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Abstract Human leukocyte antigen (HLA)-E molecules are
potent inhibitors of NK cell-mediated killing. Low in poly-
morphisms, two alleles are widely expressed among diverse
populations: HLA-E*01:01 and HLA-E*01:03. Both alleles
are distinguished by one SNP resulting in the substitution
Arg107Gly. Both alleles present a limited set of peptides de-
rived from class I leader sequences physiologically; however,
HLA-E*01:01 presents non-canonical peptides in the absence
of HLA class I molecules. To further assess the functional
differences between both alleles, we analyzed the peptide rep-
ertoire of HLA-E*01:03 by applying soluble HLA technology
followed by mass-spectrometric peptide sequencing. HLA-
E*01:03 restricted peptides showed a length of 9—-17 amino
acids and differed in their biophysical properties, no overlap in
the peptide repertoire of both allelic variants could be ob-
served; however, both alleles shared marginal peptides from
the same proteomic content. Artificial APCs expressing empty
HLA-E*01:01 or E*01:03 molecules were generated and sta-
bilized using cognate HLA class I-derived peptide ligands to
analyze the impact of residue 107 within the HLA-E heavy
chain on the NKG2/CD94 receptor engagement. Differences
in peptide stabilization could be translated to the density and
half-life time of peptide-HLA-E molecules on the cell surface
that subsequently impacted NK cell inhibition as verified by
cytotoxicity assays. Taken together, these data illustrate func-
tional differences of HLA-E allelic variants induced by a sin-
gle amino acid. Furthermore, the function of HLA-E in path-
ophysiologic situations when the HLA processing machinery
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is interrupted seems to be more emphasized than previously
described, implying a crucial role for HLA-E in tumor or viral
immune episodes.

Keywords HLA-E*01:03 - Diverse HLA-E peptide
repertoire - Non-canonical peptides - Tumor immune escape

Introduction

The human leukocyte antigen (HLA) gene clusters rank
among the most polymorphic in humans, and consequently,
several thousand alleles coding for functional polypeptides are
identified by now (Robinson et al. 2015). Of the three major
classes, the HLA class I molecules are expressed on almost
every nucleated cell. As they constitute the ligand for CD8" T
cells (Bjorkman and Parham 1990), the primary role of HLA
class T molecules is to monitor the immunological status of
individual cells by scanning the proteomic content.
Intracellular processed peptides with a length of § to 16 amino
acids (AA) (Bade-Doding et al. 2011; Burrows et al. 2006;
Rammensee et al. 1993) are loaded onto HLA class I mole-
cules, these trimeric complexes report the health status of the
cell. Since most HLA polymorphisms are located in the
peptide-binding region (PBR) (Parham et al. 1988), different
alleles present potentially different peptides (Bade-Doeding
et al. 2007; Bade-Doeding et al. 2004; Badrinath et al.
2012a). Subsequently, every single peptide-HLA (pHLA)
complex represents a different ligand for a specific T cell
receptor (TCR) on CD8" T cells.

The classical (class Ia) molecules HLA-A, HLA-B, or
HLA-C are highly polymorphic, whereas non-classical (class
Ib) molecules HLA-E, HLA-F, or HLA-G are more con-
served, suggesting a minor role in the presentation of antigen
diversity. For HLA-E, only 17 alleles are known to date
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according to the IMGT/HLA database (Robinson et al. 2015).
Such conservation of the polypeptide structure might be cor-
related to the function of HLA-E to primarily interact with NK
cells (Braud et al. 1998; Lee et al. 1998b), immune cells com-
monly associated with the innate immune system due to their
conserved immune receptors.

However, it was shown that certain pHLA-E complexes are
ligands for an HLA-E-specific subset of CD8" T cells: HLA-
E*01:03VMAPRTLIL sentide source human cytomegalovirus
(HCMV) UL40 or HLA-Cw3 (Mazzarino et al. 2005; Pietra
et al. 2003), or HLA-E*01:01/035APLPCVE heptide source
Epstein—Barr virus (EBV) BZLF-1 (Romagnani et al. 2002).
This indicates that HLA-E acts as an intermediate molecule
bridging interactions between adaptive and innate immunity.
Of the known HLA-E alleles, only two are widely distributed
in different ethnic populations (Felicio et al. 2014). Both al-
leles differ in only one AA, located outside the PBR at posi-
tion 107 (Grimsley and Ober 1997; Strong et al. 2003); here,
Arg (HLA-E*01:01, HLA-E®) is replaced by Gly (HLA-
E*01:03, HLA-E®). Strong et al. (2003) elucidated that the
Arg'’>Gly'"” exchange leads to higher thermal stability
when bound to the same peptide, resulting in a more stable
expression of HLA-E*01:03 on the cell surface compared to
HLA-E*01:01. Higher thermal stability potentially influences
the half-life of the molecule as well, prolonging the possible
interaction time of the HLA molecule with immune effector
cells. However, the functional effects of the AA substitution
have not been systematically analyzed.

HLA-E is a ligand for the NKG2/CD94 receptor present on
NK cells (Braud et al. 1998; Lee et al. 1998b) as well as on a
subset of T cells (McMahon and Raulet 2001; Mingari et al.
1996). Dependent on the NKG2 isoform, the NKG2/CD94
receptor complex conducts either inhibitory (e.g., NKG2A/
CD94) or lytic (e.g., NKG2C/CD94) functions (Brooks et al.
1997; Lanier 2008). HLA-E usually presents peptides derived
from the leader sequence of other HLA class I molecules
(Braud et al. 1997), the presentation of such peptides to the
NKG2A/CD9%4 heterodimer inhibits NK cell-mediated lysis.
In this regard, Kaiser et al. (2005) reported that HLA-E bound
to the HLA-G leader peptide (VMAPRTLFL) confers a six-
fold increased binding affinity to NKG2A/CD94 compared to
NKG2C/CD94. Analyzing the structure of HLA-
E*01:01VMAPRTLE bound to NKG2A/CD94, Petrie et al.
(2008) elucidated that the specificity of the interaction is dic-
tated by the CD94 subunit, whereas the affinity of the receptor
is modulated by the NKG2 subunit. Hereby, CD94 interacts
with position p5, p6, and p8 of the HLA-E-bound peptide
chain, whereas NKG2A only directly interacts with p5.

