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ABSTRACT
Lynch syndrome is an inherited cancer-predisposing disorder caused by germline 

mutations in the DNA mismatch repair (MMR) genes but there is a high degree of 
variability in cancer risk observed among carriers, suggesting the existence of 
modifying factors. Our aim was to investigate variants within the hTERT gene as 
a potential colorectal cancer (CRC) risk modifier for MMR gene mutation carriers. 
We identified 1098 MMR gene mutation carriers (420 MLH1, 481 MSH2, 126 MSH6, 
53 PMS2 and 18 EPCAM) from 330 families recruited from either family cancer 
clinics or population cancer registries of the Australasian Colorectal Cancer Family 
Registry between 1997 and 2012. Using weighted Cox regression after adjusting for 
ascertainment bias, we estimated associations between 23 SNPs within the hTERT 
gene and CRC risk. During 46,836 person-years observation, 392 (36%) carriers were 
diagnosed with CRC at a mean age of 42.2 (standard deviation 11.4) years. There was 
no evidence of association between any of the hTERT SNPs and CRC risk, overall and 
stratified by sex and MMR gene mutated, after adjustment for multiple testing. Our 
findings suggest no evidence for clinical utility of the SNPs within the hTERT gene in 
Lynch syndrome. 
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INTRODUCTION

Lynch syndrome, formerly known as hereditary 
non-polyposis colorectal cancer, is an autosomal dominant 
disorder caused by germline mutations in one of the 
DNA mismatch repair (MMR) genes MLH1, MSH2, 
MSH6, and PMS2, or EPCAM. MMR gene mutation 
carriers are at increased risk of developing cancers of the 
colorectum and endometrium, as well as cancers of the 
ovary, kidney, pancreas, stomach, and urinary bladder. 
The risk of colorectal cancer (CRC) to age 70 years for 
MMR gene mutation carriers is reported to be between 12 
and 50% [1, 2]. In addition to environmental factors such 
as obesity and smoking [3], there is evidence suggesting 
the existence of genetic factors that may contribute to the 
variability in cancer risks [4, 5].

The hTERT gene (MIM 187270) encodes telomerase 
reverse transcriptase, the catalytic subunit of telomerase, 

an important protein for maintaining telomere length. 
Genetic variation within this gene has been shown to 
affect telomerase activity and telomere length and is 
thought to underlie an increased risk for cancer [6]. 
Genetic association studies in breast, ovarian, endometrial, 
lung, glioma, and pancreatic cancers have identified 
multiple single nucleotide polymorphisms (SNPs) in the 
hTERT gene that are associated with an increased risk 
of cancer  [7].  Several studies have also identified an 
association between CRC risk and SNPs within hTERT 
at 5p15.33 [8, 9]. We hypothesized that genetic variation 
within hTERT may act as a genetic modifier of CRC risk 
for MMR gene mutation carriers. 

RESULTS

A total of 1098 carriers of a germline mutation in a 
MMR gene (18 in EPCAM, 420 in MLH1, 481 in MSH2, 

Figure 1: Hazard ratios and corresponding 95% confidence intervals for associations between 23 single nucleotide 
polymorphisms within the hTERT gene and colorectal cancer risk for DNA mismatch repair gene mutation carriers.
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126 in MSH6, and 53 in PMS2) from 330 independent 
families was included in this study. During 46,757 person-
years observation, 392 (36%) carriers were diagnosed 
with CRC at a mean age of 42.2 (standard deviation 11.4) 
years (Table 1). Of these, 90% of cancer diagnoses were 
confirmed using pathology reports, medical records, 
cancer registry reports, and death certificates.

Of the 23 hTERT SNPs that we measured, five 
SNPs (rs13361701, rs2853691, rs4075202, rs2736100, 
rs4975612) deviated from Hardy–Weinberg equilibrium 
in CRC-unaffected carriers (Supplementary Table 1). 
After adjusting for multiple testing and age and sex of the 
carriers, there was no evidence of an association between 
CRC risk and any of these 23 SNPs per allele (Figure 1) or 
for homozygous or heterozygous carriers of minor allele 
(Supplementary Table 2). When we stratified by sex of 
the carriers and the MMR gene mutated, there was also 
no evidence of any association (detail results not shown). 
When we censored carriers by age 45 years, we found no 
evidence of any association (detail results not shown).

We combined the 23 SNPs to examine the effect 
of haplotypes on CRC risk. Of the 88 haplotypes 
with frequency greater than 0.002, we estimated the 
associations between five most common haplotypes 
and CRC risk. Again, there was no evidence for any 
association (detail results not shown). 

DISCUSSION

In this study, we examined whether SNPs within 
the hTERT gene act as genetic modifiers of CRC risk for 

MMR gene mutation carriers. We found no evidence of 
association between any of the 23 SNPs within the hTERT 
gene and CRC risk either overall or when stratified by sex 
or specific MMR gene mutation, suggesting that hTERT 
SNPs do not modify the risk of CRC for MMR gene 
mutation carriers.

