and the other with denitrification enzymes (ND+). Ini-
tially, all cells were ND−, growing by consuming O2. As [O2] fell below a certain threshold, ND−

recruited to ND+ with a constant probability (h
-1), assumed to be that of the nirS transcriptional

activation, and the recruitment halted as O2 was completely exhausted, assuming lack of energy
(ATP) for enzyme synthesis.

Underlying assumptions and aims of the present modelling
The present model is an extension of that developed in Hassan et al. [16]. Here we have divided
the respiring culture into four pools (Fig 2A):

1. Z−: cells without Nar, NirS, and cNor

2. ZNa: cells with Nar

3. ZNaNi: cells with Nar, NirS, and cNor

4. ZNi: cells with NirS and cNor

All these subpopulations are assumed to scavenge O2 (if present) and produce NosZ in
response to impending anoxia. The latter because the nosZ genes are readily induced by the
O2-sensor FnrP [24].

The Z− pool (Fig 2A) contains the inoculum that grows by aerobic respiration. As [O2] falls
below a critical threshold [empirically determined, 18], the cells within Z− are assumed to start
synthesising Nar with a certain probability and populate the ZNa pool. The aim here is to inves-
tigate whether, like for nirS, the initiation of nar transcription (by some combined activity of
FnrP and NarR) can also be explained as a probabilistic phenomenon, quickly differentiating a
cell into a full-fledge NO�

3 scavenger through product (NO�
2 ) induced transcription via NarR

(Fig 1, see P1). If so, we were interested to estimate what fraction of the cells is required to ade-
quately simulate the measured data (NO�

2 production), aiming at scrutinising the general
assumption that all cells in batch cultures produce Nar in response to impending anoxia.

Next, when [O2] is further depleted to another critical threshold [18], the Z
− and ZNa cells are

assumed to initiate nirS transcription with a low per hour probability and, thereby, populate the
ZNi and ZNaNi pools, respectively. As explained above for our previous model, NirS + cNor pro-
duction is assumed to be a) coordinated because the transcription of both nirS and nor is induced
by NO via the NO-sensor NNR (Fig 1), and b) stochastic because the initial transcription of nirS
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(paving the way for the autocatalytic expression of NirS and substrate-induced nor transcription)
happens in the absence of NO or at too low [NO] to be sensed by NNR.

Synthesis of denitrification enzymes requires energy, which all the subpopulations can
obtain by respiration only. Hence, the initiation of the autocatalytic expression of nar and nirS

Fig 2. A stock and flow diagram illustrating the model’s structure. A. Cell diversification and growth;B.O2 kinetics;C. Denitrification kinetics. The
squares represent state variables, the circles the rate of change of the state variables, the edges (thicker arrows) depict flows into or out of the state variables,
the shaded ovals auxiliary variables, and the arrows portray mutual dependencies between the variables. All feedback relationships among the three model
sectors could not be shown; however, for illustration the feedback relationships of one sub-population (Z−) are shown (dashed arrows). Within each square
(state variable), t0 refers to the initial value.

doi:10.1371/journal.pcbi.1004621.g002
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(i.e., recruitment to ZNa and ZNaNi/ZNi, respectively, Fig 2A) depends on the availability of the rel-
evant terminal e--acceptor(s) above a critical concentration to sustain a minimum of respiration.
For Z−, the only relevant e--acceptors are O2 and the traces of N2O produced by ZNi and ZNaNi.
The same applies For ZNa, but in addition, this subpopulation can also obtain energy by reducing
NO�

3 , if present. In our previous model [16], we assumed that recruitment to denitrification was
sustained by energy fromO2-respiration only; not NO�

3 because we simulated NO�
2 -supple-

mented treatments, and not by N2O because we naively assumed that the pool of this e--acceptor
was insignificant (N2O concentrations were below the detection limit of the system used for those
experiments). However, the present model assumes that the recruitment from Z− to ZNa and Z−

to ZNi is sustained by both O2- and N2O-reduction, and the recruitment from ZNa to ZNaNi is sus-
tained by O2-, N2O- and NO

�
3 -reduction, when above a critical minimum (ve�min). The default

value for ve�min was set to an arbitrary low value (= 0.44% of the maximum e--flow rate to O2), and
we have investigated the consequences of increasing, decreasing, and setting ve�min = 0.

The expressions of nar and nirS + nor (recruitments to ZNa and ZNaNi/ZNi, respectively, Fig
2A) are modelled as instantaneous discrete-events in each cell, thus ignoring the time-lag from
the initiation of gene transcription till the cell is fully equipped with the reductase(s) in ques-
tion. That is because the lag observed between the emergence of denitrification gene transcripts
and the subsequent gas products suggests that the synthesis of denitrification enzymes takes
less than half an hour [17,18], which is negligible for our purposes here.

The main purpose of the present modelling is to investigate if a full-fledged model, includ-
ing all four functional denitrification reductases, could adequately simulate the observed kinet-
ics and stoichiometry of denitrification products [18]. These cultures reduced all available
NO�

3 to NO�
2 prior to the onset of gas production and accumulated traces of N2O throughout

the anoxic phase, as illustrated in S1 Fig In particular, we were interested to investigate the
NO�

2 kinetics, controlled by nar- and nirS transcription, and to test if the peculiar N2O kinetics
(low, but increasing concentrations throughout the anoxic phase) could be explained by our
modelled cell diversification.

Materials and Methods

An overview of the modelled experiment
Batch incubation. Qu [18] incubated Pa. denitrificans (DSM-413) at 20°C using 50 mL

Sistrom’s [29] medium in 120 mL gas-tight vials. Either succinate or butyrate (5 mM) was used
as the main carbon source, enough to secure consumption of all available e--acceptors. After
distribution of the medium, each vial was loaded with a magnetic stirring bar, sterilised
through autoclaving, supplemented with 2 mM KNO3, and was tightly sealed. To remove O2

and N2 from the headspace, the headspace air was evacuated and replaced by helium (He)
through several cycles of evacuation and He-filling (He-washing). Some vials were supple-
mented with oxygen to reach 7 vol.% O2 in headspace (treatment designated 7% O2). The
remaining vials received no O2 (designated 0% O2, although there were traces of O2 present
despite the He washing). For each treatment (i.e., C source and initial O2), there were three rep-
licates, and each vial was inoculated with 2.2×108 aerobically grown cells.