However, in recent years, it became evident that HLA-E
ligands are not restricted to the leader peptides of HLA class I
molecules (Kraemer et al. 2014; Stevens et al. 2001).

More specifically, a peptide derived from gliadin
(SQQPYLQLQ) was found to stabilize HLA-E (Terrazzano
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et al. 2007), whereas for the mouse MHC-E homologue Qa-1
binding of heat shock protein 60 (hsp60) from mouse and
bacteria was found by means of random peptide libraries.
Consequently, Michaelsson et al. (2002) reported that HLA-
E is able to bind a peptide (QMRPVSRVL) derived from the
leader sequence of human hsp60, which is upregulated during
cellular stress, the HLA-E*01:01°MRPVSRVL o9 well as the
HLA-E*01:03%MRPVSRVL complex failed to inhibit NK cell-
mediated lysis via NKG2A/CD94 emphasizing the magnitude
of the bound peptide’s sequence in the context of this interac-
tion. By contrast, Wooden et al. (2005) identified a non-leader
peptide (ALALVRMLI) derived from the ATP-binding cas-
sette transporter multidrug resistance-associated protein 7 that
is capable of inhibiting NK cell-mediated lysis when present-
ed by HLA-E.

The spectrum of peptides that can be selected and presented
by HLA-E varies from peptides derived from self-proteomic
content to peptides of pathogenic origin. It is known that
HCMYV, e.g., interferes with HLA class la molecule expression
or maturation in order to evade recognition by the immune
system (Wiertz et al. 1996). To evade detection of infected
cells by NK cells due to lack of surface HLA class la expres-
sion, human cytomegalovirus promotes upregulation of HLA-
E and provides a peptide (VMAPRTLIL) derived from
HCMYV ULA40 (Pietra et al. 2003; Tomasec et al. 2000) that
mimics the leader sequence of HLA-Cw03 (VMAPRTLIL).
Presentation of this peptide by HLA-E prevents NK cell-
mediated lysis.

Nattermann et al. (2005a) showed that HLA-E expression
is stabilized during HCV infection by the HCV core-derived
peptide YLLPRRGPRL and that, additionally, NKG2A is up-
regulated during chronic HCV infection (Nattermann et al.
2006). Schulte et al. (2009) reported a functional difference
for HLA-E® vs. HLA-EC in chronic HCV genotype 2- and 3-
positive patients, stating that in such patients, an HLA-ER®
genotype occurs less often. Possibly due to the reduced stabil-
ity of HLA-ER, effective engagement of NKG2A/CD94 is
further lowered resulting in a higher susceptibility to NK
cell-mediated lysis. On a related note, a treatment-induced
clearance of HCV was shown to be associated with the
HLA-E® allele (Guzman-Fulgencio et al. 2013).

Lajoie et al. (2006) showed in human immunodefi-
ciency virus (HIV)" Zimbabwean women that an HLA-
EYC genotype was associated with a fourfold decreased
risk of HIV-1 infection compared to a heterozygous or
homozygous HLA-ER® genotype, possibly due to in-
creased NK cell-mediated lysis of infected cells. In this
regard, Nattermann et al. (2005b) were able to identify
a peptide (AISPRTLNA) derived from the p24 protein
of HIV-1 that resembles the binding motif of other class
Ia leader peptides. It is not only capable of binding to
HLA-E but also stabilizes its surface expression and
facilitates inhibition of NK cell-mediated lysis.
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Viral immune escape mechanisms are very diverse, classi-
cal HLA class I expression is diminished to avoid the presen-
tation of viral peptides. The opposite holds true for HLA-E,
the presentation of viral peptides on HLA-E molecules is de-
sired, and viral-peptide-HLA-E complexes manipulate the ex-
pression of NKG2A/CD94 on NK cells, avoiding cell destruc-
tion of infected cells due to the NK missing self-recognition.
The balance of preventing viral-peptide-HLA class I presen-
tation on infected cells but facilitating viral-peptide-HLA-E
presentation in infected cells is very subtle and requires an
accurate immune control system. How that control system
operates is not well understood, yet. A first step is the deter-
mination of HLA-E-restricted self-peptide repertoires and the
interaction of certain pHLA-E complexes with immune effec-
tor cells.

HLA-E does not solely interact with the innate im-
mune system but also represents a ligand for the
aBTCR of CD8" T lymphocytes (Hoare et al. 2006).
Alloreactive CD8" T cells (CTLs) are well-known mediators
of graft versus host disease (GvHD) reactions following allo-
genic transplantation; however, such CTLs can also provide
an anti-leukemic effect. This graft versus leukemia
(GvL) termed reaction is crucial in eliminating residual
malignant cells. However, since NK cells are one of the
first lymphocytes to be reconstituted post transplanta-
tion, their involvement during GvL reactions is the sub-
ject of ongoing research (Cooley et al. 2009; Kroger
et al. 2011; Ruggeri et al. 2002; Verneris 2013).
Considering that NK cells are the primary immune ef-
fectors for HLA-E recognition, such immune interac-
tions directly after transplantation might be of special
importance for the overall success of the procedure.
The marginal level of polymorphism for HLA-E on
one hand and the diversity of interaction with innate
or adaptive immune receptors on the other hand lead
to the assumption that (i) the peptide repertoire of
HLA-E is highly miscellanecous and (ii) the two preva-
lent occurring allelic subtypes are presumably immuno-
genic different. During allogenic hematopoietic stem cell
transplantation (HSCT), for instance, homozygosity for
HLA-E*01:03 was shown to benefit patients, possibly
due to an improved GvL effect. Homozygosity for
HLA-E*01:03 resulted in lower incidence of relapse
(Hosseini et al. 2013) compared to patients homozygous
for HLA-E*01:01 or heterozygous patients. Additionally,
Danzer et al. (2009) showed an increased disease-free
survival or a reduction of transplant-related mortality for
homozygous carriers of HLA-E*01:03. Moreover,
Tamouza et al. (2006) showed that homozygosity for
HLA-E*01:03 contributed to the improved survival of
patients after genoidentical HSCT. Although the mecha-
nisms are not fully understood, the authors discuss the
possible presentation of minor histocompatibility antigens

(mHAGs) different from classical mHAGs by HLA-E
or the competition in presenting classical mHAGs with
classical HLA, however, without inducing T cell activa-
tion that would subsequently lower the chance for
GvHD.

