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Abstract: Experiments on micro- and nano-mechanical systems (M/NEMS) have shown 

that their behavior under bending loads departs in many cases from the classical predictions 

using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been 

seen as a dependence of the material properties on the size of the structure, in particular 

thickness. A theoretical model that allows for quantitative understanding and prediction of 

this size effect is important for the design of M/NEMS. In this paper, we summarize and 

analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), 

Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) 

and Surface Elasticity Theory (SET). By comparing these theories with experimental data 

we propose a simplified model combination of CST and SET that properly fits all considered 

cases, therefore delivering a simple (two parameters) model that can be used to predict the 

mechanical properties at the nanoscale. 

Keywords: size effect; Young’s modulus; residual stress; couple stress; grain boundary; 

surface elasticity; surface stress; length scale parameter 
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1. Introduction 

Due to their small sizes, micro- and nano-mechanical systems (M/NEMS) hold tremendous promise 

for novel, versatile and very sensitive devices for different applications ranging from mass  

detection [1,2] to frequency synthesis [3–6], including bio- [7,8], force [9] and light detection [10,11]. 

In addition to being incredibly sensitive, they also show a very low power consumption, and a very small 

footprint, which is beneficial for miniaturization. The latter is particularly important for applications as 

mechanical switches [12–14], where a large number of elements will be necessary to perform complex 

logic operations. A paramount condition for any eventual application of M/NEMS is the ability to predict 

the device characteristics at the design level. This, among other things, implies that one should be able 

to predict the structural and mechanical properties of the material used to fabricate any device. 

The small dimensions of these M/NEMS can, however, pose a serious challenge as experimental 

characterization has shown in the past few years how the material properties depend on the size  

(e.g., thickness) of the layer used to fabricate the device. 

M/NEMS have dimensions that can range in length from 1 μm  to 1000 μm  and thicknesses or 

diameters typically in the range of few μm down to 25 nm or even sub-nm regime [15], which overlap 

with the critical length scales in materials. As a consequence, the physical properties of nanoscale 

materials such as mechanical, electrical, thermal and magnetic properties can be different from the bulk 

values. This, of course, is both a limitation and an opportunity, as we can use micro/nanostructures such 

as nanowires and nanobeams as excellent systems for studying size effect in material properties and 

behavior at the small scale. Among the different properties that arise when reducing the size of the any 

device we can find changes in resistivity [16,17], magnetic frustration [18], thermal conductivity [19], 

and mechanical properties. This latter case includes anomalous behavior of nonlinear response [20] and 

the quality factor [21], the appearance of nonlinear damping [22], and the variation of the Young’s modulus. 

Young’s Modulus is a fundamental mechanical property that affects stiffness, frequency and 

reliability of M/NEMS. For macroscopic structures it is considered as a bulk material property, 

independent of size. However, at the micro/nanoscale researchers have observed that the behavior of 

mechanical structures cannot be explained using macroscopic theory and a constant value of the Young’s 

modulus. Indeed, it is not only different from the bulk value, but it is also size-dependent in most cases. 

In this paper we focus on the study of this alleged Young’s modulus size dependence, we first give an 

overview of the state of the art about experimental measurement of the Young’s modulus, then we 

present the typical theories used to explain this size effect and we apply them to the selected cases from 

the literature, concluding that none of the theories alone can actually predict the size dependence for all 

samples. We therefore propose a combined model which considers the residual stress in the material, the 

microstructure of the bulk and also the surface properties of M/NEMS. 

2. Size Effect on the Young’s Modulus of Materials 

We have extensively researched the literature for available experimental data on the size effect of the 

Young’s modulus. We have done so restricting ourselves to experiments that analyze the Young’s 

modulus using various techniques (e.g., resonant frequency, point-load deflection) but always through 

the bending rigidity of different M/NEMS. Table 1 summarizes the analyzed data. In almost every case, 
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the authors extract a parameter we will call effective Young’s modulus 𝐸𝑒𝑓𝑓, i.e., the Young’s modulus 

that can be calculated when considering classical beam theory and not a size dependence of the material 

properties. It is this magnitude, 𝐸𝑒𝑓𝑓, the one which tendency we highlight in Table 1, whether increasing 

when size reduces (I, stiffening effect), decreasing (D, softening effect) or being constant (C).  

In order to obtain thin structures experimentally, researchers were originally limited to metals and 

polymers that could be deposited in a controlled manner, which is why the first experiments at the 

microscale were done on those materials [23,24]. Fleck et al. [25] did experiments on copper wires with 

diameters ranging from 170 μm to 12 μm, observing an increase in the stiffness. Many of these original 

experiments were performed using either torsional loads or indentation, and thus are not included  

in Table 1. 

Table 1. Size dependency in micro/nano structures. 