NO�
2 and gas measurement. Gases (CO2, O2, NO, N2O, and N2) were monitored by fre-

quent sampling of the headspace, using an improved version of the robotised incubation sys-
tem [30]. In short, the system draws gas samples from the headspace (peristaltic pumping) via
the septum pierced by a needle, filling three loops used for injecting samples into the two GC
columns and the chemiluminescence NO analyser. The sample drawn is replaced by He
(reversing the peristaltic pump), thus securing ~1 atm pressure. The primary improvements of
the new system are a more sensitive detection of N2O (by an electron capture detector), lower
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sampling volumes (~1 mL), and lower leaks of O2 and N2 through the sampling system
(4 nmol O2 and 12 nmol N2 per sampling, which is ~20% of that for the old system).

To extract samples for measuring NO�
2 without tampering the original vials, identical (par-

allel) vials were prepared for each treatment. Using sterile syringes, samples of 0.1 mL were reg-
ularly drawn from the liquid-phase of the parallel vials and immediately analysed for NO�

2 .
Results for one of the treatments are shown in S1 Fig, illustrating the complete reduction of

NO�
3 to NO�

2 prior to the onset of significant N-gas production. In previous experiments [17],
N2O concentrations were below the detection limit of the system, but thanks to the new system,
the N2O kinetics were monitored with a reasonable precision.

The model
The model is constructed in Vensim DSS 6.2 Double Precision (Ventana Systems, inc. http://
vensim.com/) using techniques from the field of system dynamics [31].

Cell diversification and growth. The respiring population is divided into four subpopula-
tions, according to their reductases (Fig 2A): 1) Z−: cells without Nar, NirS, and cNor; 2) ZNa: cells
with Nar; 3) ZNaNi: cells with Nar, NirS, and cNor; and 4) ZNi: cells with NirS and cNor. All the
subpopulations are assumed to equally respire O2, if present, and express nosZ in response to oxy-
gen depletion [24]. Z− contains the inoculum (= 2.2×108 cells) that grows by aerobic respiration.
As O2 is depleted, the Z

− cells populate the other pools by producing Nar and/or NirS + cNor.
The recruitment from Z− to ZNa (RNa, Fig 2A) takes place first:

RNa ¼ Z� � rNaðO2;N2OÞ ð1Þ

(cells h-1)
where rNa(O2,N2O) is a conditional specific probability (h

-1) for any Z− cell to initiate nar
transcription (quickly transforming it into a NO�

3 scavenger through autocatalytic gene expres-
sion, see Fig 1, P1):

rNaðO2;N2OÞ ¼
IF ½O2�aq < ½O2�na AND ðve�

O2
þ 0:5� ve�

N2O
Þ > ve�min

THEN rNa

ELSE 0

ð2Þ

(h-1)
where rNa (h

-1) is a constant specific probability for a cell to initiate nar transcription once O2

concentration in the aqueous-phase ([O2]aq, mol L-1) falls below a critical concentration ([O2]na),
empirically determined as the [O2]aq (= 4.75×10−5 mol L-1) at the outset of NO�

2 accumulation in
the medium [18]. The second condition for a cell to produce first molecules of Nar is a minimum
of e--flow to an e--acceptor (ve�min, mol e- cell-1 h-1), assumed to generate minimumATP required
for protein synthesis. ve�

O2
and ve�

N2O
(mol e- cell-1 h-1) are the cell-specific velocities of e--flow to

O2 and N2O, respectively. The latter is weighed down by 0.5 because mole ATP per mole e- trans-
ferred to NO�

x /NOx is lower for denitrification than for aerobic respiration [17,20]. For a Z
− cell,

ve�NO�
2
and ve�

NO
are not considered here, since such a cell is assumed to have no NirS and cNor.

The fraction of the cells that successfully produces Nar (FNa) is calculated based on the inte-
gral of the recruitment (Eq 1):

FNa ¼ 1� e�rNa�tNa ð3Þ

(dimensionless)
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where tNa is the time-window available for the recruitment. In theory, tNa is the time-period
when ½O2�aq < ½O2�na AND ðve�

O2
þ 0:5� ve�

N2O
Þ > ve�min (Eq 2). Since the e

--flow to N2O

started after all NO�
3 had been reduced to NO�

2 (S1 Fig), the recruitment based on ve�
N2O

would

be inconsequential for the simulated (and measured) NO�
2 kinetics. Therefore, to calculate the

functional FNa actually responsible for producing NO
�
2 , we ignored the N2O-sustained recruit-

ment, thus considering tNa to be the time when ½O2�aq < ½O2�na AND ve�
O2

> ve�min.

Next, the cells within ZNa and Z− are recruited to ZNaNi and ZNi (RNaNi and RNi, respectively,
Fig 2A), as they are assumed to stochastically initiate nirS transcription, paving the way for
NO/NNR mediated autocatalytic expression of nirS + nor (Fig 1). In principle, the rates of both
these recruitments are modelled as that of the recruitment from Z− to ZNa (Eqs 1 and 2): a)
Both trigger as O2 falls below another critical concentration ([O2]ni), low enough to activate
NNR to induce nirS transcription; [O2]ni (= 1.16×10−5 mol L-1) is empirically determined as
the O2 concentration at the outset of NO accumulation [18]. b) Both continue as long as a min-
imum of e--flow to the relevant terminal e--acceptor is possible, sustaining the respiratory
metabolism to generate ATP for protein synthesis:

RNaNi ¼ ZNa � rNiðO2;NO
�
3 ;N2OÞ ð4Þ

(cells h-1)

rNiðO2;NO
�
3 ;N2OÞ ¼

IF ½O2�aq < ½O2�ni AND ðve�
O2
þ 0:5� ve�NO�

3
þ 0:5� ve�

N2O
Þ > ve�min

THEN rNi

ELSE 0

ð5Þ

(h-1)
where rNi is a constant specific probability (h

-1) for the initiation of nirS transcription. ve�NO�
3

and ve�
N2O

are multiplied with 0.5 for the same reasons as described for Eq 2.