Recent work identified a novel peptide repertoire in
the absence of HLA class I leader peptides for HLA-
E*01:01 (Kraemer et al. 2015). HLA molecules them-
selves and designated components of the peptide load-
ing complex (PLC) represent targets for viral immune
evasion. Previous work by Lampen et al. (2013) dem-
onstrated an alternative peptide repertoire for HLA-E in
the absence of functional transporter associated with
antigen processing (TAP), a certain target of viral im-
mune escape since peptide loading of HLA molecules is
dependent on the TAP complex. Additionally, HCMV is
known to inhibit tapasin (TPN) (Park et al. 2004) as
part of the viral immune escape. To further elucidate
the differences between both alleles, we determined the
peptide repertoire of HLA-E*01:03 in the absence of
class I molecules and additionally investigated the pep-
tides presented by both allelic variants in the absence of
HLA class I molecules and the absence of TPN in a
model cell system. The obtained results provide novel
aspects about HLA-E antigen presentation and the main-
tenance of the single allelic polymorphism which con-
tribute to the understanding of its impact in different
clinical situations.

Material and methods
Cell lines

HLA /TPN" LCL721.221 (0.221) or HLA /TPN"
LCL721.220 (0.220) cell lines were transduced with
lentiviral vectors encoding for truncated, soluble forms
of HLA-E*01:01 or HLA-E*01:03 (sHLA-E, exon 1-4);
HLA /TPN'/TAP™ T2 cells were transduced with
lentiviral vectors encoding for full-length HLA-E*01:01
or HLA-E*01:03 (T2E, exon 1-7); lymphocytes were
maintained in RPMI 1640 medium supplemented with
10 % fetal bovine serum (heat inactivated, FBS) and
2 mM L-glutamine. HEK293T cells were maintained in
DMEM medium (Life Technologies, Darmstadt,
Germany) supplemented with 10 % FBS, 2 mM
L-glutamine, 100 U/ml penicillin, 100 pg/ml streptomy-
cin, and 1 mg/ml geneticin (Life Technologies,
Darmstadt, Germany). The KIR /NKG2/CD94" NKL
(Drexler and Matsuo 2000; Robertson et al. 1996) cell
line (kindly provided by C. S. Falk, Hannover Medical
School, Germany) was maintained in RPMI 1640 sup-
plemented with 15 % FBS, 2 mM L-glutamine, | mM
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sodium pyruvate, 100 U/ml penicillin, 100 pg/ml strep-
tomycin, and 200 U/ml IL-2. All cell lines were main-
tained at 37 °C in an atmosphere of 5 % CO,.

Lentiviral transduction of lymphocytes with HLA-E
constructs

HLA-E*01:03 inserts were generated via site-directed
mutagenesis utilizing the QuikChange® II XL Site-
Directed Mutagenesis Kit (Agilent Technologies,
Waldbronn, Germany). Using HLA-E*01:01 (Kraemer
et al. 2015) as template, the point mutation was induced
at ¢.382A>G with primers HLA-E03-SDM382-S (5'ggg
CCC gAC ggg CgC TTC CTC 3') and HLA-EO03-
SDM382-AS (5'gAg gAA gCg CCC gTC ggg CCC
3"). The appropriate insert (SHLA-E or mHLA-E) was
then ligated into the lentiviral vector
pRRL.PPT.SFFV.mcs.pre (Badrinath et al. 2012b), and
the construct was verified by sequencing. For virus pro-
duction, HEK293T cells were transfected utilizing
Lipofectamine® 2000 (Life Technologies, Darmstadt,
Germany) with the respective construct (10 pg plas-
mid/1*¥1076 cells) in combination with packaging
(psPAX2) and envelope (pmD2.G) coding vectors (each
5 pug plasmid/1*¥1076 cells). After 24 h, viral particles
were harvested, concentrated for 16 h at 10,000 rpm
and 4 °C, and consequently used for transduction of
lymphocytes. Additionally, freshly transduced cells were
treated with 8 pg/ml protamine sulfate (Sigma-Aldrich,
St. Louis, USA) and incubated in RPMI 1640 without
supplements for 8 h. Following medium exchange, the
cells were cultivated in full medium.

Large-scale production of sHLA-E

For large-scale production and subsequent sequencing of
HLA-E bound peptides, the soluble HLA technology as
described by Kunze-Schumacher et al. (2014) was de-
ployed. To analyze peptide acquisition by HLA-E in the
absence of class I leader peptides, the HLA™ LCL
721.221 cell line was transduced with sHLA-E*01:03.
To further investigate if peptides are acquired indepen-
dently of TPN, the HLA /TPN LCL 721.220 was
transduced with sHLA-E*01:03 or E*01:01. Expression
of sHLA-E was verified by sandwich-ELISA using mab
W6/32 (AbD Serotec®, Puchheim, Germany) as coating
antibody and anti-f,m/HRP (DAKO, Hamburg,
Germany) as detection antibody. Clones with the highest
production of sHLA-E molecules were cultivated in bio-
reactors (CELLine by Integra, Fernwald, Germany) at
37 °C and 5 % CO,. Supernatant-containing sHLA-E
was collected weekly, centrifuged at 300xg for
10 min, and filtered using a 0.45-pm membrane
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(Millipore GmbH, Schwalbach, Germany). Supernatants
were adjusted to pH 8.0 prior purification and purified
using NHS-activated HiTrap columns (Life
Technologies, Darmstadt, Germany) coupled to mab
W6/32 (eBioscience, Germany). Peptide-HLA-E
(pHLA-E) complexes were eluted using 100 mM gly-
cine adjusted to pH 2.7 (HCI).

