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Background: An individualised risk-stratified screening for prostate cancer (PCa) would select the patients who will benefit from
further investigations as well as therapy. Current detection methods suffer from low sensitivity and specificity, especially for
separating PCa from benign prostatic conditions. We have investigated the use of metabolomics analyses of blood samples for
separating PCa patients and controls with benign prostatic hyperplasia (BPH).

Methods: Blood plasma and serum samples from 29 PCa patient and 21 controls with BPH were analysed by metabolomics
analysis using magnetic resonance spectroscopy, mass spectrometry and gas chromatography. Differences in blood metabolic
patterns were examined by multivariate and univariate statistics.

Results: By combining results from different methodological platforms, PCa patients and controls were separated with a sensitivity
and specificity of 81.5% and 75.2%, respectively.

Conclusions: The combined analysis of serum and plasma samples by different metabolomics measurement techniques gave
successful discrimination of PCa and controls, and provided metabolic markers and insight into the processes characteristic of
PCa. Our results suggest changes in fatty acid (acylcarnitines), choline (glycerophospholipids) and amino acid metabolism
(arginine) as markers for PCa compared with BPH.

Prostate-specific antigen (PSA) screening of healthy men for the
diagnosis of early prostate cancer (PCa) is an ongoing controversy
because of the risk of overtreatment. Results from the ERSPC
study, a randomised trial, showed that PSA screening in healthy
men between 50 and 69 years of age, reduces PCa mortality
(Schroder et al, 2009) but the downstream consequences of
potential side effects from treatment; impotence and incontinence,
may cause more harm than benefit for the majority of PCa
patients. A risk-stratified screening focusing on men with the
highest risk of life-threatening disease would select the patient who

will benefit from early diagnosis as well as therapy. Taking into
consideration the increasing amount of quinolone-resistant
bacteria and the risk of infection after transrectal ultrasound
(TRUS) guided biopsies, there is a serious need for a multivariate
approach of non-invasive diagnostic markers to pinpoint patients
who are eligible to further investigation with more invasive
techniques such as TRUS-guided biopsies.

Aberrant metabolism is an emerging hallmark of cancer (Cairns
et al, 2011; Hanahan and Weinberg Robert, 2011) and metabo-
lomics is the systematic study of the metabolites expressed in cells,
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tissues and biofluids. Metabolomic analyses of biofluids are
minimally invasive and easily accessible for disease monitoring
(Zhang et al, 2012), and therefore have strong potential as
diagnostic tools. Differences in serum or plasma metabolite
concentrations between patients and controls have been detected
in several cancers, including colorectal cancer (Nishiumi et al,
2012), pancreatic cancer (Kobayashi et al, 2013) and oral cancer
(Tiziani et al, 2009). In PCa, a few studies prove evidence of
metabolic differences between PCa patients and healthy controls in
plasma (Lokhov et al, 2010), serum samples (Zang et al, 2014) and
prostatic secretions (Serkova et al, 2008). Citrate, myo-inositol and
the polyamine spermine have previously been suggested as
metabolic markers of PCa in prostatic secretions.

The aim of this study was to identify metabolic markers in
serum and plasma samples from PCa patients and controls with
benign prostatic hyperplasia (BPH) using different suitable
methodology platforms, including nuclear magnetic resonance
spectroscopy (MRS), mass spectrometry (MS) and gas chromato-
graphy (GC) analyses. The use of these complementary methodo-
logical platforms allows for quantification of a broad range of
metabolites. In contrast to previous studies comparing PCa
patients with healthy volunteers, we have looked for metabolic
markers in PCa patients compared with controls with clinical BPH.
Thus, this study separates two common conditions giving rise to
increased PSA levels (Roehrborn et al, 1999; Bohnen et al, 2007)
and can be highly valuable for clinical decision making.