Reference Shape Material Morphology Trend a 

Lam et al. (2003) [26] Clamped-Free Epoxy Amorphous I 

Cuenot et al. (2003) [27,28] Clamped-Clamped PPy Amorphous I 

Cuenot et al. (2004) [28,29] Clamped-Clamped Pb Crystalline I 

Cuenot et al. (2004) [28,29] Clamped-Clamped Ag Crystalline I 

McFarland et al. (2005) [30] Clamped-Free Polypropylene Amorphous I 

Wu et al. (2006) [31] Clamped-Clamped Ag Crystalline I 

Jing et al. (2006) [32] Clamped-Clamped Ag Crystalline I 

Shin et al. (2006) [33] Clamped-Clamped Electroactive polymer Amorphous I 

Liu et al. (2006) [34] Clamped-Free WO3 Crystalline I 

Tan et al. (2007) [35] Clamped-Clamped CuO Crystalline I 

Stan et al. (2007) [36] All fixed ZnO Crystalline I 

Chen et al. (2007) [37] Clamped-Free GaN [0001] Crystalline I 

Sun et al. (2008) [38] Clamped-Clamped Polycaprolactone Amorphous I 

Ballestra et al. (2010) [39] Clamped-Free Au Polycrystalline I 

Li et al. (2003) [40] Clamped-Free Si Crystalline D 

Nilsson et al. (2004) [41] Clamped-Free Cr Polycrystalline D 

Nam et al. (2006) [42] Clamped-Free GaN [120] Crystalline D 

Gavan et al. (2009) [43] Clamped-Free SiN Amorphous D 

Namazu et al. (2000)[44] Clamped-Clamped Si Crystalline C 

Wu et al. (2005) [45] Clamped-Clamped Au Amorphous C 

Ni et al. (2006) [46] Clamped-Clamped GaN Crystalline C 

Chen et al. (2006) [47] Clamped-Clamped Ag Amorphous C 

Chen et al. (2006) [48] Clamped-Free ZnO Crystalline C 

Ni et al. (2006) [49] Clamped-Clamped SiO2 Amorphous C 

a I = increase, D = decrease, C = Constant. 

A couple of interesting examples deal with the study of polymeric structures. In the first case, 

McFarland and Colton showed [30] that the 𝐸𝑒𝑓𝑓 measured from bending stiffness experiments increases 

with thickness reduction, while indentation measurements did not show any dependence on thickness. 

In a parallel and independent study, Lam et al. [26] studied the elastic response of epoxy clamped-free 

beams between 12.5 μm and 50 μm under both bending and elongation tests. They found that the results 

of the latter experiments pointed to a constant 𝐸𝑒𝑓𝑓 with respect to the size; whereas the results from 
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bending tests showed an increase in the 𝐸𝑒𝑓𝑓. Sun et al. [38] studied polymeric nanofibers and obtained 

a very similar result than the one just described, where uniaxial tensile measurements showed no 

dependence on size but bending experiments did show an increase of 𝐸𝑒𝑓𝑓. One main conclusion from 

these papers is that in those cases the size effect was not on the material property itself but rather on the 

bending stiffness, which we will further analyze in the discussions. 

Further development in micro- and nano-fabrication techniques has allowed researchers to probe 

thinner and narrower structures of a variety of different materials. Shin et al. [33] observed that the 

elastic modulus of an electroactive polymer increases with decreasing size, if the diameter of the fiber is 

less than 100 nanometers. Chen et al. [37] investigated mechanical elasticity of GaN nanowires with 

hexagonal cross sections in a diameter range of 57–135 nm, showing an increase of 𝐸𝑒𝑓𝑓 with decreasing 

diameter. In fact, this tendency is the most common of the cases we have found. We can see the same in 

experiments on other materials like carbon nanotubes [50] and Ag and Pb nanowires [29], where 𝐸𝑒𝑓𝑓 

increases dramatically with decreasing diameter. 

On the other hand, as it is proved by other experiments [40–43], 𝐸𝑒𝑓𝑓 can also show the opposite 

dependence with thickness, or just remaining constant [45,51]. Interestingly, there are some materials 

for which different types of tendencies have been reported, as for example GaN [37,42,46] or ZnO [36,48]. 

3. Theoretical Models for Size Effect 

The experimental works described in the previous section defy the classical understanding of elastic 

behavior of structures and materials, where the Young’s modulus is a material property that does not 

depend on size and structures follow standard Hooke’s law and Euler-Bernoulli theory. As a 

consequence, several theories have been developed to explain the experimental results by including 

additional parameters into consideration. Here we will describe succinctly the five predominant theories 

to explain these size effects: residual stress (RST), couple stress (CST), grain boundaries (GBT), surface 

stress (SST), and surface elasticity (SET). The formulas are developed in the case of a rectangular cross 

section (see Figure 1) but a similar result can be found for any other cross section, just with other 

proportionality coefficients. 