Sequencing of sHLA-E derived peptides

Affinity-purified pHLA-E complexes were treated with
0.1 % trifluoroacetic acid (TFA) to elute peptides and
subsequently filtered using a 10-kD cutoff membrane
(Millipore, Schwalbach, Germany). Flow-through con-
taining peptides was subjected to reverse-phase chroma-
tography using an Eksigent nano-LC Ultra 2D HPLC
system coupled to an Orbitrap mass spectrometer
(Thermo Fisher Scientific, Ulm, Germany). Data of high
mass accuracy was analyzed using Mascot software
(Hirosawa et al. 1993) as well as the SwissProt and
SwissProt human decoy databases.

HLA-E stabilization assay

HLA-E stabilization assays were carried out using dif-
ferent leader peptides (derived from other HLA class I
molecules) known to stabilize both HLA-E alleles (Lee
et al. 1998a; Llano et al. 1998; Strong et al. 2003):
VMAPRTLFL (HLA-G), VMAPRTLVL (HLA-A*02/
23/24/25/26/43/66/68/69), VMAPRTLIL (HLA-C*03),
or VMAPRALLL (HLA-C*06:17). These nonameric
peptides all differ at their p8. VMAPRALLL possesses
a different p6. TAP™ T2 cells, transduced with con-
structs encoding for either HLA-E*01:01 (T2E*01:01)
or E¥01:03 (T2E*01:03) heavy chain, present empty,
unstable HLA-E molecules on the cell surface. These
cells were pulsed with the respective peptide by incu-
bating 5x10° T2E*01:01 or T2E*01:03 cells with pep-
tides at a concentration of 2 to 500 uM in serum-free
RPMI 1640 for 2.5 h at 37 °C and 5 % CO,. After
incubation for 30 min at 4 °C with the mAb 3D12-APC
(eBioscience, Frankfurt, Germany), successful stabiliza-
tion of pHLA-E complexes was analyzed by flow cy-
tometry (FACS Canto II, BD Biosciences, Heidelberg,
Germany).

Cytotoxicity assay

To determine the influence of distinct pHLA-E com-
plexes on NK cell-mediated cytotoxicity, a flow
cytometry-based cytotoxicity assay was performed as
previously described (Kraemer et al. 2015). T2E*01:01
or T2E*01:03 cells were labeled with 5 uM CFDA-SE/
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1x10° cells (Life Technologies, Darmstadt, Germany),
saturated with selected peptides and used as target cells.
Successful peptide loading onto HLA-E molecules was
verified using mAb W6/32-APC. At a ratio of 10:1,
effector cells (NKL) were incubated with target cells
for 4 h. Finally, cells were stained using 7-
aminoactinomycin D (7-AAD, BioLegend, San Diego,
USA) at a concentration of 2 pg/1x10° cells. For anal-
ysis, 10,000 CFSE" target cells were recorded and ana-
lyzed for 7-AAD positivity (i.e., dead target cells). Cells
incubated without effector cells were used to assess
spontancous cell death. Specific lysis mediated by
NKL cells was calculated according to the following
equation:

Y%dead target get cells—%spontaneous dead target cells

9 ificlysis = 100
Fospecificlysis * 100—%spontaneous dead target cells

Results

HLA-E*01:03 presents a diverse set of peptides
in the absence of class I leader peptides

sHLA-E*01:03 molecules were expressed in LCL 721.221
cells and their bound self-peptides eluted. A set of 56 peptides
could be identified (Table 1), ranging from 9 to 17 AAs in
length. Of those peptides that showed an extraordinary length
of greater than 10 AAs, four 11-mer, seven 12-mer, seven 13-
mer, ten 14-mer, nine 15-mer, ten 16-mer, and five 17-mer
peptides could be detected. Their cellular origin was diverse,
peptides derived from nuclear as well as from cytosolic pro-
teins could be recovered; among these, a set of differentially
processed peptides derived from myosin-9, histone H1.5, his-
tone H2A 1-D, and histone H2B 1-J or 1-L was detected
(Table 1). Furthermore, peptides of several closely related
proteins (60S ribosomal protein L8/L.22/1.23a/L.27/L28/L.29/
L36/L38, L-acetate dehydrogenase A or B chain) could be
identified. For p2, no specific anchor could be identified; how-
ever, peptides were preferentially anchored by the positively
charged Lys (62 %) or to a lesser extent by the positively
charged Arg (14 %, Fig. 1) at pQ2.

HLA-E*01:03 restricted peptides differ substantially
from those presented by HLA-E*01:01

Comparing the peptide repertoire of HLA-E*01:03 acquired
in the absence of class I molecules to that of HLA-E*01:01
(Kraemer et al. 2015), no overlap in the peptide repertoire
could be detected. Both alleles do not share the same
peptidome; however, they present peptides from the pool of
closely related protein subtypes, histones H2A and H2B
(Table 2). Interestingly, one Hsp60-derived 12-mer peptide

(VGGTSDVEVNEK) restricted by HLA-E*01:03 could be
identified, the signal peptide of Hsp60 bears similarities to
class I leader peptides and was previously described to stabi-
lize HLA-E (Michaelsson et al. 2002).

HLA-E*01:01 and HLA-E*01:03 acquire peptides
in the absence of TPN

A certain set of peptides could be acquired from HLA /TPN
LCL 721.220 cells (Table 3). Nineteen peptides ranging from
8 to 25 AAs in length and ten peptides ranging from 9 to 17
AAs in length were eluted from sHLA-E*01:01 or sHLA-
E*01:03, respectively. Both HLA-E variants select and load
peptides via a non-classical TPN-independent peptide loading
pathway; however, no shared peptides could be identified.
Furthermore, no specific anchor at pS2 could be determined.