The recruitment from Z− to ZNi (RNi, Fig 2A) is modelled as a product of Z− and a condi-
tional specific probability, rNi(O2,N2O), which is different from Eq 5 only in that ve�NO�

3
is omit-

ted, since Z− do not possess Nar:

RNi ¼ Z� � rNiðO2;N2OÞ ð6Þ

(cells h-1)

rNiðO2;N2OÞ ¼
IF ½O2�aq < ½O2�ni AND ðve�

O2
þ 0:5� ve�

N2O
Þ > ve�min

THEN rNi

ELSE 0

ð7Þ

(h-1)
The fraction that successfully produced NirS + cNor (FNi) is calculated based on the integral

of RNaNi and RNi:

FNi ¼ ð1� e�rNi�tNaNiÞ � FNa þ ð1� e�rNi�tNiÞ � ð1� FNaÞ ð8Þ

(dimensionless)
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where tNaNi is the duration of the recruitment from ZNa to ZNaNi, i.e., when ½O2�aq <
½O2�ni AND ðve�

O2
þ 0:5� ve�NO�

3
þ 0:5� ve�

N2O
Þ > ve�min (Eqs 4 and 5), FNa is the fraction

recruited to the pool of Nar positive cells (ZNa, Eq 3), and tNi is the duration of the recruitment
from Z− to ZNi, i.e., when ½O2�aq < ½O2�ni AND ðve�

O2
þ 0:5� ve�

N2O
Þ > ve�min (Eqs 6 and 7).

Each of the populations will grow depending on the rates of e--flow to the various e--accep-
tors they are able to use:

GZ� ¼ Z� � ðYe�
O2
� ve�

O2
þ Ye�

NOx
� ve�

N2O
Þ ð9Þ

GZNa ¼ ZNa � ½Ye�
O2
� ve�

O2
þ Ye�

NOx
ðve�NO�

3
res þ ve�

N2O
Þ� ð10Þ

GZNaNi ¼ ZNaNi � ½Ye�
O2
� ve�

O2
þ Ye�

NOx
ðve�NO�

3
res þ ve�NO�

2
res þ ve�

NO
þ ve�

N2O
Þ� ð11Þ

GZNi ¼ ZNi � ½Ye�
O2
� ve�

O2
þ Ye�

NOx
ðve�NO�

2
res þ ve�

NO
þ ve�

N2O
Þ� ð12Þ

(cells h-1)
where Ye�

X
(cells mol-1 e- to X = O2 or NO

�
x /NOx) is the growth yield determined under the

actual experimental conditions, and ve�
X
(mol e- cell-1 h-1) is the cell-specific velocity of e--flow

to X (O2 or NO
�
x /NOx), which depends on the concentration of the e--acceptor (see Eqs 17, 20

and 28). For NO�
3 and NO�

2 , a restricted velocity (ve
�
NO�

x res
) is used so that when electrons flow

to O2, NO
�
3 , and NO

�
2 simultaneously, the total ve− per cell does not exceed the maximum elec-

trons that the TCA cycle (ve�maxTCA) can deliver per hour (see Eqs 21 and 22).
O2 kinetics. O2 is initially present in the headspace (O2g

, mol, initialised according to the

experiment, see Table 1) but is transported to the liquid-phase (O2aq
) due to its consumption

therein (Fig 2B). The transport rate (TrO2
) is modelled according to Molstad et al. [30]:

TrO2
¼ kt ðkHðO2Þ � PO2

� ½O2�LPÞ ð13Þ

(mol h-1)
where kt (L h-1) is the empirically determined coefficient for the transport of gas between

the headspace and the liquid, kHðO2Þ (mol L-1 atm-1) is the solubility of O2 in water at 20°C, PO2

(= [O2]g × R × T, atm) is the partial pressure of O2 in the headspace, and [O2]aq (mol L-1) is the

O2 concentration in the liquid ½O2�aq ¼
O2aq

Volaq

� �
.

In addition, the model simulates the changes in O2g
due to sampling. The robotised incuba-

tion system used monitors gas concentrations by sampling the headspace, where each sampling
alters the concentrations in a predictable manner: a fraction of O2g

is removed and replaced by

Table 1. Simulated experiment [18].

Batch C-source O2g
ðt0Þ (vol.%)* NO

�
3 ðt0Þ (mM) Replicates

1 Butyrate ~0 2 3

2 Butyrate 7 2 3

3 Succinate ~0 2 3

4 Succinate 7 2 3

*Target values for initial O2 concentrations in the headspace (vol.%). ~0 means that the intended concentration should be zero, but there were detectable

traces of O2, despite several cycles of evacuation and He-flushing of the headspace.

doi:10.1371/journal.pcbi.1004621.t001
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He (dilution), but the sampling also results in a marginal leakage of O2 through the tubing and
membranes in the injection system. The net change in O2g

(ΔO2(S)) as a result of each sampling

is calculated as:

DO2ðSÞ ¼
O2leak

� O2g
� D

ts
ð14Þ

(mol h-1)
where O2leak

(mol vial-1) is the O2-leakage into the headspace, D (dilution) is the fraction of

each headspace gas removed and replaced by equal amount of He, and ts (h) is the time taken
to complete each sampling. ΔO2(S) is negative if O2g

is high and marginally positive at very low

oxygen concentrations.
O2 in the liquid-phase (O2aq

, mol, Fig 2B) is initialised by assuming equilibrium with O2g
at

the time of inoculation (O2aq
ðt0Þ ¼ PO2

� kHðO2Þ � Volaq). The dynamics of O2aq
are modelled

as a function of transport between the headspace and the liquid (TrO2
, Eq 13) and its reduction

rate (RrO2
, mol h-1):

dðO2aq
Þ

dt
¼ TrO2

� RrO2
ð15Þ

RrO2
¼ ðZ� þ ZNa þ ZNaNi þ ZNiÞ � vO2

ð16Þ

(mol h-1)
where Z−, ZNa, ZNaNi, and ZNi (cells) are all the sub-populations present (described above);

thus, we assume that all cells have the same potential to consume O2. vO2
(mol cell-1 h-1) is the

cell-specific velocity of O2 consumption, obtained by the velocity of e--flow to O2

ve�
O2
; 1 molO2

4 mol e�

� �
, where ve�

O2
is modelled as a Michaelis-Menten function of oxygen concentra-

tion:

ve�O2
¼ ve�maxO2

� ½O2�aq
KmO2

þ ½O2�aq
ð17Þ

(mol e- cell-1 h-1)
where ve�maxO2

(mol e- cell-1 h-1) is the maximum velocity of e--flow to O2 per cell (deter-

mined under the actual experimental conditions), [O2]aq (mol L-1) is the O2 concentration in
the liquid-phase, and KmO2

(mol L-1) is the half-saturation constant for O2 reduction.