The literature also contains a number of works on quantitative theoretical investigations using 

atomistic simulations [52–55] or continuum theory modifications [29,56,57] to get the overall 

mechanical behavior of a micro/nanostructure. Some of the works study nonlinear effects [53], surface 

stresses [29,53,54,58], surface elasticity [32,56,57], grain boundaries [59,60], etc. In any case, to check 

the validity of the simulations or in case they are not available, the different theories are always compared 

against the experimental results therefore estimating the different parameters in the model via fitting to 

the results, which is what we do in the following section for most of the papers in Table 1. 
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Figure 1. Schematic of a clamped-free beam. Cantilever with rectangular cross section 

where the width is denoted by 𝑏, the thickness by ℎ and the length by 𝐿. The axis 𝑥 and 𝑧 

are also marked with the positive sense. 

3.1. Residual Stress Theory 

The most straightforward of all the models we present in this paper is the one that accounts for the 

contribution to the stiffness of the residual (or intrinsic) stress in the material (RST). Deposited or grown 

thin films (metals, dielectrics, polymers, …) [61], bottom-up grown nanowires [62], two dimensional 

materials [63],… residual stress is a consequence of the different micro- and nanofabrication processes 

that the wafers usually undergo [64]. This residual stress remains in the structures when the clamping 

conditions allow it (e.g., clamped-clamped beams), and thus needs to be considered when modelling the 

mechanical response of the structures. Indeed, the effect of residual stress can be seen in many examples 

in the literature, from the buckling of mechanical structures [62,65], till extremely high quality factors in 

resonators [21,66–68], including the stiffness and thus frequency dependence of resonators [5,66,69–73]. 

Taking the particular example of a clamped-clamped structures, we can write its total elastic energy 

when it is deformed as the sum of the energy contributions from structure bending and residual stress. 

The elastic energy 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 in a structure without the residual stress effect can be expressed as: 

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = ∫
𝑀(𝑥)2

2𝐸𝐼
𝑑𝑥 =

𝐿

0

𝐸𝐼

2
 ∫ (

𝜕2𝑤(𝑥)

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

=
𝐸𝐼

2
 ∫ 𝑤′′(𝑥)2𝑑𝑥

𝐿

0

 (1) 

where 𝐸 is the Young’s modulus of the bulk material, 𝐼 is the second moment of inertia, 𝑀 is the bending 

moment and 𝑤 is the out of plane deformation that depends on the position along the axis. The potential 

energy because of residual stress (𝐸𝑟) can be defined as: 

𝑈𝑟 = ∫ 𝑁𝑟𝑑(∆𝐿)
𝐿

0

≈
𝑁𝑟

2
∫ (

𝜕𝑤(𝑥)

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

=
𝜎0𝑏ℎ

2
∫ 𝑤′(𝑥)2 𝑑𝑥

𝐿

0

 (2) 

where 𝜎0 is the residual stress in the material and 𝑁𝑟 = 𝜎0𝑏ℎ is the longitudinal force that arises from 

said stress. The total energy in the structure, if this is regarded as a homogeneous material with an 

effective Young’s modulus 𝐸𝑒𝑓𝑓, then the total elastic energy 𝑈𝑡𝑜𝑡 can be expressed as: 

𝑈𝑡𝑜𝑡 = 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑈𝑟 = ∫
𝑀(𝑥)2

2𝐸𝑒𝑓𝑓𝐼
𝑑𝑥

𝐿

0

=
𝐸𝑒𝑓𝑓𝐼

2
 ∫ 𝑤′′(𝑥)2𝑑𝑥

𝐿

0

 (3) 

And therefore we can write: 
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𝐸𝑒𝑓𝑓 = 𝐸 +
𝜎0𝑏ℎ

𝐼

∫ 𝑤′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑤′′(𝑥)2𝑑𝑥
𝐿

0

= 𝐸 + 12
𝜎0
ℎ2

∫ 𝑤′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑤′′(𝑥)2𝑑𝑥
𝐿

0

 (4) 

Assuming a point load (F) applied in the middle of the clamped-clamped structure, the deflection 

equation for the first half of the beam can be expressed by Equation (5), and the deflection is symmetric 

for the second half: 

𝑤 (0 ≤ 𝑥 ≤
𝐿

2
) =

4𝑥2(3𝐿 − 4𝑥)

𝐿3
𝑤𝑚𝑎𝑥 (5) 

where 𝑤𝑚𝑎𝑥 is the maximum deflection of the beam. Equation (5) allows us to calculate the integrals in 

Equation (4) and obtain the following formula for 𝐸𝑒𝑓𝑓 in the case of a clamped-clamped structure: 

𝐸𝑒𝑓𝑓 = 𝐸 +
3

10
𝜎0 (

𝐿

ℎ
)
2

 (6) 

Importantly, these equations strongly depend on the boundary conditions of the structure, as these 

might release part of the stress 𝜎0 (e.g., cantilevers). In addition, the dependence of the stress-related 

term is proportional to (𝐿 ℎ⁄ )2, which implies different magnitude of the effect for the same thickness. 

3.2. Couple Stress Theory 

While the results of elementary theories like Euler-Bernoulli do match experimental results in many 

situations, these theories assume that the constitutive model is independent of length scale, e.g., Hooke’s 

Law. This assumption works well for macro-scale structures, but it was realized long ago that additional 

parameters are needed to relate stress and strain at the microscale [74–76]. 