HLA-E*01:01 and HLA-E*01:03 present peptides
of closely related protein isoforms

When comparing the peptides presented by either allele, de-
rived from LCL 721.220, no peptide overlap was detectable.
However, comparing the peptides derived from LCL 721.220
cells presented by HLA-E*01:01 and the peptides derived
from LCL 721.221 cells presented by HLA-E*01:03, a shared
protein origin becomes apparent. Nevertheless, the presented
peptide fragments differ between the two HLA-E variants, the
notable exception being PELAKSAPAPK, derived from his-
tone H2B 1-L, that is present by HLA-E*01:01 as well as
E*01:03 (Table 4).

HLA-E*01:01 and HLA-E*01:03 impact differently
on NK cell inhibition

HLA-E molecules are protective immune proteins when
bound to HLA class I leader peptides. However, HLA-
E*01:01 and HLA-E*01:03 showed a highly diverse peptide
repertoire in the absence of class I molecules, suggesting a
functional difference when HLA class I is absent. To system-
atically assess the immunological differences of these alleles,
HLA-E*01:01 or E*01:03, each bound to the same peptide
were analyzed; for this assay, previously described HLA-E
allele-independent restricted HLA class I leader peptides were
applied. For stabilization of pHLA-E complexes, the peptides
were titrated (Fig. 2). Both alleles bound the HLA-G-derived
leader peptide VMAPRTLFL the least efficient. HLA-
E*01:01 bound VMAPRALLL (HLA-C*06) most efficiently
while E*01:03 bound VMAPRTLIL (HLA-C*03) most effi-
ciently. Both alleles were saturated using similar peptide
concentrations.

To further assess the impact of the 107 mismatch on the
interaction with NKG2A/CD94, peptide saturated T2E cells
were used as target cells in a cytotoxicity assay. As effector

@ Springer



34 Immunogenetics (2016) 68:29—41

Table 1 Ligands of HLA-E*01:03 derived from HLA/TPN" LCL 721.221

HLA-E*01:03
Sequence Length Origin
HAVSEGTKAVTKYTSSK 17 Histone H2B type 1-L
PAETATPAPVEKSPAKK 17 Histone H1.5
AYVRLAPDYDALDVANK 17 60S ribosomal protein L23a
HAVSEGTKAVTKYTSAK 17 Histone H2B type 1-J
AVSDGVIKVFNDMKVRK 17 Cofilin-1
HAVSEGTKAVTKYTSS 16 Histone H2B type 1-L
QLLQANPILEAFGNAK 16 Myosin-9
KSADTLWDIQKDLKDL 16 L-lactate dehydrogenase B chain
AYVRLAPDYDALDVAN 16 60S ribosomal protein L23a
HAVSEGTKAVTKYTSA 16 Histone H2B type 1-J
TGLIKGSGTAEVELKK 16 Pyruvate kinase isozymes

MI1/M2
VSDGVIKVFNDMKVRK 16 Cofilin-1
ASGNYATVISHNPETK 16 60S ribosomal protein L8
TAEILELAGNAARDNK 16 Histone H2A type 1-D
HAVSEGTKAVTKYTSA 16 Histone H2B type 1-J
PAPVEKSPAKKKATK 15 Histone H1.5
SADTLWDIQKDLKDL 15 L-lactate dehydrogenase B chain
TGLIKGSGTAEVELK 15 Pyruvate kinase isozymes M 1/M2
KSADTLWGIQKELQF 15 L-lactate dehydrogenase

A chain
HGSYEDAVHSGALND 15 T-complex protein 1 subunit alpha
SDGVIKVFNDMKVRK 15 Cofilin-1
AGNLGGGVVTIERSK 15 60S ribosomal protein L22
AQAAAPASVPAQAPK 15 60S ribosomal protein L29
PRKIEEIKDFLLTAR 15 60S ribosomal protein L38
SEGTKAVTKYTSSK 14 Histone H2B type 1-L
VLKQVHPDTGISSK 14 Histone H2B type 1-L
SWTAADTAAQITQR 14 HLA class I histocompatibility antigen, Cw-1 alpha chain
FISVGYVDDTQFVR 14 HLA class I histocompatibility antigen, Cw-1 alpha chain
NIDDGTSDRPYSHA 14 60S ribosomal protein L27
VLKQVHPDTGISSK 14 Histone H2B type 1-J
RKTVTAMDVVYALK 14 Histone H4
SADTLWGIQKELQF 14 L-lactate dehydrogenase A chain
ASAETVDPASLWEY 14 Fascin
TVVNKDVFRDPAL 13 60S ribosomal protein L27
KTVTAMDVVYALK 13 Histone H4
EGIPALDNFLDKL 13 Elongation factor 2
RVTIMPKDIQLAR 13 Histone H3.3C
PVAVMAESAFSFK 13 COP?9 signalosome complex subunit 8
QTVAVGVIKAVDK 13 Elongation factor 1-alpha 1
ILELAGNAARDNK 13 Histone H2A type 1-D
GTGASGSFKLNK 12 Histone H1.5
KQVHPDTGISSK 12 Histone H2B type 1-J
VGGTSDVEVNEK 12 60 kDa heat shock protein, mitochondrial
NSVVEASEAAYK 12 14-3-3 protein eta
ALRYPMAVGLNK 12 60S ribosomal protein L36
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Table 1 (continued)

HLA-E*01:03

Sequence Length Origin

SLVSKGTLVQTK 12 Histone H1.5

PELAKSAPAPK 11 Histone H2B type 1-L

SEMEVQDAELK 11 Proliferation-associated protein 2G4
QTYSTEPNNLK 11 60S ribosomal protein L28

PMFIVNTNVPR 11 Macrophage migration inhibitory factor
AGFAGDDAPR 10 Actin, cytoplasmic 1

RVNAGTLAVL 10 von Willebrand factor A domain-containing protein 8
IGQSKVFFR 9 Myosin-9

sHLA-E*01:03 molecules were purified from LCL 721.221 and bound peptides sequenced. Given is the sequence and origin of the peptide fragment.