MATERIALS AND METHODS

Study participants. This was a pilot study including 29 PCa
patients and 21 controls. All participants had been referred to the
urology department at St Olavs Hospital, Trondheim, because of
lower urinary tract symptoms (LUTS) and/or elevated PSA. The
cancer patients had been diagnosed with PCa through positive
findings in TRUS biopsies, and had not yet started cancer
treatment. The control group consisted of men with no proven
PCa based on PSA levels o4 ng ml� 1, negative findings on digital
rectal palpation, ultrasound-verified prostate volume (cm3) and no
malignant findings in prostate tissue biopsies when biopsies had
been acquired. All men in the control group were diagnosed with
LUTS because of BPH. Fasting serum and plasma samples were
collected from each participant. The samples were stored at
� 80 1C until analysis. Patient and control characteristics are
described in Table 1. Prostate-specific antigen, total high-density
lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides

and cholesterol concentrations were measured on the same serum
sample as analysed by MRS/GC. The Gleason score was
histologically determined from TRUS biopsies of the prostate,
and were in the range 6–10, where high values represent more
aggressive cancers. The study was approved by The Regional
Committee for Medical and Health Research Ethics (Norwegian
Health Region III) and informed written consent was obtained
from all study participants.

Magnetic resonance spectroscopy analysis of serum samples.
Thawed serum samples (100ml) were mixed with buffer (100 ml)
(0.075 mM Na2HPO4, 5 mM NaN3, 5 mM TSP, pH 7.4) and analysed
in 3-mm NMR tubes. Magnetic resonance spectroscopy analysis
was performed on a Bruker Avance III Ultrashielded Plus 600 MHz
spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany)
equipped with a 5 mm QCI Cryoprobe. Experiments were fully
automated using a SampleJet in combination with Icon-NMR on
Topspin 3.1 (Bruker BioSpin). 1D 1H Nuclear Overhauser effect
spectroscopy (NOESY) and Carr–Purcell–Meiboom–Gill (CPMG)
spectra with water presaturation were acquired at 311.4 K. The
spectra were Fourier transformed to 128 K after 0.3 Hz exponential
line broadening. Additional 2D NMR spectra (correlation spectro-
scopy (COSY), total correlation spectroscopy (TOCSY) and
heteronuclear single-quantum coherence spectroscopy (HSQC))
were acquired for selected samples for metabolite identification.

The CMPG spectra were transferred to Matlab R2013b (The
Mathworks, Inc., Natick, MA, USA) for further processing. The
chemical shifts of the spectra were referenced to the left peak of the
alanine doublet at 1.47 p.p.m. Spectral baseline was adjusted by
setting the lowest point to zero. No peak alignment was performed
because of well overlapping peaks. The spectral region between
0.29 and 8.52 p.p.m., excluding the water peak between 4.31 and
5.15 p.p.m. was chosen for further analyses, and the spectra were
normalised to equal total area. Metabolites were assigned using
Chenomx NMR suite 7.7 (Chenomx Inc., AB, Edmonton, Canada)
and the human metabolome database, in addition to 2D spectra
(COSY, TOCSY and HSQC) for confirming certain assignments.
Statistical total correlation spectroscopy (Cloarec et al, 2005) was
applied for identification of correlating peaks in the spectrum.
Individual metabolite peaks in the normalised 1D CPMG spectra
were integrated, and the resulting data represents relative
intensities. For metabolites with more than one resonance, either
the mean or the resonance in a nonoverlapping region of the
spectrum was used.

Lipoprotein subclassification from serum 1D NMR spectra.
Lipoprotein subclassification was performed from 1D NOESY MR

Table 1. Characteristics of study participants

Patients (n¼29) (mean, range) Controls (n¼21) (mean, range) P-value
Age (years) 65.8 (58–76) 62.6 (52–69) 0.119