The idea of couple stress was introduced at the end of the 19th century, and the beginning of the 20th. 

One of the first accounts that can be found was reported by the Cosserat brothers [77,78] who introduced 

their theory taking into account not only the local translational motion of a point within a material body 

(as assumed by classical elasticity, i.e., Hooke’s Law) but also the local rotation of that point. This is 

implemented in the couple stress theory (CST) by introducing a torque per unit area (couple stress) as 

well as a force per unit area, which is well known to normal stress and shear stress in classical elasticity. 

A theory that is equivalent to this is strain gradient [79,80]. 

The general idea of the microstructural and micromorphic elasticity theories [74,81,82] is that the 

points of the continuum associated with a microstructure of finite size can deform macroscopically 

(yielding the classical elasticity case) as well as microstructurally, producing the length scale effect. In 

other words, the behavior of many solid materials is dependent on microscale length parameters and on 

additional microstructural degrees of freedom. This concept can be qualitatively illustrated by 

considering a simple lattice model of materials as shown in Figure 2. 

Let us calculate now the modification that CST brings to Euler-Bernoulli theory, so that we can extract 

a formula for 𝐸𝑒𝑓𝑓. A schematic of a simple cantilever is shown in Figure 1 to illustrate coordinates. In 

Figure 1, the x-axis coincides with the centroidal axis of the undeformed beam and the z-axis is the axis 

of symmetry. 𝐿, 𝑏 and ℎ are respectively length, width and thickness of the micro/nano beam. 
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Figure 2. Schematic of the microstructure that justifies Couple Stress Theory (CST). Simple 

lattice model of heterogeneous materials illustrating dependency of material behavior on 

couple stress; (a) Microstructure of a heterogeneous elastic material; (b) Equivalent Lattice 

Model; (c) Normal and shear stresses on a typical in-plane element in presence of the  

couples stress. 

In the linear couple stress theory the strain energy density of a deformed body is assumed to depend 

on strain 𝜀 and rotation gradient 𝜅. Using index notation, the constitutive equations for the strain energy 

density can be written as [83]: 

𝑒𝑠 =
1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 + 2𝜂𝜅𝑖𝑗𝜅𝑖𝑗 + 2𝜂′𝜅𝑖𝑗𝜅𝑗𝑖 (7) 

where 𝜆  and 𝜇  are the two Lame’s constants of classical elasticity, whereas 𝜂  and 𝜂′  are two  

non-classical Lame-type material constants which introduce the couple stress effects. 𝑖, 𝑗, 𝑘 are indices 

that vary from 1 to 3; representing the variables in 𝑥, 𝑦, 𝑧  directions in Cartesian coordinates, 

respectively. The strain energy 𝐸𝑠  and the kinetic energy 𝐸𝑘  in a deformed isotropic linearly-elastic 

material occupying a volume 𝑉 are defined as follows: 

𝐸𝑠 = ∫ 𝑒𝑠𝑑𝑣
𝑉

;  𝐸𝑘 =
1

2
∫ 𝜌�̇�𝑖�̇�𝑖𝑑𝑣
𝑉

 (8) 

where �̇�𝑖 is the velocity in the 𝑖 direction. The non-zero displacement and rotation components of an 

Euler-Bernoulli beam (see Figure 1), disregarding the mid-point displacement in the 𝑥 direction, can be 

expressed as: 

𝑤 = 𝑤(𝑥, 𝑡), 𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
, 𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
 (9) 

where 𝑢,𝑤 are the 𝑥, 𝑧 components of the displacement vector, respectively and 𝜃𝑦 is the component of 

the rotation vector in the 𝑥𝑧 plane. In view of Equation (9), the non-zero components of the symmetric 

strain tensor and the components of the asymmetric rotation-gradient tensor can be written as follows: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
, 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = −𝜈

𝜕𝑢

𝜕𝑥
, 𝜅𝑥𝑦 = −

𝜕2𝑤

𝜕𝑥2
 (10) 

  

Couple Stress

  

   

   

a b c
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where 𝜈 is the Poisson’s ratio of the beam material. By substituting Equation (10) into Equation (7),  

we obtain: 

𝑒𝑠 =
1

2
𝐸 (

𝜕𝑢

𝜕𝑥
)
2

+ 2𝜂 (
𝜕2𝑤

𝜕𝑥2
)

2

 (11) 

where 𝐸 is the Young’s modulus of the material. Only one non-classical material constant appears in 

Equation (11), which is defined as 𝜂 = 𝜇ℓ2 [75], where ℓ is the material length scale parameter and 𝜇 is 

the shear modulus of the material which is equal to 𝐸 (2(1 + 𝜈))⁄ . Applying the Hamilton principle we 

can obtain the following equation for the free vibration of a micro/nano beam: 

(𝐸𝐼 + 4𝜇𝐴ℓ2)
𝜕4𝑤

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
= 0 (12) 