Denitrification kinetics. The NO�
3 and NO�

2 pools (mol, Fig 2C) are initialised according
to the experiment (Table 1; NO�

2 = 0). The kinetics of these nitrogen oxyanions (NO�
x ) are

modelled as:

dðNO�
3 Þ

dt
¼ �RrNO�

3
¼ �ðZNa þ ZNaNiÞ � vNO�

3
ð18Þ

dðNO�
2 Þ

dt
¼ RrNO�

3
� RrNO�

2
¼ RrNO�

3
� ðZNaNi þ ZNiÞ � vNO�

2
ð19Þ

(mol h-1)
where RrNO�

x
(mol h-1) is the reduction rate, ZNa + ZNaNi (cells) is the total number of cells

with Nar, ZNaNi + ZNi (cells) is the total NirS active population, and vNO�
x
(mol cell-1 h-1) is the
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cell-specific velocity of NO�
x consumption, obtained by the velocity of e--flow to NO�

x

1 mol NO�
3

2 mol e� and
1 mol NO�

2

1 mol e�

� �
. The latter is modelled as a Michaelis-Menten function of

NO�
x concentration:

ve�NO�
x
¼ ve�maxNO�

x
� ½NO�

x �aq
KmNO�

x
þ ½NO�

x �aq
ð20Þ

(mol e- cell-1 h-1)
where ve�maxNO�

x
(mol e- cell-1 h-1) is the maximum velocity of e--flow to NO�

x per cell (deter-

mined under the actual experimental conditions), ½NO�
x �aq (mol L-1) is the NO�

x concentration

in the aqueous-phase, and KmNO�
x
(mol L-1) is the half-saturation constant for NO�

x reduction.

The velocity of NO�
3 and NO�

2 consumption had to be restricted (ve�NO�
x res

) to ensure that

when electrons flow to O2, NO
�
3 , and NO

�
2 simultaneously, the total ve− per cell does not

exceed an estimated maximum delivery of electrons from the TCA cycle (ve�maxTCA). In competi-
tion for electrons, O2 is prioritised [20], followed by NO

�
3 and NO�

2 , respectively [18]:

ve�NO�
3
res ¼ Min ðve�NO�

3
; ðve�maxTCA � ve�O2

ÞÞ ð21Þ

ve�NO�
2
res ¼ Min ðve�NO�

2
; ðve�maxTCA � ve�O2

� ve�NO�
3
resÞÞ ð22Þ

(mol e- cell-1 h-1)
where ve�NO�

3
res is the realised e

--flow to NO�
3 , limited either by available NO�

3 or the avail-

ability of electrons (due to competition with O2); ve�NO�
2
resis the realised e

--flow to NO�
2 . Such

competition for electrons was not implemented for ve�
NO

and ve�
N2O

because at the onset of NO-,

N2O- and N2 production, the total velocity of e
--flow to all available e--acceptors (as predicted

by the enzyme kinetics alone) never exceeded ve�maxTCA.
Gas consumption and production takes place in the aqueous phase, but the gases are trans-

ported between aqua and the headspace depending on their concentrations in the two phases.
Each gas in aqua, Xaq (molN, Fig 2C), is modelled as a function of production, consumption
(not applicable to N2), and the net transport, where N2Oaq and N2aq

are initialised with zero,

and NOaq is initialised with a negligible 1×10−25 mol to avoid division by zero (in Eq 28).

dðNOaqÞ
dt

¼ RrNO�
2
� RrNO þ TrNO ð23Þ

dðN2OaqÞ
dt

¼ RrNO � RrN2O
þ TrN2O

ð24Þ

dðN2aq
Þ

dt
¼ RrN2O

þ TrN2
ð25Þ

(molN h-1)
where RrNOx

(molN h-1) is the relevant NO�
x /NOx reduction rate, and TrNX

represents the

gas transport rate between aqua and the headspace (Eq 29; N.B. TrNX
< 0 for the net transport

from aqua to the headspace).
The reduction of NO to N2O (RrNO) and N2O to N2 (RrN2O

) is modelled likewise as a func-

tion of the number of relevant cells and the velocity of e--flow to NO and N2O (mol e- cell-1 h-1),
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respectively:

RrNO ¼ ðZNaNi þ ZNiÞ � vNO ð26Þ

RrN2O
¼ ðZ� þ ZNa þ ZNaNi þ ZNiÞ � vN2O

ð27Þ

(molN h-1)
where vNO and vN2O

are obtained by the velocity of e--flow to NO and N2O, respectively

1 mol N
mol e�

� �
. ve�N2O

is modelled as a Michaelis-Menten function of [N2O]aq, similarly as that of O2,

NO�
3 , and NO

�
2 (Eqs 17 and 20), but ve�

NO
is modelled assuming a cooperative binding of two

NOmolecules with cNor to form N2O [32]:

ve�NO ¼ ve�maxNO

1þ K2NO
1

½NO�aq þ
K1NO
½NO�aq2

� � ð28Þ

(mol cell-1 h-1)
where ve�maxNO (mol e- cell-1 h-1) is the empirically determined maximum velocity of e--flow

to NO per cell, [NO]aq (mol L-1) is the NO concentration in the liquid-phase, and K1NO &
K2NO (mol L-1) are the equilibrium dissociation constants for the cNor/NO- and cNor/(NO)2
complex, respectively.

The transport of NO, N2O, and N2between the liquid and the headspace (Eqs 23–25) is
modelled as:

TrN ¼ kt � ðkHðNÞ � PN � ½N�aqÞ ð29Þ

(molN h-1)
where kt is the empirically determined coefficient for the transport of each gas between the

headspace and the liquid, kH(N) (molN L-1 atm-1) is the solubility of NO, N2O, or N2 in water at
20°C, PN (= [N]g×R×T, atm) is the partial pressure of each gas in the headspace, and [N]aq
(mol L-1) represents the concentration of each gas in the liquid-phase.