BMI (kg m� 2) 26.3 (18–34) 26.2 (21.0–40.4) 0.630

Prostate volume (ml) 39.6 (19–130) 48.7 (21–110) 0.082

PSA at diagnosis (ng ml�1) 11.6 (4.3–50.4) 1.2 (0.3–2.6) 8.498� 10�9*

PSA of sample (ng ml� 1) 14.81 (5.8–55.9) 1.51 (0.4–4.2) 2.263� 10�9*

PCA3 (score) 67.0 (2–166) 56.6 (6–576) 0.003*

HDL (mmol l�1) 1.55 (0.7–2.23) 1.43 (0.7–2.01) 0.345

LDL (mmol l�1) 3.24 (1.51–5.53) 3.34 (2.42–4.96) 0.477

Triglycerides (mmol l� 1) 1.11 (0.6–2.82) 1.62 (0.46–6.07) 0.011*

Cholesterol (mmol l� 1) 5.28 (3.1–7.3) 5.46 (4.3–7.1) 0.602

Tumour Gleason score 7.0 (6–9) NA NA

Abbreviations: BMI¼body mass index; HDL¼ high-density lipoprotein; LDL¼ low-density lipoprotein; NA¼ not applicable; PSA¼prostate-specific antigen. *P-values are from Wilcoxon
testing. Prostate volume is measured by ultrasound.
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spectra from the serum samples. This method measures the
concentration of cholesterol, phospholipids, triglycerides and/or
apolipoproteins A1, A2 and B in the serum sample (total values)
and in each of the lipoprotein subfractions (total very low-density
lipoproteins (VLDL), intermediate density lipoproteins (IDL), LDL
and HDL, in addition to the subclasses VLDL-1–6, LDL-1–6 and
HDL-1–4). The analysis is based on a partial least squares (PLS)
regression model (Petersen et al, 2005; Mihaleva et al, 2014). The
analysis was performed by Bruker BioSpin. The internal validity of
the measurements was assessed by comparison with the standard
laboratory measurements of total serum triglycerides, cholesterol,
LDL and HDL cholesterol.

Mass spectrometry analysis of plasma. Targeted analysis of
plasma samples was performed on a Acquity UPLC-I Class system
coupled to a Xevo TQS mass spectrometer (Waters, Milford, MA,
USA) using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG,
Innsbruck, Austria) according to the manufacturer’s instructions.
The kit provides quantification of up to 188 metabolites including
acylcarnitines, amino acids, hexoses, phospholipids, sphingolipids
and biogenic amines. Amino acids and biogenic amines are
detected and quantified by stable isotopes in LC-MS/MS mode,
while the remaining metabolites are detected and semi-quantified
in flow injection analysis (FIA) mode. Flow in the LC method was
optimised to 0.8 ml min� 1. Metabolites detected in LC-MS/MS
mode were integrated in TargetLynx (Waters). Results from
TargetLynx were together with results from the FIA analysis
quantified and validated using the MetIDQ software (Biocrates Life
Sciences AG).

Quantification of fatty acids in serum by gas chromatography.
Serum samples were derivatised to fatty acid methyl esters (FAME)
by direct esterification according to Meier et al (2006). The sample
(200 ml) was weighed into screw-capped reaction tubes, water was
evaporated under nitrogen and internal standard (triheptadeca-
noin) in isooctane was added. After evaporating the solvent, 0.5 ml
of methanolic HCl (2.5 M) was added to each tube. The tubes were
flushed with nitrogen, sealed and incubated at 90 1C for 2 h. After
cooling to room temperature, half of the methanol was evaporated
and 0.5 ml water was added. The samples were extracted twice by
1 ml isooctane and the extracts were diluted to 30% before analysis
on GC.

The FAMEs were quantified by GC with flame ionisation
detector as described in (Sciotto and Mjøs, 2012), but with minor
adjustments of the temperature programme. The FAME reference
mixture GLC-461 (Nu-Chek Prep, Elysian, MN, USA) was
analysed as every seventh sample. The handling of GC data was
performed in Chrombox C (www.chrombox.org) running under
Matlab R2013a (Mathworks). Chromatographic areas were cor-
rected by empirical response factors calculated from the GLC-461
mixture. The serum samples were analysed in two replicates, and
the average results are presented. The level of each fatty acid is
given in percent, where the data are normalised to a total sum of
100%. The fatty acids were identified by analysing a subset of the
samples on GC with mass spectrometric detection as described in
(Wasta and Mjøs, 2013). The applied fatty acid nomenclature
follows the shorthand notation a:b n-c, where ‘a’ designates the
number of carbons in the fatty acid chain, ‘b’ designates the
number of double bonds and ‘c’ designates the position of the first
double bond relative to the methyl end of the carbon chain.

Statistical data analysis

Multivariate modelling. A principal component analysis (PCA)
were performed to visualise the variation in the data set. Principal
component analysis could not discriminate cancer patients from
controls, thus supervised analyses were performed to extract
possible cancer-related information masked by the large metabolic