Peptide length ranged from 9 to 17 AAs

cells, the KIR™ and NKG2A", NKG2C", and CD94" NK cell
line NKL were used and the amount of lysed target cells an-
alyzed (Fig. 3). T2E cells not bound to a peptide were lysed by
NK cells whereas stabilization with different leader peptides
led to decreased cytotoxicity. Moreover, each leader peptide-
HLA-E complex had different impacts on the level of medi-
ated protection. VMAPRALLL showed higher cytotoxicity
than VMAPRTLVL (HLA-A*02), VMAPRTLFL, or
VMAPRTLIL. The highest protection was conferred by
VMAPRTLVL on T2E*01:01; however, the highest protec-
tion on T2E*01:03 was provided by HLA-
E*01:03VMAPRTLEL "even by its lower density of surface
pHLA-E complexes (Fig. 2). Cytotoxicity was found to be
decreased for T2E*01:03 cells in comparison to T2E*01:01
cells; however, overall both alleles conferred protection
against NK cell-mediated lysis.

Discussion

HLA-E is a low-polymorphic, non-classical HLA class I mol-
ecule. HLA-E*01:01 and E*01:03 frequency is balanced

804

Prevalence (%)
B 2]
< <

N
(=]
1

e L —.-'F—v—v—r'!-

T OQO LK ORXRRDNMNEVIVDNROQRXRDANANN
Amino acid at pQ

Fig.1 Frequency of AAs at p(2 in peptides derived from sHLA-E*01:03.
Peptide-sHLA-E*01:03 complexes were purified from HLA™ LCL
721.221 cells. X-axis depicts AA residue at p(2, y-axis depicts prevalence
in the analyzed peptide pool. Peptides were found to be preferably an-
chored by Lys at p(2

between different populations (Grimsley and Ober 1997).
The 107Arg>Gly mismatch separating HLA-E*01:01 and
E*01:03 is located in a loop region of the «2-domain outside
the peptide binding region and is therefore thought not to
influence the conformation of the peptide-binding groove
(Strong et al. 2003). Nevertheless, donor homozygosity of
E*01:03 was shown to be associated with improved HSCT
outcome (Danzer et al. 2009), while donor homozygosity of
E*01:01 was not (Tamouza et al. 2006). Both alleles bind
nonameric peptides derived from the leader sequence of clas-
sical HLA class I molecules under healthy physiological con-
ditions (Lee et al. 1998a). However, HLA-E also binds pep-
tides of diverse origins as shown by Stevens et al. (2001)
through random peptide libraries and Lampen et al. (2013)
who demonstrated that HLA-E presents diverse peptides even
in the absence of functional TAP, this situation occurs for
instance during viral infections (Ressing et al. 2005;
Vambutas et al. 2001) or in cancerous tissues (Seliger et al.
1998; Seliger et al. 2000). These peptides do not maintain the
binding motif of peptides derived from the classical HLA
class I leader sequences.

In the present study, we aimed to investigate functional
differences between both HLA-E alleles by assessing the rep-
ertoire of HLA-E*01:03-acquired peptides in the absence of
HLA class I molecules and compared their features with pre-
viously identified HLA-E*01:01 peptides from the same pro-
teomic content. Kraemer et al. (2015) showed that HLA-
E*01:01 presents peptides of non-canonical length in the ab-
sence of HLA class I molecules, displaying variation in length
and sequence, and no specific anchoring motifs could be
determined.

As given in Table 1, E*01:03 presents non-canonical pep-
tides of various lengths. Analysis of the peptide sequences did
not reveal an anchor motif at p2; however, peptides were pref-
erably anchored by Lys at pS). Notably, among the identified
peptides, few can be assigned to the heavy chain of HLA-
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Table 2 HLA-E*01:01 and E*01:03 present different peptides of closely related histone subtypes

Sequence Origin Allele Peptide-source Reference
PKKTESHHKAKGK Histone H2A type 3 E*01:01 0.221 Kraemer et al. (2015)
AAVLEYL Histone H2A type 2-B E*01:01 0.221 (Kraemer et al. (2015)
TAEILELAGNAARDNK Histone H2A type 1-D E*01:03 0.221

ILELAGNAARDNK Histone H2A type 1-D E*01:03 0.221

Depicted are peptides derived from histone H2A, eluted from HLA-E*01:01 or E*01:03 expressed in LCL 721.221 (0.221)

Cwl. This might be due to the fact that the HLA-C locus is
diminished but not completely abrogated in LCL 721.221
cells leaving the possibility of remaining transcripts as speci-

fied by Steinle and Schendel (1994).

Table 3  Ligands of HLA-E*01:01 and E*01:03 derived from HLA/TPN LCL 721.220

Comparing the HLA-E*01:03-restricted peptides to those
of E*01:01 (Kraemer et al. 2015), it becomes obvious that the
peptide repertoire of both alleles greatly differs in the absence
of class I molecules. Both alleles present peptides of different

Sequence Length Origin
HLA-E*01:01
AQAAAPASVPAQAPKRTQAPTKASE 25 60S ribosomal protein L.29
KLEKEEEEGISQESSEEEQ 19 High mobility group protein HMG-I/HMG-Y
GDRSEDFGVNEDLADSDAR 19 Annexin Al
VAPEEHPVLLTEAPLNPK 18 Actin, cytoplasmic 1
STAGDTHLGGEDFDNR 16 Heat shock cognate 71 kDa protein
KVPQVSTPTLVEVSR 15 Serum albumin
PDPAKSAPAPKKGSK 15 Histone H2B type 1-H
LQAEIEGLKGQR 12 Keratin, type II cytoskeletal 8
PDPAKSAPAPK 11 Histone H2B type 1-H
PELAKSAPAPK 11 Histone H2B type 1-L
PEPVKSAPVPK 11 Histone H2B type 1-M
AAPATRAAL 9 Solute carrier family 15 member 4
SAPSRATAL 9 BTB/POZ domain-containing protein KCTD18
ILNFPPPP 8 Caprin-2
IAPTGHSL 8 Septin-6
ISPHGNAL 8 ATP-dependent Clp protease
ATP-binding subunit clpX-like,
mitochondrial
HLA-E*01:03
ALAGCHLEDTQRKLQKG 17 Polyamine-modulated factor 1-binding protein 1
MQLITRGKGAGTPNLI 16 Isthmin-1
KMKLRNTVHLSYLTV 15 Taste receptor type 2 member 50
CRASQTISSYLDWYQ 15 Ig kappa chain V-I region OU
PAALTNKGNTVFA 13 Intraflagellar transport protein 88 homologue
WTPGPSAGVTGIA 13 Mucin-19
ILRTIGKEAF 10 Trafficking protein particle complex subunit 8
RSCGYACTA Isthmin-1
FPNGFSFIH Sushi, von Willebrand factor type A, EGF,
and pentraxin domain-containing protein 1
SHGPYIKLI 9 Major facilitator superfamily