The amount of NO and N2O in the headspace (NOxg
, molN, Fig 2C) is a function of trans-

port (Eq 29) and the disturbance by gas sampling. The latter is simulated as discrete events at
time-points given as input to the model (equivalent to the sampling times in the experiment):

DNOxðSÞ ¼
NOxg

� D

ts
ð30Þ

(molN h-1)
where ΔNOx(S) is the net change in the amount of NOxg

(molN), D (dilution) is the fraction

of each gas removed and replaced by equal amount of He, and ts (h) is the time taken to com-
plete each sampling. For N2, the model ignores the sampling loss because the N2 production
data to be compared with the model output are already corrected for the sampling disturbance
[30]. Thus, the model estimates somewhat higher N2 concentrations than that experienced by
the organisms, which is acceptable, since the concentration of N2 is unlikely to have conse-
quences for the metabolism.

Parameterisation
Most of the parameter values used in the model are well established in the literature (see
Table 2); however, uncertain parameters include KmO2

, KmN2O
, ve�maxO2

, and ve�min.
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Table 2. Model parameters.

Description Value Units Reference

Butyrate treatments

ve�
maxTCA Max. cell-specific rate of e--delivery from the TCA cycle 1×1014 mol e- cell-1 h-1 [18]

ve�
maxO2

The maximum cell-specific velocity of e--flow to O2 4.22×10−15 mol e- cell-1 h-1 Optimisation

ve�
maxNO�

3
The maximum cell-specific velocity of e--flow to NO�

3 1×10−14 mol e- cell-1 h-1 [18]

ve�
maxNO�

2
The maximum cell-specific velocity of e--flow to NO�

2 2.65×10−15 mol e- cell-1 h-1 [18]

ve�
min The min. velocity of e--flow to O2/NO

�
x /NOx required for protein synthesis (ATP) 1.87×10−17 mol e- cell-1 h-1 Assumption

Ye�
O2

The growth yield per mole of electrons transferred to O2 2.74×1013 cells (mol e-)-1 [18]

Ye�
NOx

The growth yield per mole e- to NO�
3 , NO

�
2 , NO, or N2O 1.12×1013 cells (mol e-)-1 [18]

Succinate treatments

ve�
maxTCA Max. cell-specific rate of e--delivery from the TCA cycle 9.34×10−15 mol e- cell-1 h-1 [18]

ve�
maxO2

The maximum cell-specific velocity of e--flow to O2 4.42×10−15 mol e- cell-1 h-1 [18]

ve�
maxNO�

3
The maximum cell-specific velocity of e--flow to NO�

3 9.34×10−15 mol e- cell-1 h-1 [18]

ve�
maxNO�

2
The maximum cell-specific velocity of e--flow to NO�

2 2.01×10−15 mol e- cell-1 h-1 [18]

ve�
min The minimum velocity of e--flow to O2/NO

�
x /NOx required for protein synthesis (ATP) 1.95×10−17 mol e- cell-1 h-1 Assumption

Ye�
O2

The growth yield per mole of electrons transferred to O2 4.97×1013 cells (mol e-)-1 [18]

Ye�
NOx

The growth yield per mole e- to NO�
3 , NO

�
2 , NO, or N2O 1.52×1013 cells (mol e-)-1 [18]

Parameters common to both succinate and butyrate treatments

[O2]na The [O2] in aqua below which Nar production triggers 5.95×10−5 mol L-1 [18]

[O2]ni The [O2] in aqua below which NirS production triggers 9.75×10−6 mol L-1 [18]

rNa The specific-probability for Nar production 0.035 h-1 Optimisation

rNi The specific-probability for NirS production 0.004 h-1 Optimisation

ve�
maxNO The maximum cell-specific velocity of e--flow to NO 3.56×10−15 mol e- cell-1 h-1 [33]

ve�
maxN2O

The maximum cell-specific velocity of e--flow to N2O 5.5×10−15 mol e- cell-1 h-1 [24]

KmO2
The half-saturation constant for O2 reduction 2.25×10−7 mol L-1 Optimisation

KmNO�
3

The half-saturation constant for NO�
3 reduction 5×10−6 mol L-1 [34,35]

KmNO�
2

The half-saturation constant for NO�
2 reduction 4.13×10−6 mol L-1 [36,37]

K1NO The equilibrium dissociation constant for cNor/NO complex 8×10−14 mol L-1 [33]

K2NO The equilibrium dissociation constant for cNor/(NO)2 complex 34×10−9 mol L-1 [33]

KmN2O
The half-saturation constant for N2O reduction 5.93×10−7 mol N2O-N L-1 Optimisation

D Dilution (due to sampling): fraction of gas replaced by He 0.013–0.016 – [18]

kHðO2Þ Solubility of O2 in water at 20°C 0.0014 mol L-1 atm-1 [38]

kH(NO) Solubility of NO at 20°C 0.0021 mol L-1 atm-1 [30]

kHðN2OÞ Solubility of N2O at 20°C 0.056 mol N2O-N L-1 atm-1 [38]

kHðN2Þ Solubility of N2 at 20°C 0.00035 mol N2-N L-1 atm-1 [38]

kt The coeff. for gas transport between headspace and liquid 3.6 L vial-1 h-1 Measured

O2leak O2 leakage into the vial during each sampling 2.92×10−9 mol Measured

R Universal gas constant 0.083 L atm K-1 mol-1 –

T Temperature 293.15 K [18]

ts The time taken to complete each sampling 0.017 h [30]

Volg Headspace volume 0.07 L [18]

Volaq Aqueous-phase volume 0.05 L [18]

doi:10.1371/journal.pcbi.1004621.t002
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KmO2
(Eq 17). Pa. denitrificans has three haem-copper terminal oxidoreductases [39] with

KmO2
ranging from nM to µM [40,41], so we decided to estimate the parameter value by opti-

mising KmO2
for the low [O2] treatments data. Vensim was used for the optimisation, where