variations in blood. To discriminate cancer patients from controls
and to assess correlations to clinical parameters, multivariate
analysis was performed on autoscaled quantified data by
orthogonalised PLS discriminant analysis (OPLS-DA) and OPLS.
Partial least squares is a regression method for the analysis of
multivariate data, defining underlying latent variables (LVs) that
maximise the covariance between the input variables and the
response variable. Partial least squares-discriminant analysis is the
extension of PLS. By orthogonalising the resulting model, all
relevant discriminatory variance is put into the first LV (LV1),
making interpretations of the model easier. Missing data for some
variables were replaced by estimated values using a built-in data
imputation algorithm. To avoid overfitting, OPLS-DA and OPLS
models were validated by 10-fold random subset cross-validation
repeated 10 times. The number of LVs was chosen based on the
first minimum in cross-validated classification error and root-
mean-square error for OPLS-DA and OPLS, respectively. The
importance of each variable in the loadings of the OPLS-DA was
evaluated by variable importance in the projection (VIP) scores
(Chong and Jun, 2005), positively reflecting the variable’s influence
on the classification. Permutation testing was performed to assess
the significance of the multivariate models (n¼ 1000, significance
for Pp0.05). For classification models using variable-selected data
as input, variable selection was included in the permutation loop,
choosing the same number of variables as for the original models.
Two samples from MS and MRS analysis were excluded from
multivariate analysis because of several missing values and very
high lipid content, respectively. Multivariate analyses were
performed in Matlab using PLS_toolbox 7.8.2 (Eigenvector
Research, Inc., Manson, WA, USA). To reduce the number of
input variables for multivariate modelling, variable selection was
performed by Wilcoxon testing of individual metabolites. Meta-
bolites with Wilcoxon P-value p0.05 from MRS and MS analyses
were combined for further analyses.

Univariate statistics. Differences in metabolite levels between
patients and controls were assessed by Wilcoxon rank sum testing
(Matlab). For variable-selected metabolites from multivariate
models, differences in individual metabolite concentrations
between PCa patients and controls were examined by receiver
operating characteristics (ROC) analyses (SPSS version 21, IBM
SPSS Statistics, Armonk, NY, USA). P-values were corrected for
multiple testing by Benjamini–Hochberg correction, and q-values
p0.05 were considered significant. Multiple testing corrections
were performed for each platform/analysis method separately.

Pathway analysis. To extract relevant biological information from
the data, MetaboAnalyst 3.0 (Xia et al, 2012) was used for
metabolic pathway analyses of the metabolomics data from MRS
and MS combined. Pathway analysis integrates metabolite set
enrichment analysis and pathway topology analysis to extract
biologically meaningful information from the data. A table of
concentrations for all metabolites was used as input for the
analysis, and the data were log transformed and autoscaled before
analysis. The pathway analysis was performed through a pathway
enrichment analysis using a global test and a pathway topology
analysis using a relative betweenness centrality measure.

RESULTS

Metabolite quantification of serum and plasma samples

Magnetic resonance spectroscopy of serum. From MRS of serum
samples, 28 metabolites were semi-quantified (Supplementary
Table 1). Twelve of the metabolites, including amino acids, lipids
and metabolites involved in energy metabolism, had significantly
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different levels between patients and controls by testing of
individual metabolite levels (Pp0.05).

Lipoprotein subclassification from MRS spectra. Lipoprotein
subclassification resulted in a data set of 105 variables
(Supplementary Table 2). The correlations between MRS measured
and laboratory measured of triglycerides, cholesterol, LDL and
HDL were r¼ 0.98, 0.97, 0.95 and 0.97, respectively. The levels of
23 variables from lipoprotein subclassification were significantly
different between patients and controls (Pp0.05), including total
triglyceride levels and subclasses of total VLDL, VLDL-1–3
(triglycerdies, cholesterol, free cholesterol and phospholipids),
VLDL-4 (phospholipids) and VLDL-5 (cholesterol, free cholesterol
and phospholipids), in addition to total IDL (free cholesterol and
phospholipids) (Supplementary Table 2).

Mass spectrometry analysis of plasma. Mass spectrometry
analysis of plasma samples identified 181 metabolites. Of these,
39 metabolites had missing values or values under the limit of
detection for 30–100 % of the samples, and were excluded from
further analysis, resulting in a list of 142 quantified or semi-
quantified metabolites (Supplementary Table 3). Fourteen of the
MS measured metabolites, including acylcarnitines, amino acids,
biogenic amines and glycerophospholipids, had significantly
different levels between patients and controls (Pp0.05).

Gas chromatography analysis of serum. By GC analysis of serum
samples, a total of 34 fatty acids were semi-quantified
(Supplementary Table 4). This method quantified all free and
ester-bound fatty acids, including phospholipids and triglycerides.
Two fatty acids (18 : 2 n-6 and 20 : 0) had significantly higher levels
in PCa patients compared with controls (Pp0.05).