domain-containing protein 2A

SHLA-E*01:03 molecules were purified from LCL 721.220 and bound peptides sequenced. Given is the sequence and origin of the peptide fragment.

Peptide length ranged from 8 to 25 AAs
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Table 4 Comparison of HLA-E*01:01 and E*01:03 restricted peptides derived from either LCL 721.220 (0.220) or LCL 721.221 (0.221) cells

Sequence Length Origin Allele Peptide-source
AQAAAPASVPAQAPKRTQAPTKASE 25 60S ribosomal protein .29 E*01:01 0.220
AQAAAPASVPAQAPK 15 60S ribosomal protein L29 E*01:03 0.221
AYVRLAPDYDALDVANK 17 60S ribosomal protein L23a E*01:03 0.221
AYVRLAPDYDALDVAN 16 60S ribosomal protein L23a E*01:03 0.221
ASGNYATVISHNPETK 16 60S ribosomal protein L8 E*01:03 0.221
AGNLGGGVVTIERSK 15 60S ribosomal protein L22 E*01:03 0.221
PRKIEEIKDFLLTAR 15 60S ribosomal protein L38 E*01:03 0.221
NIDDGTSDRPYSHA 14 60S ribosomal protein L27 E*01:03 0.221
TVVNKDVFRDPAL 13 60S ribosomal protein L27 E*01:03 0.221
ALRYPMAVGLNK 12 60S ribosomal protein L36 E*01:03 0.221
QTYSTEPNNLK 11 60S ribosomal protein L28 E*01:03 0.221
PDPAKSAPAPKKGSK 15 Histone H2B type 1-H E*01:01 0.220
PDPAKSAPAPK 11 Histone H2B type 1-H E*01:01 0.220
PELAKSAPAPK 11 Histone H2B type 1-L E*01:01 0.220
PEPVKSAPVPK 11 Histone H2B type 1-M E*01:01 0.220
PELAKSAPAPK 11 Histone H2B type 1-L E*01:03 0.221
KQVHPDTGISSK 12 Histone H2B type 1-J E*01:03 0.221
VLKQVHPDTGISSK 14 Histone H2B type 1-J E*01:03 0.221
SEGTKAVTKYTSSK 14 Histone H2B type 1-L E*01:03 0.221
HAVSEGTKAVTKYTSA 16 Histone H2B type 1-J E*01:03 0.221
HAVSEGTKAVTKYTSS 16 Histone H2B type 1-L E*01:03 0.221
HAVSEGTKAVTKYTSAK 17 Histone H2B type 1-J E*01:03 0.221
HAVSEGTKAVTKYTSSK 17 Histone H2B type 1-L E*01:03 0.221
HAVSEGTKAVTKYTSA 16 Histone H2B type 1-J E*01:03 0.221
VAPEEHPVLLTEAPLNPK 18 Actin, cytoplasmic 1 E*01:01 0.220
AGFAGDDAPR 10 Actin, cytoplasmic 1 E*01:03 0.221

Both alleles present similar peptides from certain protein isoforms

cellular origin, however, both variants share peptide fragments
of one particular protein family, histone H2A subtypes; here,
the presented peptide fragments differ in length and sequence.
This observation suggests that both allelic variants differ in
their function and the single mismatch at position 107 causes
an alteration of the peptide repertoire. Presumably, this mis-
match induces a subtle structural transformation of the alpha 2
helix or a structural-based altered affinity of the peptide recep-
tive HLA-E/3,m complex during the peptide loading process
could be responsible for the divergent set of presented
peptides.

To further specify the functional impact of both HLA-E
variants, we utilized a model cell system that mirrors a func-
tional defect in the PLC in addition to abolished HLA class I
expression. Therefore, we identified the peptide repertoires of
both HLA-E variants in the TPN™ and HLA™ LCL 721.220
cell line.

TPN is a dedicated part of the PLC and as such represents a
potent target for viruses to escape immune recognition; e.g.,
HCMYV inhibits TPN through its immune evasion protein US3

(Park et al. 2004). In addition to the previous findings of
Kraemer et al. (2015), we could demonstrate that HLA-
E*01:01 as well as E*01:03 acquires peptides derived from
intracellular proteins despite the lack of HLA class I mole-
cules and TPN, implying a role for HLA-E in viral immunity.
In comparison to the analyzed peptide spectrum of HLA-E
variants in B-lymphoblastic cells, we could confirm the func-
tional disparity between both alleles. Comparing the total pep-
tide repertoire of both HLA-E alleles presented in HLA™/
TPN cells, it can be observed that overlapping peptide frag-
ments only occur in peptides derived from HLA /TPN™
(E*01:01) and HLA™ (E*01:03) cells. This highlights that
both alleles bind distinct peptides in the presence of TPN;
however, its absence impacts HLA-E*01:01 peptide selection
as it is shown, e.g., for the peptide PELAKSAPAPK derived
from the histone H2B type 1-L protein that is presented by
both alleles yet derived from different proteomic content
(Table 4). Looking further at the location within the original
protein, the presented peptides are not derived from either the
N- or C-terminus in the majority of the cases. These findings
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Fig. 2 pHLA-E stabilization on a T2E*01:01 b T2E*01:03
T2E cells. Flow cytometric 400+ 400 - : \_nf}i,ﬁf\i’:
analysis of T2E*01:01 or S I-
T2E*01:03 stained with anti- o SEEEERSLE
HLA-E-APC conjugated mAb. — 3007 300 -
Depicted is the average of three lﬁ
experiments. a T2E saturation E 200 200 -
was achieved with >20 pM of §
peptide. {/—II\IZ;\'});{AL o = 400- 100 -
E*01:01 showed the
highest stability. b T2E saturation
was achieved with >20 uM of 0- 7 T 0-
peptide, for HLA- Q.Qq' N * P® r\,@ Q.Qq' N v ® q,@
E*01:03VMAPRTHL showed the uM uM
highest stability. Saturation was
reached with 200 uM of peptide
for both alleles VMAPRTLFL VMAPRTLVL VMAPRTLFL VMAPRTLVL
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are similar to the results by Oliveira et al. (2010), who ana-
lyzed the peptide repertoire of the HLA-E mouse homologue
Qa-1° in the presence and absence of functional TAP.
Interestingly, among the peptides presented in TAP™ cells,

