Skip to main content
. 2015 Nov 6;15(11):28099–28128. doi: 10.3390/s151128099

Table 4.

Selected intensity correction and calibration methods (A, B, C, D denote empirical coefficients, ref denotes a reference).

Reference Scanner Level Targets Parameters Theoretical Model Empirical Model
Luzum et al. [94] (ALS) Optech ALTM 1233 1 n/a range (R) Ic=I×Ri2Rref2 n/a
Coren & Sterzai [68] (ALS) Optech ALTM3033 1 homogenous surface (asphalt road) range (R)angle of incidence (α) atm. attenuation coeff. (a) Ic=I×Ri2Rref2×1cosα Ic=I×eAR
Starek et al. [73] (ALS) Optech ALTM 1233 1 n/a range (R) Ic=I×Ri2Rref2  n/a
Hofle & Pfeifer [70] (ALS) Optech ALTM 3100 1 homogenous surface (asphalt road) range (R)angle of incidence (α) atm. attenuation coeff. (a) transmitted energy (ET) Ic=I× Ri2Rref2 ×1cosα×102aR×ETrefETj  Ic= I1000×f(R)
f(R)=AR2+BR+(110002A 1000 B)
Jutzi and Gross [71] (ALS) RIEGL LMS—Q560 1 homogenous surface (roof planes) range (R)angle of incidence (α) atm. attenuation coeff. (a) n/a Ic=I×RA×e2BR×cosC(α)×eD
Korpela et al. [27] (ALS) Optech ALTM3100Leica ALS50 1 homogenous surface range (R) automatic gain control (Gc) n/a Ic= I×RiARrefA+I×B×(CGc)
Vain et al. [95] (ALS) Leica ALS50-II 1 brightness calibration targets (tarps) automatic gain control (Gc) n/a Ic=A+B×I+C× I×Gc 
Habib et al. [96] (ALS) Leica ALS50 1 n/a range (R) angle of incidence (α) Ic=I×Ri2Rref2×1cosα  n/a
Yan et al. [58] (ALS) Leica ALS50 1 n/a range (R) angle of incidence (α) atm. attenuation coeff. (a) Ic=I×Ri2Rref2 ×1cosα×e2aR n/a
Ding et al. [69] (ALS) Leica ALS50-I 1 overlapping scan areas range (R) angle of incidence (α) atm. attenuation coeff. (a) Ic=I×Ri2Rref2×1cosα×102aR Ic*=Ic×RA×102BR×cosC(α)×eD  and Phong model
Ahokas et al. [77] (ALS) Optech ALTM 3100 3 brightness calibration targets (tarps) range (R) atm. attenuation coeff. (a) transmitted energy (ET) reflectance (ρ) Ic=I×Ri2Rref2×ETrefETj ρ=A× Ic+B
Kaasalainen et al. [61] (ALS) Optech ALTM 3100 Topeye MK Leica ALS50 3 sand and gravel range (R) angle of incidence (α) total atmosphere transmittance (T) pulse energy (ET) method described by Vain et al. (2009) ρ=IcIref
where: Iref is reference Intensity measured at the same range of targets
Vain et al. [65] (ALS) Above scanners + Optech ALTM 2033 3 natural & commercial targets, brightness calibration targets (tarps) range (R)angle of incidence (α) total atmosphere transmittance (T) pulse energy (ET) Ic=I×Ri2Rref2×1cosα×1T2×ETrefETj ρ=Ic×ρrefIc.ref
Briese et al. [97] (ALS) RIEGL VQ820-G LMS-Q680i VQ-580 3 asphalt road, stone pavement range (R) angle of incidence (α) detected power (Pr) empirical calibration constant (Ccal) reflectance (ρ) ρ=Ccal×Ri2cosα Ccal=ρref×cosαrefRref2
Errington et al. [98] (TLS) 3DLS-K2 1 overlapping scan areas range (R) angle of incidence (α) pseudo-reflectance (ρ) n/a The separation model proposed by Pfeifer et al. (2008)
Fang et al. [21] (TLS) Z + F Imager5006i 1 White paper targets range (R) angle of incidence (α) near-distance effect (n(R)) n/a I=n(R)×A×(1B+Bcosα)R2
Pfeifer et al. [63,64] (TLS) Riegl LMS-Z420i & Optech ILRIS 3D 3 brightness calibration targets (Spectralon ) range (R) angle of incidence (α) reflectance (ρ) n/a (1) I=g1(R)·g2(ρcos(α))
(2) I=g3(ρcos(α), g4(R))
where: g1: linear, g2: xA, g3: cubic polynomial, g4: vector valued
Kaasalainen et al. [59,60] (TLS) FARO LS HE80 3 brightness calibration targets (Spectralon) range (R) reflectance (ρ) n/a ρ=10IIrefAB
where: Iref is 99% Spectralon ® reference Intensity measured at the same range of targets
Kaasalainen et al. [59] (TLS) Leica HDS6000 3 brightness calibration targets (Spectralon) gravel range (R) n/a ρ=IIref
where: Iref is 99% Spectralon ® reference Intensity measured at the same range of targets