None of the quantified metabolites/variables in serum or plasma
were significantly different between patients and controls after
multiple testing corrections (q40.05), possibly due to a large
number of variables compared with samples.

Multivariate classification of PCa patients and controls. Ortho-
gonalized PLS discriminant analysis was used to discriminate the
metabolic profiles of PCa patients and controls based on the
quantified metabolites/variables from the different measurement
methods (Table 2). Plasma metabolites quantified by MS gave
significant classification models, thus MS metabolic profiles from
plasma samples are significantly different between patients and
controls. Serum metabolites quantified by magnetic resonance did
also give significant classification models, however with a low
sensitivity, showing significant differences in the serum metabolic
profiles of patients and controls. Lipoprotein subclasses quantified
from the magnetic resonance spectra did also result in significant
classification models, thus with a low specificity, showing that PCa
patients and controls have significantly different lipoprotein

profiles. Fatty acids quantified by GC analysis did not give
significant separation of patients and controls.

The combination of 14 and 12 variable-selected metabolites
from MRS and MS, respectively, the two most commonly used
platforms for metabolite measurements of biofluids, gave the best
classification results. The variable-selected metabolites are listed in
Table 3. The OPLS-DA scores and loadings for classification of
PCa and control samples using a combination of variable-selected
serum MRS metabolites and plasma MS metabolites are shown in
Figure 1. The cancer samples are clustered to the left side of the
score plot, with low scores on latent variable 1 (LV1), while the
control samples have a high LV1 score. The metabolites
decanoylcarnitine (c10), tetradecenoylcarnitine (c14 : 1), octanoyl-
carnitine (c8), dimethylsulfone, phenylalanine and lysine are of
high importance for classification, with increased levels in PCa
patients, while the metabolites phosphatidylcholine diacyl C34 : 4
and lipid2 have higher levels in the controls.

Receiver operating characteristic statistics of metabolites
separating PCa patients and controls. The discriminatory power
of the individual metabolites selected for OPLS-DA classification
from MS and MRS analyses were examined by ROC analysis.
Table 3 shows the area under the curve values of the metabolites.
These metabolites were selected based on significant P-values from
Wilcoxon testing; however, none of the metabolites were
significantly different between PCa patients and controls after
multiple testing corrections (q40.05).

Correlations to clinical parameters. Correlations between the
metabolic data from different methological platforms and
the clinical parameters PCA3 in all samples, and Gleason score
of the PCa samples, were examined by OPLS analysis. None of the
data sets were significantly correlated to PCA3 or the Gleason
score (P40.05).

MetaboAnalyst results. MetaboAnalyst uses the input metabolites
to produce a list of the pathways that are most strongly represented
by the metabolites. Only metabolites with a KEGG ID can be
included in MetaboAnalyst pathway analysis, thus several of the
acylcarnitines were not included, and several of the different
phospholipids and sphingolipids have the same KEGG IDs. The
pathway analysis suggested a number of significantly altered
pathways, with the pathways phenylalanine metabolism, aminoa-
cyl-tRNA biosynthesis, nitrogen metabolism, lysine degradation,
pantothenate and CoA biosynthesis and arginine and proline
metabolism among the top-listed pathways with three or more
metabolite hits (Supplementary Figure 1). The listed pathways were
significant before multiple testing corrections, while the results
approached significance after multiple testing corrections
(q¼ 0.099).

Table 2. OPLS-DA classification results for separating metabolic profiles of prostate cancer patients and controls

Analysis method Variables
Classification

error (%)
Sensitivity (%) Specificity (%) LVs P-value

MS All 28.6 73.7 69.0 2 0.004a

MRS All 34.8 54.1 76.3 1 0.022a

Lipoprotein subclassification All 35.7 70.7 57.9 3 0.027a

GC of fatty acids All 45.0 64.8 45.2 1 0.278

MSþMRS combined All 32.2 75.1 60.6 1 0.007a

MSþMRS combined Variable selected 21.6 81.5 75.2 1 0.005a

Abbreviations: GC¼gas chromatography; MRS¼magnetic resonance spectroscopy; MS¼mass spectrometry; OPLS-DA¼orthogonalised PLS discriminant analysis; PLS¼partial least squares.
aPermutation P-value p0.05.
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Table 3. Variable-selected metabolites used for classification of prostate cancer patients and controls