there are also peptides presented from histone H2B. Here,
even the AA sequence is equal to that of the peptides bound
to E*01:03 from LCL 721.221. However, apart from these
peptide sequences, there are also peptides presented from

no peptide VMAPRTLFL VMAPRTLVL VMAPRTLIL VMAPRALLL
t - 31.2% 9.0% 7.4% i 8.3%) 13.9% |
‘] 1
16 < ‘16 -
o c A { 1 : ; A T2/mHLA-E*01:01
N 0 1 R L
! . . :
' l-__“.-..---_....--. | IR — ' {__‘-.__.._w '
a A agon oxgro- e+ -y - - - e g s .
<
<
~ ' . .
23.9% a9% | 5.9% ) 5.8% { - 8.8%
O € - é o B
« i D - / ‘ T2/mHLA-E*01:03
1 1 W 1 | W
. "l ‘}
- _ N ’1.....,,._” .. ) ..
FSC i

Fig. 3 HLA-E-leader peptide complexes confer protection against NK
cell mediated lysis. Cytotoxicity assay showing the percentage of lysed
target cells. Depicted is the average of three independent experiments,
shown FACS plots are exemplary. T2E*01:01 and T2E*01:03 cells were
lysed in the absence of peptide. Top panel: T2E*01:01VMAPRTLVL
showed decreased cytotoxicity (7.4 %) compared to
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cofilin-1 or the elongation factor 1, albeit the presented frag-
ment is different. These similarities in selection and presenta-
tion of unusual peptides by HLA-E or Qa-1” in a pathological
situation, in particular with major defects in the PLC machin-
ery, encourage the view of a specialized role for HLA-E in
certain diseases.

To compare both alleles for their immunological impact in
a physiological situation, the potential to inhibit NK cell cy-
totoxicity by pHLA-E complexes was assessed. Peptides
known to be cognate ligands for both alleles were used.
Stable pHLA-E complexes were achieved using different
leader peptides derived from HLA class I molecules; however,
the different peptides were differentially able to stabilize
HLA-E. Eventually, the overall protective potential was
shown to be greater for HLA-E*01:03 complexes since more
target cells presenting HLA-E*01:01 complexes than target
cells presenting E*01:03 complexes have been lysed when
both alleles were bound to the same peptide (Fig. 3). Here,
the sole functional impact of residue 107 became obvious,
when both alleles interact differentially with the cognate
NKG2/CD9%4 NK cell heterodimer. Potentially, a small shift
in the overall structure of the PBR may be responsible for such
different interaction, even though the mismatch is located in a
loop region. In the case of HLA-B*44:02 and B*44:03, it was
shown that the Aspl56Leu exchange results in a non-
permissive mismatch (Badrinath et al. 2012b; Macdonald
et al. 2003) through a conformational change of the binding
cleft. It is conceivable that the Arg107Gly exchange similarly
impacts the overall structure of HLA-E, leading to a slightly
different conformation at, for instance, His155, where the «2-
domain directly interacts with the NKG2A subunit (Petrie
et al. 2008). This could result in an altered affinity to the
NKG2A/CD9%4 heterodimer and thus interfere with NK cell
recognition. Nevertheless, further structural studies are neces-
sary to elucidate on that, preferably using high-resolution
structures of both alleles bound to the same peptide.

Taken together, these data suggest that even though both
alleles are separated only by one mismatch in a loop region,
this subtle difference impacts the structure in a way that
changes the overall behavior of the molecule. As seen in
Fig. 1, HLA-E*01:03 exhibits a strong preference for Lys at
the p(2 position and as such may be less variable in the F-
pocket than E*01:01. The unusual selection of Lys as an an-
chor is similar to HLA-B*44:35 that presents longer peptides
preferentially anchored by Lys at the C-terminus (Badrinath
et al. 2014). This restriction of the pQ anchor (Fig. 1), at least
for the peptide repertoire of HLA-E*01:03, highlights the pre-
dicted loop-like peptide conformations formed by the flexible
middle part of such long peptides when bound in the PBR of
HLA-E*01:01 as described by Kraemer et al. (2015). The
outer loop mismatch at position 107 indirectly influences the
C-terminal AA selection of the F-pocket. The observation that
an outer pocket or outer loop position orchestrates distinct

pocket specificity has been observed previously (Bade-
Doding et al. 2011; Elamin et al. 2010; Huyton et al. 2012).
Moreover, the impact of the single polymorphism on HLA-E
function under healthy conditions is more or less little as seen
by the differences in NK cell inhibition by HLA class I-
derived peptides bound to either HLA-E allele. To maintain
this heterozygous HLA-E haplotype among diverse popula-
tions, a greater functional impact is likely. Our results provide
new insights in the role of HLA-E-driven immune responses
displayed by the broadened variations of allele-specific pep-
tide ligands. These results may also help to understand the
diverging outcome after HSCT for HLA-E*01:03 HSC homo-
zygous donor. However, further identification of HLA-E pep-
tide repertoires in pathological situations of primary cells is
needed for the development of novel therapeutic concepts.
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