KmO2
= 2.25×10−7 neatly simulated the O2 depletion for both the succinate- and butyrate-sup-

plemented treatments.
KmN2O

. In vitro studies of NosZ from Pa. denitrificans estimate the values for KmN2O
= 5 μM

at 22°C and pH 7.1 [42] and 6.7 μM at 25°C and pH 7.1 [43]. When our model was simulated
with KmN2O

in this range, given our empirically estimated ve�maxN2O
[24], the simulated N2O

reached concentrations much higher than that measured (see Results/Discussion). A more ade-
quate parameter value (= 0.6 μM) was found by optimising KmN2O

in Vensim. The value is

within the range determined for soil bacterial communities [44].
ve�

maxO2
(Eq 17) could be estimated using the empirically determined cell yield per mole of

electrons to O2 (Ye
�
O2
, cells per mol e-) and the maximum specific growth rate (μ, h-1):

ve�maxO2
¼ m

Ye�
O2

. We are confident about the yields for the two C-substrates used, but the empiri-

cally determined μ for the butyrate treatments is suspiciously low (= 0.067 h-1), providing
ve�maxO2

= 2.45×10−15 mol e- cell-1 h-1. Simulations with this value grossly underestimated the

rate of O2 depletion compared to measured, which forced us to estimate the parameter value
by optimisation: ve�maxO2

= 4.42×10−15 and 4.22×10−15 mol e- cell-1 h-1 for the succinate- and

butyrate treatments, respectively. These values give μ = 0.22 and 0.12 h-1, respectively: for the
succinate treatments, the value is very close to that empirically determined (= 0.2 h-1); for the
butyrate treatments, the value seems more realistic than 0.067 h-1.

ve�min (Eqs 2, 5 and 7) is the per cell velocity of e
--flow to O2 (ve�O2

) assumed to generate mini-

mum ATP required for synthesising the initial molecules of denitrification enzymes. Since we
lack any empirical or other estimations for this parameter, it is arbitrarily assumed to be the
ve�O2

when [O2]aq reaches 1 nM. At this concentration, ve�min is determined by the Michaelis-

Menten equation ve�min ¼
ve�maxO2

�½O2 �aq
ðKmO2

þ½O2 �aqÞ

� �
, using ve�maxO2

and KmO2
given above. The values

obtained for the succinate- and butyrate-supplemented treatments = 1.96×10−17 and
1.87×10−17 mol e- cell-1 h-1, respectively, which for both the cases is 0.44% of ve�maxO2

. To inves-

tigate the impact of ve�min on the model behaviour (rNa and rNi, Eqs 1, 2, 4, 5, 6 and 7), sensitivity
analyses were performed by simulating the model with ve�min corresponding to [O2]aq = 5×10−9,
5×10−10, and 0 mol L- 1 (see Results/Discussion).

Results/Discussion

Low probabilistic initiation of nar transcription, resulting in the fraction of
the population with Nar < 100%
To test the assumption of a single homogeneous population with all cells producing Nar in
response to O2 depletion, we simulated the model with the specific probability for a Z− cell to
initiate nar transcription (rNa) = 4 h-1. This resulted in 98% of the cells possessing Nar within
an hour (see Eqs 1–3). Evidence suggests that less than half an hour is required to synthesise
denitrification enzymes [17,18], but an hour’s time is assumed here to allow margin for error.
The results show that, for all the treatments, the simulated NO�

2 production (mol vial-1) grossly
overestimates that measured (Fig 3).

To find a reasonable parameter value, we optimised rNa for the 0% O2 treatments, so that
the simulated NO�

2 production matches that measured. The results (Table 3) suggest that a low
probabilistic initiation of nar transcription (average rNa = 0.035 h-1) is adequate to simulate the
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measured NO�
2 kinetics (Fig 3). In the Butyrate, 7% O2 treatment (Fig 3B), the simulated NO�

2

starts earlier, but the rate of accumulation is similar to that measured.
Once O2 falls below a certain threshold, the production of Nar is assumed to trigger with

rNa = 0.035 h-1 and last until a minimum of respiration is sustained by the e--flow to O2 and
N2O (ve�

O2
and ve�

N2O
), assumed to fulfil the ATP needs for Nar production (Eqs 1 and 2). But

Fig 3. Comparison of measured and simulated NO
�
2 accumulation assuming definitive versus stochastic initiation of nar transcription. To test the

assumption of a single homogeneous population with almost all cells expressing nar in response to O2 depletion, we forced our model to achieve 98% Nar-
positive cells (ZNa) within an hour by setting the specific-probability of initiating nar transcription (rNa) = 4 h-1. This resulted in grossly overestimated rates of
NO�

2 accumulation for all treatments (grey curves). In contrast, we simulated the model with rNa = 0.035 h-1 obtained through optimisation, resulting in a
reasonable agreement with measurements for all treatments (except for an apparent time frameshift for the Butyrate, 7%O2 treatment).

doi:10.1371/journal.pcbi.1004621.g003
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the production of Nar sustained by ve�
N2O

was inconsequential for simulating the measured

NO�
2 production, since NO�

3 was already exhausted when N2O started accumulating (i.e., when
ve�

N2O
> 0). For this reason, the fraction that produced Nar (FNa, Eq 3 and Table 4) is calculated

as functional (= 0.23–0.43) and theoretical (= 0.56–0.81), where the first is the fraction actually
responsible for NO�

2 production (sustained by ve�
O2
), but the latter also incorporates the frac-

tion that produced Nar after the exhaustion of NO�
3 (sustained by ve�

O2
as well as ve�

N2O
). The

rationale behind calculating the theoretical FNa is the empirical data indicating that Nar tran-
scription is not turned off in response to NO�

3 depletion [18]. Although our model cannot test
the theoretical FNa, but the functional FNa suggests that, contrary to the common assumption,
the measured NO�

2 kinetics can be neatly explained by only 23–43.3% of the population pro-
ducing Nar in response to O2 depletion.