Metabolite Platform AUC Direction in cancer P-value
Decanoylcarnitine (C10) MS 0.73 m 0.006*

Tetradecenoylcarnitine (C14 : 1) MS 0.70 m 0.021*

Octanoylcarnitine (C8) MS 0.73 m 0.022*

Nonanoylcarnitine (C9) MS 0.72 m 0.009*

Arg MS 0.67 m 0.039*

Kynurenine MS 0.72 m 0.009*

lysoPC a C16 : 0 MS 0.68 k 0.033*

lysoPC a C18 : 0 MS 0.68 k 0.039*

lysoPC a C20 : 4 MS 0.69 k 0.025*

PC aa C34 : 4 MS 0.70 k 0.019*

PC aa C38 : 5 MS 0.69 k 0.026*

PC aa C40 : 4 MS 0.67 k 0.045*

PC aa C40 : 5 MS 0.70 k 0.019*

PC ae C38 : 2 MS 0.68 k 0.036*

Valine MRS 0.69 m 0.032*

2-Methylglutarate MRS 0.70 m 0.015*

Lipid2 MRS 0.70 k 0.017*

GlnþGlu MRS 0.70 m 0.031*

Glutamate MRS 0.66 m 0.049*

Pyruvate MRS 0.71 m 0.015*

Lysine MRS 0.71 m 0.015*

Dimethylsulfone MRS 0.74 m 0.006*

Histidine MRS 0.69 m 0.024*

Glucose MRS 0.68 m 0.039*

Tyrosine MRS 0.67 m 0.037*

Phenylalanine MRS 0.73 m 0.011*

Abbreviations: AUC¼ area under the curve; LysoPC¼ lysophosphatidylcholine; MRS, magnetic resonance spectroscopy; MS, mass spectrometry; PC¼phosphatidylcholine; ROC¼ receiver
operating characteristics. a: acyl, aa: diacyl, ae: acyl-alkyl, AUC values from ROC analyses, GlnþGlu: multiplet consisting of signals from glutamine and glutamate, Lipid2: signals from -(CH2)n-
CH2-CH2-CO. *P-value p0.05.
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DISCUSSION

In this study, blood samples were analysed by several methodology
platforms, which enabled quantification of different molecular
classes of metabolites, including amino acids, fatty acids, biogenic
amines and lipoproteins. By combining MRS results from serum
and MS results from plasma, we were able to separate PCa patients
and BPH controls with a sensitivity and specificity of 81.5% and
75.2%, respectively. Control study participants had been referred to
the urology department with LUTS due to BPH, thus this study
represents a highly relevant clinical setting where PSA levels can be
misleading.

Four of the acylcarnitines had increased levels in plasma
samples from PCa patients compared with BPH controls.
Acylcarnitines are involved in fatty acid b-oxidation, and are
formed for transport of fatty acids into the inner mitochondrial
membrane by conjugation of long-chain fatty acids to carnitine.
Inside the mitochondria the fatty acids are catabolised to generate
acetyl-CoA, NADH and FADH2. Zha et al (2005) observed an
upregulation of perixosomal, but not mitochondrial, fatty acid
b-oxidation by gene expression profiling of PCa tissue. Perox-
isomal fatty acid oxidation is required for initial oxidation of very
long-chain and branched-chain fatty acids, which cannot be
directly oxidised by the mitochondria. The resulting shorter
chained products are transported from the peroxisome to the
mitochondria for further oxidation by binding to carnitine. Lokhov
et al (2010) have previously described metabolic changes quantified
by MS in plasma metabolites of PCa patients compared with
controls, and found the acylcarnitine dimethylheptanoyl carnitine
to be significantly increased in PCa patients. This specific
acylcarnitine was not quantified in our study; however, the result
supports the hypothesis of abnormal plasma acylcarnitine levels in
PCa. In contrast to most cancers, increased glucose consumption is
not as characteristic for PCa as for other cancers, as evidenced by
low fluorodeoxyglucose uptake on PET imaging (Hofer et al, 1999;
Yu et al, 2014). Experiments in three different PCa cell lines
showed a higher cellular uptake of fatty acids over glucose,
suggesting that fatty acid metabolism is a vital energy source for
PCa cells (Liu et al, 2010). Increased levels of acylcarnitines in the
blood of PCa patients indicate a higher degree of mitochondrial
and/or peroxisomal fatty acid metabolism in PCa.