A recent study of 930 MMR gene mutation carriers 
reported no overall difference in genotype frequencies 
between carriers affected and unaffected with CRC for the 
rs2075786 SNP in hTERT (RR=2.46; 95% CI=0.78–7.82) 
[10], a finding that is consistent with ours. This study also 
reported marginally significant evidence of association 
between the AA genotype of the rs2075786 SNP and 
cancer risk for carriers diagnosed with Lynch syndrome 
related-cancer diagnosed before the age of 45 years 
(RR=2.90; 95% CI=1.02–8.26; p=0.05) but we found 
no evidence of an association for that SNP and CRC risk 
before age 45 years. 

To date, the search for genetic modifiers of CRC risk 
for MMR gene mutation carriers has provided inconsistent 
results.  We have shown previously that the 11 SNPs 
identified from genome-wide association studies (GWAS) 
of CRC for the general population are not associated with 
CRC risk for MMR gene mutation carriers [11].  Three 
studies observed two variants, 8q23.3 (rs16892766) and 
11q23.1 (rs3802842), to be associated with increased risk 
of CRC in MMR gene mutation carriers especially for 
females only [12, 13] or MLH1 mutation carriers only [5, 
13]. In contrast, another study of 748 mutation carriers did 
not report this association[14].

Additional SNPs have been identified from CRC 

Table 1: Characteristics of DNA mismatch repair gene mutation carriers included in the study 
No colorectal cancer 
(n=706) N (%)

Colorectal cancer 
(n=392) N (%)

All (n=1098)
N (%)

Sex 
           Male 
           Female

273 (38.8)
433 (61.2)

193 (49.2)
199 (50.8)

466 (42.5)
631 (57.5)

Ascertainment
           Population-based
           Clinic-based

47 (6.7)
659 (93.3)

41 (10.5)
351 (89.5)

88 (8.0)
1010 (92.0)

Gene mutated
           EPCAM
           MLH1
           MSH2
           MSH6
           PMS2
          

13 (1.8)
247 (35.0)
317 (45.0)
95 (13.4)
34 (4.8)

5 (1.3)
173 (44.1)
164 (41.8)
32 (7.9)
19 (4.9)

18 (1.6)
420 (38.3)
481 (43.8)
126 (11.5)
53 (4.8)

Age a mean (SD)
           Median [range]

43.9 (13.6)
42 [9 - 89]

42.2 (11.4)
42 [16 - 86]

43.2 (12.8)
42 [9 - 89]

a Age at diagnosis for carriers with colorectal cancer; age at diagnosis of other cancer or polypectomy or death or last contact for carriers 
without colorectal cancer. 
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GWAS, including the rs2853668 SNP within the TERT-
CLPTM1L locus on 5p15.33 [9], but it appears that 
some of these have no relevance to the risk of CRC for 
MMR gene mutation carriers. An association between the 
rs2736100 SNP in hTERT and CRC has also been reported 
in sporadic setting [8] but we found no evidence for an 
association between this SNP and CRC risk for MMR 
gene mutation carriers. 

Our study has the largest number of MMR gene 
mutation carriers assessed to date for genetic modifiers of 
the hTERT gene on CRC risk. A possible limitation of our 
study is its generalizability only to MMR gene mutation 
carriers with substantial survival, as to be included in 
the analysis cases had to survive long enough to provide 
a blood sample for DNA testing. There were 5 SNPs 
deviated from Hardy–Weinberg equilibrium in CRC-
unaffected carriers in our sample. This might be explained 
by small sample size and non-random sampling of carriers.

In conclusion, our findings suggest that common 
genetic variants within the hTERT gene do not contribute 
to CRC risk for carriers of MMR gene mutation carriers. 
More information is important clinically, to provide 
more accurate risk assessment and risk management. 
Subsequent studies should focus on testing large cohorts 
of MMR gene mutation carriers using agnostic genome-
wide approaches in order to identify genetic modifiers of 
risk. 

MATERIALS AND METHODS

Study recruitment and data collection

The study sample comprised confirmed heterozygote 
carriers of pathogenic mutations in MMR genes who were 
participants in the Australasian Colorectal Cancer Family 
Registry [15]. Between 1997 and 2012, the Australasian 
Colorectal Cancer Family Registry recruited families via: 
population-based probands who were recently diagnosed 
colorectal cancer cases from the Victorian Cancer 
Registry; or clinic-based probands who were enrolled 
from multiple-case families referred to family cancer 
clinics in Melbourne, Adelaide, Perth, Brisbane, Sydney, 
and Auckland. Written informed consent was obtained 
from all participants, and the study protocol was approved 
by the institutional human research ethics committee at 
each center.

Information on demographics, personal 
characteristics, personal and family history of cancer, 
cancer-screening history, and history of polyps, 
polypectomy, and other surgeries was obtained by 
questionnaires from all probands and participating 
relatives. Participants were followed up approximately 
every five years after baseline to update this information. 
The present study was based on all available baseline and 

follow-up data. 