Very low probabilistic initiation of nirS transcription
When we optimised the specific probability of nirS transcriptional activation (rNi, see Eqs 4, 5,
6 and 7) to fit the measured data, the average rNi = 0.004 h-1 (Table 3) adequately simulated the
measured NO�

2 depletion and N2 accumulation (Fig 4). The recruitment to denitrification
lasted for 19.5–47.3 h, i.e., the time when [O2] was below a critical concentration and the veloc-
ity of e--flow to O2 and the relevant NO

�
x /NOx remained above a critical minimum (Eqs 4, 5, 6

and 7). The resulting fraction recruited to denitrification (FNi, see Eq 8 and Table 4) was 0.08–
0.18, the bulk of which depended on the e--flow to NO�

3 and N2O (instead of aerobic
respiration).

To test whether the measured data could be explained without the recruitment sustained by
NO�

3 and N2O respiration, we also simulated the model with the recruitment as a function of

Table 3. Specific-probability of nar and nirS transcriptional initiation (rNa and rNi, respectively) estimated for each treatment by optimisation (best
match between the simulated andmeasured data).

Batch C-source Treatment*: O2 (vol.%), NO�
3 (mM) Optimal rNa (h

-1) Optimal rNi (h
-1)

1 Butyrate ~0, 2 0.041 0.005

2 Butyrate 7, 2 – 0.004

3 Succinate ~0, 2 0.030 0.005

4 Succinate 7, 2 – 0.003

Avg. = 0.035 Avg. = 0.004

*Treatment refers to the C-source, initial oxygen concentration in the headspace (measured as headspace-vol.%), and initial NO�
3 concentration in the

medium (mM).

doi:10.1371/journal.pcbi.1004621.t003

Table 4. The fraction of the population with Nar (FNa) and NirS (FNi) estimated based on the optimal specific-probability of nar and nirS transcrip-
tional initiation (rNa and rNi), respectively.

Batch C-source O2 (vol.%), NO�
3 (mM) Functional FNa* (unitless) Theoretical FNa* (unitless) FNi (unitless)

1 Butyrate ~0, 2 0.433 0.813 0.221

2 Butyrate 7, 2 0.343 0.656 0.088

3 Succinate ~0, 2 0.357 0.803 0.206

4 Succinate 7, 2 0.230 0.564 0.077

*Functional FNa is the fraction of cells expressing Nar while NO�
3 is still present, while Theoretical FNa is the fraction expressing Nar when including the

theoretical recruitment after NO�
3 depletion (supported by energy from N2O reduction).

doi:10.1371/journal.pcbi.1004621.t004
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O2 alone and re-optimised rNi, which on average increased to 0.012 h-1 (providing FNi = 0.083–
0.35). This was expected since O2 is exhausted rather quickly, shrinking the time-window avail-
able for the recruitment. Comparatively, these simulations were less satisfactory: using the
average rNi = 0.012 h-1 generally resulted in larger deviations than for the default simulations
(S2 Fig), and the optimal rNi for individual treatments varied grossly (50% higher values for the

Fig 4. Comparison of measured and simulated data assuming stochastic initiation of nirS transcription. Each panel compares the measuredNO�
2

depletion (sub-panel) and N2 accumulation (main panel; n = 3–4) with simulations. The simulations are carried out with an optimised specific-probability of
nirS transcriptional initiation (average rNi = 0.004 h-1, Eqs 4, 5, 6 and 7), allowing 7.7–22.1% of the population to produce NirS + cNor (Eq 8) during the
available time-window (= 19.5–47.3 h).

doi:10.1371/journal.pcbi.1004621.g004
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~0% O2 treatments than for the 7% O2 treatments). This contrasts the default simulations,
where the optimal rNi values for individual treatments were quite similar.

Sensitivity of rNa and rNi to ve�
min

Recruitment to denitrification (both nar and nirS transcription) is assumed to continue only as
long as the combined e--flow to O2, NO

�
3 and N2O is greater than ve�min (Eqs 1, 2, 4, 5, 6 and 7).

To test the model’s sensitivity to this parameter, we estimated rNa and rNi by optimisation for
different values of ve�min, relative to the default value = 1.95×10−17 mol e- cell-1 h-1. For all cases,
the model was able to adequately simulate the measured N2 kinetics by moderate adjustments
of rNa and rNi. Table 5 shows the average optimal values of rNa and rNi, obtained by fitting the
simulated N2 kinetics to the data, for different values of ve�min. S3 Fig shows adequate simula-
tions of the measured N2 kinetics assuming ve�min = 0, with optimised rNa = 0.033 h-1 and rNi =
0.0033 h-1. Thus, although assuming ve�min > 0 appears logical, it is not necessary to explain the
measured data.

N2O kinetics
To simulate the N2O kinetics, we used ve�maxN2O

= 5.5×10−15 mol e- cell-1 h-1, empirically deter-

mined under similar experimental conditions as simulated here [24], and adopted the literature
values for KmN2O

[= 5 and 7 μM 42,43, respectively]. But with KmN2O
= 5 μM, the model pre-

dicted N2O accumulation ~10–20 times higher than measured for the ~0% and ~2–3 times
higher for the 7% O2 treatments (Fig 5). This forced us to simulate the model with the parame-
ter value estimated by optimisation, providing the average KmN2O

= 0.6 μM.

The measured N2O shows a conspicuous increase throughout the entire active denitrifica-
tion period, and this phenomenon is neatly captured by the model. The reason for this model
prediction is that the number of N2O producing cells (ZNaNi + ZNi, Fig 2A) is low to begin with
compared to the number of N2O consuming cells (Z− + ZNa+ ZNaNi + ZNi), but the fraction of
N2O producers will increase during the anoxic phase for two reasons: one is the recruitment to
ZNaNi & ZNi, another is the fact that the model predicts approximately three times faster cell-
specific growth rate for ZNaNi & ZNi than for Z− & ZNa (ve�N2O

is identical for all groups, while

ve�NO�
2
and ve�NO are both zero for Z− & ZNa but for ZNaNi & ZNi, it holds that ve�NO�

2
� ve�NO >

ve�N2O.
To illustrate this phenomenon, we ran the model, assuming that the Z− & ZNa cells had

no N2O reductase, resulting in a) constant N2O concentration throughout the entire anoxic
phase and b)much higher N2O concentrations than measured (Fig 5). The overestimation is a
trivial result, easily avoidable by increasing ve�maxN2O

or decreasing KmN2O
moderately. However,

the prediction of a constant N2O concentration is clearly in conflict with the experimental

Table 5. Estimated rNa and rNi, depending on ve�
min.

ve�
min (mol e- cell h-1) Optimal rNa (h

-1) Optimal rNi (h
-1)

5 × Default* 0.041 0.0062

Default 0.035 0.0041

0.5 × Default 0.034 0.0035

0 0.033 0.0033

*Refers to the default value = 1.95×10−17 mol e- cell-1 h-1.

doi:10.1371/journal.pcbi.1004621.t005
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data, and no parameterisation could force the model to reproduce this phenomenon other than
the differential expression of denitrification genes.