From Equation (12) it becomes clear that the bending rigidity of the beam is 𝐸𝐼 + 4𝜇𝐴ℓ2, so 𝐸𝑒𝑓𝑓 is: 

𝐸𝑒𝑓𝑓 = 𝐸 + 24
𝐸

1 + 𝜈
(
ℓ

ℎ
)
2

 (13) 

As it can be seen in Equation (13), CST is only able to predict a stiffening effect when reducing the 

size. This indeed includes many of the works in Table 1, but it is evident that this theory cannot be 

applied to every material. In addition, the length scale parameter ℓ cannot be easily computed and the 

only way to extract it is via fitting to the experimental data. The main problem is whether this parameter 

is constant or also depends on the thickness of the material. For the sake of simplicity, we assume that it 

is a characteristic parameter that depends only on the material and its fabrication process, thus making 

it a constant fitting parameter for every separate set of experiments. Importantly, CST is the only theory 

able to predict and/or explain the results described in the previous section, i.e., that some  

structures would show a stiffening behavior in bending experiments, whereas no change for tensile 

experiments [26,30,38]. In fact, RST can also explain such behavior for clamped-clamped beams, but 

not for clamped-free beams. 

3.3. Grain Boundary Theory 

Another theory for explaining the size effect in materials is based on the fact that grain boundaries 

might have different material properties than the core of the grains, we call it grain boundary theory 

(GBT). Atoms which are in grain boundaries are in contact with their neighbors which have a different 

orientation, so the energy level of those atoms in boundaries can be different than atoms inside the  

grains which are in contact with similar atoms with the same orientation; hence leading to different 

mechanical properties. 

In this model grains are modeled with a thin surface layer (of thickness 𝛿, see Figure 3) and Young’s 

modulus 𝐸𝐺𝐵, while 𝐸𝑐𝑜𝑟𝑒 is the Young’s modulus for the core part of the grains, and the overall diameter 

is 𝑎 (see Figure 3) [59]. Some modifications of this approximation can also be considered [60], but do 

not affect the dependence on the structure dimensions. 
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Figure 3. Grain Boundary Theory (GBT). Schematic showing the nanoscopic view of a 

grained material. Each grain has a diameter 𝑎 and a thin shell around them with thickness 𝛿, 

and both sections have in general different Young’s moduli. 

This model only gains importance when the layer thickness is only a few grains, which is when the 

effect of having a finite number of grain boundaries cannot be neglected. Considering a rectangular 

cross-section beam like the one in Figure 1, and assuming that the grain size remains constant as the 

material thickness reduces, we can use composite theory to calculate an approximate formula for the 

effective Young’s modulus for bending, which is given by Equation (14): 

𝐸𝑒𝑓𝑓 =
24

ℎ3
[
𝑐1
𝑎
(
ℎ

2𝑎
) + 𝑐2𝑎 ∑ (𝑛 −

1

2
)
2

ℎ
2𝑎⁄

𝑛=1

] (14) 

where: 

𝑐1 =
𝜋

8
[𝛿(𝑎3 − 3𝛿𝑎2)𝐸𝐺𝐵 +

𝑎

8
(𝑎3 + 24𝑎𝛿2 − 8𝛿𝑎2)𝐸𝑐𝑜𝑟𝑒] 

𝑐2 = 𝜋 [𝛿(𝑎 − 𝛿)𝐸GB +
𝑎

4
(𝑎 − 4𝛿)𝐸𝑐𝑜𝑟𝑒] 

(15) 

which in the case of very narrow shell ( 𝛿 ≪ 𝑎 ) leads to a dependence with thickness of the  

type 𝐸𝑒𝑓𝑓 ∝ 1/ℎ2. 

3.4. Surface Elasticity Theory 

The theories that have been presented up to now can be visible at relatively thick structures, as this 

will depend on the grain size (GBT), the length scale parameter (CST) or the residual stress and length 

(RST). However, when thickness is reduced down to the nanoscale, the surface to volume ratio starts to 

increase dramatically and we do need to take into account surface effects. This has been done 

predominantly in two ways: Surface Elasticity Theory (SET) and Surface Stress Theory (SST). 

The former of these theories (SET) is based on the fact that the nature of the chemical bond and the 

equilibrium interatomic distances at the surface are different from that inside the bulk [84], that is to say 

the coordination number of atoms close to the surface is lower than for bulk atoms. Therefore superficial 

mechanical properties are different from bulk material properties. Another justification can be found as 

a consequence of the micro- and nano-fabrication of the devices. Atoms diffusion into the layer, 

adsorption of material on the layer, and creation of an amorphous shell are some of the typical 

consequences of micro- and nano-fabrication. 
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This model considers a thin shell in the exterior part of the layer that has different material  

properties [40,41,43], as it can be seen in Figure 4. From composite beam theory, the effective Young’s 

modulus for bending can be calculated as follows: 

𝐸𝑒𝑓𝑓 = 𝐸𝐵𝑢𝑙𝑘 + [
4𝛿

ℎ
(
3

ℎ
+
4𝛿2

𝑏ℎ2
+
3

𝑏
)𝐶𝑠] − [2 (

3

ℎ
+
4𝛿2

ℎ3
+
1

𝑏
+
12𝛿2

𝑏ℎ2
)𝐶𝑠] (16) 

where 𝐶𝑠 is the surface elasticity with units of N m⁄  and can be calculated as 𝐶𝑠 = 𝛿 · (𝐸𝐵𝑢𝑙𝑘 − 𝐸𝑆𝑢𝑟𝑓). 