MMR gene mutation testing 

Testing for MMR germline mutations was 
performed for all population-based probands with 
CRC displaying evidence of impaired MMR function 
as evidenced by either tumor microsatellite instability 
(MSI) and/or a lack of MMR protein expression by 
immunohistochemistry. The youngest-onset colorectal 
case participants from each clinic-based family were also 
genotyped, regardless of tumor MSI or MMR protein 
expression status. Mutation testing for the MLH1, MSH2 
and MSH6 genes was performed by Sanger sequencing 
or denaturing high performance liquid chromatography, 
followed by confirmatory DNA sequencing. Large 
duplication and deletion mutations including those 
involving EPCAM, which lead to MSH2 methylation, 
were detected by Multiplex Ligation Dependent Probe 
Amplification (MLPA). PMS2 mutation testing involved 
a modified protocol from Senter et al.[16] where exons 
1–5, 9 and 11–15 were amplified in three long range 
PCRs followed by nested exon specific PCR/sequencing 
while the remaining exons (6, 7, 8 and 10) were amplified 
and sequenced direct from genomic DNA. Large-scale 
deletions in PMS2 were detected using the P008-A1 
MLPA kit (MRC Holland). The relatives of probands with 
a pathogenic MMR germline mutation, who provided a 
blood sample, underwent testing for the specific mutation 
identified in the proband. 

Genotyping of the SNPs

Using data from the International HapMap project 
(www.HapMap.org) and Haploview program (version 
3.12) and a minimum r2 threshold of 0.8 we identified a 
set of tagging SNPs to capture the genetic variation in the 
hTERT gene. SNPs previously associated with CRC risk 
[8, 9, 17] or from the single study of CRC risk in MMR 
gene mutation carriers [10]  were also genotyped. The 
selected SNPs (Supplementary Table 1) were genotyped 
using Sequenom’s iPLEX Gold.  Briefly, PCR and 
extension primers for these SNPs were designed using 
the MassARRAY Assay Design 3.0 software (Sequenom, 
Inc.). PCR amplification and single base extension 
reactions were performed according to the manufacturer’s 
instructions. Extension product sizes were determined by 
mass spectrometry using Sequenom’s Compact matrix-
assisted laser desorption ionization-time of flight mass 
spectrometer. The resulting mass spectra were converted 
to genotype data using SpectroTYPER-RT software. 
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Statistical analysis

Time-at-risk for each MMR gene mutation carrier 
started at birth and ended at age at diagnosis of colorectal 
cancer (n=392), any other cancer (n=141), polypectomy 
(n=282), death (n=4) or last contact (n=279), whichever 
occurred first.

Since some carriers were ascertained because they 
were diagnosed with CRC or they had a strong family 
history, the identification of MMR gene mutation carriers 
was not random with respect to the disease status. To 
adjust for this non-random ascertainment, we used the 
weighted cohort approach.[18] Age-specific incidence 
rates of CRC for MMR gene mutation carriers [19] 
were used to calculate sampling fractions to weight the 
proportion of affected and unaffected carriers in five-year 
age stratum so the proportion of affected carriers in each 
age group equalled that expected for mutation carriers in 
the population.

Cox proportional hazards regression analysis was 
used to estimate hazard ratios (HRs) and 95% confidence 
intervals (CIs) for associations between each of 23 hTERT 
SNPs and CRC risk for MMR gene mutation carriers. We 
estimated HRs separately for homozygous carriers of the 
minor allele (2 minor alleles) and heterozygous carriers 
of the minor allele (1 minor allele) versus non-carriers (0 
minor allele); and we estimated HRs per minor allele, i.e. a 
linear association on the log scale. As a subgroup analysis 
to investigate the associations between hTERT SNPs and 
early-onset CRC risk, we censored carriers by age of 45 
years and conducted regressions. 

The proportional hazards assumption was tested by 
examining the relationship between the scaled Schoenfeld 
residuals and survival time. To allow for any correlation 
of risk between family members, the Huber-White 
robust variance correction was applied by clustering on 
family membership [20]. To reduce the false discovery 
rate expected from the large number of associations 
investigated, the P value cut-off for classifying a 
HR as statistically significant was determined using 
methods by Benjamini and Hochberg [21]. We put the 
individual  P-values in order, from smallest to largest. 
The smallest P value has a rank of i=1, then next smallest 
has i=2, etc. Then we compared each individual P value to 
its Benjamini-Hochberg critical value, (i/m)Q, where i is 
the rank, m is the total number of tests, and Q is the false 
discovery rate of 0.05. The largest P value that has P<(i/m)
Q is significant, and all of the P values smaller than it are 
also significant. This method controls the expected high 
false discovery rate and can result in significant gains in 
power over traditional multiplicity ‘correction’ methods 
such as the commonly used Bonferroni procedure [22]. 
All statistical analyses were performed using STATA 13.0 
(College Station, TX: StataCorp LP, 2013). 

Haplotypes for the 23 SNPs within the hTERT gene 

were estimated using the haplologit command in STATA 
that implements the retrospective profile-likelihood 
methods of Spinka et al [23]. Logistic regression was used 
to examine associations between the haplotypes and CRC.
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