Hence, although there is room for further refinements, our default assumption regarding
differential expression of NirS and NosZ explains the observed N2O kinetics: 1) abrupt initial
accumulation to very low levels due to recruitment of relatively small numbers to the N2O

Fig 5. Comparison of the measured N2O with that simulated. Each main panel (A–D) compares the measured N2O (single vial results) with the default
simulation using the parameter values given in Table 2, i.e., KmN2O

= 0.6 μM (estimated through optimisation) and ve�
maxN2O

= 5.5×10−15 mol e- cell-1 h-1 [24]. In
contrast, each inserted panel shows the simulated N2O assuming 1) N2O consumption only by the cells producing N2O (ZNaNi + ZNi), and 2) the literature
value for KmN2O

= 5 μM [42]. The results show that the default simulation best explains the measured N2O kinetics, assuming its production by a small fraction
(ZNaNi + ZNi) and consumption by the entire population (Z− + ZNa+ ZNaNi + ZNi).

doi:10.1371/journal.pcbi.1004621.g005
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producing pools (ZNaNi & ZNi), and 2) increasing N2O concentration due to recruitment and
faster cell-specific growth of ZNaNi & ZNi than that of the cells only consuming N2O (Z− + ZNa).

This modelling exercise sheds some light on the possible role of regulatory biology of deni-
trification in controlling N2O emissions from soils. If all cells in soils had the same regulatory
phenotype as Pa. denitrificans, their emission of N2O would probably be miniscule, and soils
could easily become strong net sinks for N2O because the majority of cells would be ‘truncated
denitrifiers’ with only N2O reductase expressed. It remains to be tested, however, if the regula-
tory phenotype of Pa. denitrificans is a rare or a common phenomenon among full-fledged
denitrifiers. We foresee that further exploration of denitrification phenotypes will unravel a
plethora of response patterns.

Conclusion
Using dynamic modelling, we have demonstrated that the denitrification kinetics in Pa. deni-
trificans can be adequately explained by assuming low probabilistic transcriptional activation
of the nar and nirS genes and a subsequent autocatalytic expression of the enzymes. Such auto-
catalytic gene expressions are common in prokaryotes, rendering a population heterogeneous
because of the stochastic initiation of gene transcription, with a low probability [45]. For N2O
kinetics, our hypothesis was that a) the gas is produced by a fraction of the incubated popula-
tion that is able to initiate nirS transcription with a certain probability, leading to a coordinated
expression of nirS + nor via NO [16], and b)N2O is consumed by the entire population
because, in response to anoxia, nosZ is readily induced by FnrP [24]. Our model corroborated
this hypothesis by reasonably simulating the N2O kinetics with the specific-probability of nirS
transcriptional activation = 0.004 h-1, resulting in 7.7–22.1% of the population producing NirS
+ cNor (hence N2O), but all cells producing NosZ (hence equally consuming N2O).

Supporting Information
S1 Dynamic Model. The folder contains the dynamic model used in this study ‘Hassan_et_
al_2015_Pa._denitrificans.mdl’. The model requires Vensim (Double Precision), which is
available at http://vensim.com/free-download/. The zip folder also contains files with the
empirical data; these files are automatically loaded into the model when it is run.
(ZIP)

S1 Fig. Pa. denitrificans gas and NO�
2 kinetics. Typical gas kinetics (O2, NO, N2O, N2) and

NO�
2 accumulation in Pa. denitrificans during the transition from aerobic respiration to deni-

trification; batch cultures, n = 3; 20°C; Sistrom’s medium; 2 mM KNO3 and 7 vol% initial O2 in
the headspace. All the available NO�

3 (100 μmol vial-1) was recovered as NO�
2 before the onset

of N-gas production. In previous experiments [17], N2O concentrations were below the detec-
tion limit of the system, but thanks to a new system with electron capture detector, the N2O
kinetics were monitored with reasonable precision. Adapted from [18].
(TIF)

S2 Fig. Comparison of measured and simulated data assuming stochastic initiation of nirS
transcription with aerobic respiration being the only energy source for producing NirS +
cNor. In each panel, the measured NO�

2 depletion (sub-panel) and N2 accumulation (main
panel; n = 3–4) are compared with simulations. The simulations here are to be compared with
the default simulations (Fig 4), which were run assuming that the coordinated NirS + cNor
production (via nirS transcriptional activation) is sustained by the energy generated by O2 as
well as NO�

3 and/or N2O reduction. The default simulations provided an average specific-prob-
ability of nirS transcriptional activation (rNi) = 0.004 h-1 (Eqs 4, 5, 6 and 7) by optimisation,
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allowing 7.7–22.1% of the population to produce NirS + cNor (Eq 8) in 19.5–47.3 h. To match
the measured data here, the average rNi had to be raised to 0.012 h

-1, since the time available
for the enzyme synthesis shrank (= 3.5–16 h) due to a rapid exhaustion of O2. Comparatively,
the assumption that the ATP from NO�

3 and/or N2O reduction should help cells produce deni-
trification enzymes seems more plausible and provide better agreement with the measured
data.
(TIF)

S3 Fig. Measured vs. simulated N2 kinetics assuming ve�
min = 0. The default simulations are

carried out assuming that for a cell to produce first molecules of Nar and NirS, a minimum of
e--flow to an available e--acceptor (ve�

min, mol e- cell-1 h-1) is necessary to generate a minimum
of ATP required for protein synthesis (Eqs 1, 2, 4, 5, 6 and 7). Although assuming ve�

min > 0
seems logical, the measured N2 kinetics are adequately simulated here with ve�

min = 0. This
shows that the assumption is not necessary to explain the measured data.
(TIF)
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