A negative value for 𝐶𝑠 means that the surface layer has a larger Young’s modulus than the bulk and 

vice-versa. In the case that the shell is much thinner than the thickness, we can rewrite Equation (16) as: 

𝐸𝑒𝑓𝑓 = 𝐸𝐵𝑢𝑙𝑘 − 6𝐶𝑠 (
1

ℎ
) (17) 

and a similar expression with different proportionality coefficients in the case of circular cross-section. 

 

Figure 4. Surface Elasticity Theory (SET). Schematic showing the cross section of a layer 

that shows different material properties close to the surface. This can be caused either by 

fundamental atomic-level differences (different coordination number) or by collateral effects 

during fabrication. 

3.5. Surface Stress Theory 

The second theory (or group of theories) to take into account surface effects is based on the effect 

that surface stress has in the mechanical response of the structures and, at least partially, is very similar 

to the already analyzed residual stress theory (RST), only that this time we consider surface stress. Gurtin 

and Murdoch [85] developed a surface elasticity formulation, in which a surface stress tensor is 

introduced to augment the bulk stress tensor that is typically utilized in continuum mechanics. Similarly, 

researchers have also considered the thermodynamics and energy of surfaces to study the surface effect 

on mechanical behavior of materials [86–89]. For example, some of them [58,84,90] related surface 

tension to surface free energy via a strain dependent component. The difference in energies can be used 

to estimate the effect of surfaces on mechanical properties. Shankar et al. [91] proposed that nonlinear 

stress effects become significant at small scales leading to cross terms between the applied stress and 

surface stresses. Overall, these theories have been applied to different structures like plates, wires and 

rods [54,57,92–94]. 

Following the approach described by Wang et al. [58] we can consider Ω(𝜀) and 𝛾(𝜀) as the bulk and 

surface energy densities of the nanostructure respectively. The total energy of a cross section like the 

one in Figure 5 is: 
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𝑈 = (𝑏 − 2𝛿)(ℎ − 2𝛿)𝐿Ω(𝜀) + 2(ℎ + 𝑏)𝐿𝛾(𝜀) (18) 

where, Ω(𝜀) = Ω𝑚𝑖𝑛 + 0.5 𝐸𝐵𝑢𝑙𝑘𝜀
2  and 𝛾(𝜀) = 𝛾𝑚𝑖𝑛 + 0.5 𝐸𝑠𝑢𝑟𝑓𝛿(𝜀 − 𝜀0)

2 , and 𝜀0  is the strain for 

which the surface energy has a minimum amount. The equilibrium (𝜀𝑒−𝑠) is reached when 
𝜕𝑈

𝜕𝜀
= 0: 

𝜀𝑒−𝑠 =
2(ℎ + 𝑏)𝛿𝐸𝑠𝑢𝑟𝑓𝜀0

(𝑏 − 2𝛿)(ℎ − 2𝛿)𝐸𝑏𝑢𝑙𝑘 + 2(ℎ + 𝑏)𝛿𝐸𝑠𝑢𝑟𝑓
 (19) 

 

Figure 5. Surface Stress Theory (SST). Schematic showing the cross section of a layer that 

shows different material properties close to the surface, like in Figure 4, but in this case we 

also need to account for the surface stress. 

In addition, we can calculate the change in energy associated to the presence of a surface stress (𝑆𝑠): 

Δ𝑈 = 2(𝑏 + ℎ)(1 − 𝜐)𝑆𝑠Δ𝐿 (20) 

This energy change can be associated with an equivalent force that effectively modifies the stiffness 

of the mechanical structure. The final effective Young’s modulus for clamped-clamped beams is given by: 

𝐸𝑒𝑓𝑓 = (1 + 𝜀𝑒−𝑠)
2𝐸𝑏𝑢𝑙𝑘 +

3

5
(1 − 𝜐)𝑆𝑠

𝐿2(𝑏 + ℎ)

𝑏ℎ3
 (21) 

where the effect of surface stress (𝑆𝑠) is taken into account. 

In the case where 𝛿 ≪ ℎ ≪ 𝑏 and a clamped-clamped beam, Equation (21) develops into: 

𝐸𝑒𝑓𝑓 = 𝐸𝑏𝑢𝑙𝑘 +
3

5
(1 − 𝜐)𝑆𝑠

𝐿2

ℎ3
 (22) 

As in the previous cases, for other types of cross sections the calculations can be reproduced and the 

final result will diverge in the proportionality coefficients, whereas the scaling with dimensions remains 

the same. Now we can observe the similarities between Equations (6) and (22), where the scaling with 

thickness is different because of the differences between surface and residual stress. 

4. Discussion 

The purpose of this section is to compare the reported experimental results with the theories that have 

been presented in the previous section, we will show how all of them separately are insufficient to explain 

the behavior of all materials and that a combination of theories needs to be done in order to have a full 

theory able to model the nanoscale behavior of the stiffness. 
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Let us start with some works [26,30,38] that unveiled a different behavior of the stiffness (𝐸𝑒𝑓𝑓) 

depending on whether the deformation was due to bending or elongation. This is such a particular 

observation that, considering this was done in cantilevers, only one of the described theories (Couple 

Stress Theory, CST) can account for it. Therefore, we take that CST is a necessary part of the global 

model we want to establish. However, CST alone cannot explain all the observations. In particular, if 

we look at Table 1, one of the first things that pops up is that the behavior of the elastic properties of 

nanostructures does not have a clear tendency. Even though there is a predominant stiffening effect, the 

other two behaviors cannot be dismissed. As it can be seen in Equation (13), CST is only able to predict 

a stiffening tendency when decreasing the size. The fitting parameter for this model is the length scale 

parameter ℓ which has been reported to have values between several micrometers [26] down to few 

nanometers [38], depending on the material and the fabrication conditions. The fact that we need to 

include CST to explain the scaling of material properties with size defies the established understanding 

within the NEMS community where surface effects are thought to be dominant. 

In order to be able to explain the softening behavior, it is possible to include in our modelling any of 

the other three theories. For simplicity, and as a first approximation, we neglect the effect of the Grain 

Boundaries (GBT). Experimentally, GBT only shows an effect when the thickness of the layer is about 

few times the grain size [59,60], which in some cases is extremely small. In addition, many of the cases 

in Table 1 are either amorphous or crystalline, making it impossible to use GBT. As an additional point, 

we can see that structures of the same material and with the same crystallographic orientation can show 

different behaviors [35], which we relate to an effect of the different fabrication processes that might 

create some surface defects or leave some residues which behavior varies from one case to another. This 

evidences the need for a surface-related theory to explain size dependent elastic properties. 

Surface Stress Theory (SST), as it can be seen in Equation (22) ultimately depends on both the surface 

stress of the material and the ratio between length and thickness of the structure. This implies two 

important points: (a) that it can only be applied to mechanical structures where surface stress is different 

from zero after the structure has been released, which basically means it cannot be applied for example 

to cantilevers and free-free structures [70,73,95]; and (b) that whenever structures with different lengths 

are probed, this additional dependence on length would generate an extra noise in the plots of  

𝐸𝑒𝑓𝑓 vs. ℎ, and this is something that in principle we do not observe in the data available in the literature. 

Therefore, we will consider for the moment SST as a second order approximation in our model. The 

same reasoning can be performed for the case of RST. The only cases where either of these models could 

play an important role are those that show low 𝑅2 in our fittings (see Table 2). 

This leaves us with Surface Elasticity Theory (SET), which can explain softening or stiffening 

behavior, works for all structures irrespectively of length and can sometimes be explained using very 

simple and intuitive arguments, as for example the oxidation in normal conditions of the surface of the 

structure material [40]. 

We thus suggest using a model that combines CST with SET which assumes that the bulk part of the 

structure can be described via CST while - SET accounts for the thin shell around it (see Figure 6). This 

provides us with the following equation for the dependence of 𝐸𝑒𝑓𝑓 with thickness: 

𝐸𝑒𝑓𝑓 = 𝐸𝐵𝑢𝑙𝑘 − 6𝐶𝑠 (
1

ℎ
) + 24

𝐸

1 + ν
ℓ2 (

1

ℎ
)
2

 (23) 
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Figure 6. Combined model (RST + CST + SET). Schematic showing the cross section of a 

layer that shows a thin shell with different Young’s modulus than that of the bulk part, which 

in turn is described with a length scale parameter and might have some residual stress. 

With the simple model of Equation (23) we are able to fit all the experimental data found in the 

literature with adjusted 𝑅2  parameters that are around 0.9 in average. We remind the reader that  

Equation (23) is an approximation and it fails when the thickness of the beam comes close to 2𝛿, in 

which case higher order terms should be taken into account, as can be seen in Equation (16). The fitting 

is performed in three steps, (1) a linear fit to 1/ℎ; (2) a linear fit to 1/ℎ2; and (3) a parabolic fit to 1/ℎ. 

Like that we can see whether we are dominated by SET, by CST, or if we need both contributions. The 

results including the best fitting results per case are summarized in Table 2. 

Table 2. Summary of fitting results of experimental data to combined model (Equation (23) 

or equivalent depending of the cross sections). 

Reference Material 𝑬𝑩𝒖𝒍𝒌 (𝐆𝐏𝐚) 𝑪𝒔 (𝐍/𝐦) 𝓵 (𝐧𝐦) 𝑹𝟐 

Lam et al. (2003) [26] Epoxy 0.16 ± 0.008 0.2 ± 0.1 6000 ± 1000 0.99 

Cuenot et al. (2003) [27,28] PPy 30 ± 10 700 ± 300 23 ± 5 0.90 

Cuenot et al. (2004) [28,29] Pb 15 ± 1 −55 ± 7 0 ± 2 0.76 

Cuenot et al. (2004) [28,29] Ag 80 ± 15 300 ± 300 11 ± 1 0.70 

Jing et al. (2006) [32] Ag 47 ± 5 −340 ± 30 0 ± 2 0.87 

Shin et al. (2006) [33] Electroactive polymer 0.6 ± 0.1 −120 ± 13 30 ± 3 0.97 

Liu et al. (2006) [34] WO3 300 ± 50 1500 ± 300 5.3 ± 0.5 0.98 

Tan et al. (2007) [35] CuO 170 ± 10 −1000 ± 400 25 ± 5 0.98 

Tan et al. (2007) [35] CuO 170 ± 20 −5000 ± 250 60 ± 2 0.97 

Stan et al. (2007) [36] ZnO 100 ± 10 0 ± 100 6 ± 4 0.93 

Sun et al. (2008) [38] Polycaprolactone 0.55 ± 0.05 20 ± 5 50 ± 10 0.86 

Ballestra et al. (2010) [39] Au 80 ± 5 0 ± 60 1900 ± 400 0.97 

Li et al. (2003) [40] Si 170 ± 15 870 ± 100 4 ± 0.5 0.97 

Nilsson et al. (2004) [41] Cr 280 4200 ± 200 250 ± 25 0.99 

Nam et al. (2006) [42] GaN [120] 350 ± 20 800 ± 150 5 ± 5 0.96 

Gavan et al. (2009) [43] SiN 290 ± 20 1800 ± 300 6 ± 2 0.93 

Chen et al. (2006) [48] ZnO 145 ± 10 150 ± 20 0 ± 2 0.72 

Importantly, it is now possible to study if we can significantly improve the model, i.e., the quality of 

the fitting(s), by considering the terms we have neglected in our simplification. In the case of GBT, as 

explained above, we can only apply it to a very limited number of cases, so we focus on SST  
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(Equations (21) and (22)). We fit linearly to 1/ℎ3 and we also fit with respect to 1/ℎ to a third degree 

polynomial. In none of the cases is found that a term proportional to 1/ℎ3 is neither important nor 

necessary to describe the behavior of 𝐸𝑒𝑓𝑓 . Therefore, we conclude that our original approximation 

where we dismiss the term due to Surface Stress is good. 

The case for Residual Stress is a bit trickier, as the dependence on thickness is proportional to 1/ℎ2, 

which is already present in Equation (23). In this case we must admit that the term due to RST needs to 

be added to the model and a more complete model would be based on Equation (24): 

𝐸𝑒𝑓𝑓 = 𝐸𝐵𝑢𝑙𝑘 − 6𝐶𝑠 (
1

ℎ
) + 24

𝐸

1 + ν
ℓ2 (

1

ℎ
)
2

+
3

10
𝜎0 (

𝐿

ℎ
)
2

 (24) 

However, the argument of the dependence on length still holds for the cases analyzed in this paper. 

We can see that almost none of the investigated papers references the length(s) of the characterized 

structures. Assuming that there would be a significant length variation within the pool of structures 

included in those experimental studies, if the term due to RST would dominate, the “noise” in the 

measurements would be much larger. This could indeed be the case for the three cases we present in 

Table 2 with an 𝑅2 < 0.8. Interestingly, the only papers that clearly state the structure lengths are those 

with clamped-free beams, i.e., structures for which the residual stress is released. As a consequence, 

either the length of all probed structures is the same, in which case the contribution of CST and RST 

would be entangled, or the RST term is negligible, which is what we assume for the sake of simplicity 

in the presentation of our fittings. 

5. Conclusions 

In this paper we review the issue of size dependence of the mechanical properties of M/NEMS. We 

compile some of the numerous experimental works present in the literature and we describe the five 

different theories that are normally used to explain such size dependence, giving simplified equations to 

apply them, namely: Residual Stress Theory (RST), Couple Stress Theory (CST), Grain boundary 

Theory (GBT), Surface elasticity Theory (SET) and Surface Stress Theory (SST). These theories cover 

different aspects of the mechanical response: divergence from Hooke’s Law (CST), composite beam 

theory considering grain boundaries (GBT), and surface effects. We show that none of these theories 

can actually predict the size dependence for all samples and thus we present a model combining CST 

and SET that can satisfactorily explain the mechanical behavior at small sizes. Therefore, these two 

effects are the dominant ones for most of the M/NEMS analyzed in this paper. More in general, the 

scaling with length should be taken into account to include RST or even SST. We believe that this 

compendium of theories will be useful in the understanding and prediction of M/NEMS mechanical 

properties in general, and in particular for the calibration of micro- and nano-mechanical sensors. 
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