PCa patients had increased serum levels of glucose compared
with BPH controls. Serum levels of glucose have been shown to
positively correlate with increased cancer risk (Wulaningsih et al,
2013), possibly as a result of metabolic disorders such as insulin
resistance and diabetes. However, a study on a large cohort showed
a negative association between serum glucose levels and PCa risk,
but an increased PCa risk in men with both high glucose and high
triglyceride levels (Van Hemelrijck et al, 2011). In a different study,
elevated serum glucose levels at the time of PCa diagnosis was
associated with an increased risk of recurrence compared with
patients with a normal glucose level (Wright et al, 2013). Further
studies are needed to fully map the relationship between serum
glucose levels and PCa development and prognosis.

Eight different glycerophospholipids had decreased levels in
plasma from PCa patients compared with BPH controls. These
include three lysophosphatidylcholines and five phosphatidylcho-
lines. Glycerophospholipids are main constituents of biological
membranes. Phosphatidylcholines are phospholipids with a cho-
line head group, while lysophosphatidylcholines are derived from
phosphatidylcholines through partial hydrolysis removing one of
the fatty acids. Phosphatidylcholines are synthesised through the
Kennedy pathway involving the choline containing metabolites free
choline, phosphocholine (PCho) and glycerophosphocholine
(GPC). Abnormal choline metabolism is frequently observed in
cancers (Ackerstaff et al, 2003; Glunde et al, 2011), and we have

previously described increased levels of the choline containing
metabolites in PCa tissue (Giskeødegård et al, 2013). Decreased
plasma levels of phosphatidylcholines and lysophosphatidylcho-
lines might be reflecting the abnormal choline metabolism in PCa
tissue. Lokhov et al (2010) did not detect significant differences
between PCa patients and controls in any of the quantified
phospholipids in their study, which they explain could be due to
including early stage cancers and/or lower instrument sensitivity.
Decreased levels of lysophosphatidylcholines have however
previously been detected in serum samples from PCa patients
compared with controls (Osl et al, 2008) and in plasma from
colorectal cancer patients (Zhao et al, 2007). Changes in lysopho-
spholipid levels are suggested to result from their activation of
specific cell-surface G protein coupled receptors that initiate cell
growth, proliferation, and survival pathways (Mills and Moolenaar,
2003; Zhao et al, 2007), properties characteristic of cancer growth.

Eight amino acids were increased in blood samples from PCa
patients, and phenylalanine metabolism, lysine degradation and
arginine and proline metabolism were suggested as significantly
altered pathways by MetaboAnalyst. However, several of these
amino acids were only increased in the serum samples by MRS,
and not in plasma by MS analysis. This might be because of
differences in amino acid concentrations between serum and
plasma (Chuang et al, 1998), because of matrix effects or because of
differences in sample preparations and quantification methods.
Both decreased and increased plasma amino acid levels have been
described in cancer patients in previous studies (Lai et al, 2005).
The amino acid arginine, which was increased in plasma from PCa
patients, is highly versatile and involved in several processes.
Arginine and its products are critical for the growth of several
cancers by enhancing tumour growth, and arginine depletors have
been shown effective as anti-cancer drugs in several cancers
including PCa (Kim et al, 2009; Delage et al, 2010; Szlosarek, 2014).
Further studies on a larger cohort are necessary to validate the
findings of increased blood levels of certain amino acids, including
arginine.

In our study, the BPH controls had significantly higher
concentrations of triglycerides compared with PCa patients. As
hypertriglyceridemia has been suggested as a risk factor for PCa
(Wuermli et al, 2005), the opposite result would have been
expected, and the significantly increased triglyceride levels might
be a result of the control group not consisting of healthy men, but
men diagnosed with BPH. Additionally, we detected lower levels of
lipid signals (lipid2) in PCa patients compared with BPH controls
in serum samples, and lipoprotein subclassification showed
decreased levels of several of the subfractions of total VLDL and
its subclasses VLDL-1–5 in patients compared with BPH controls,
in addition to decreased levels of IDL subfractions. In contrast,
increased levels of VLDL have been observed in breast cancer
patients compared with controls (Franky Dhaval et al, 2008). We
did not observe any differences in HDL subfractions in our cohort,
although low levels of HDL cholesterol have been suggested as a
risk factor and prognostic factor for PCa (Kotani et al, 2013).

The fatty acid data quantified by GC analysis were not
significantly different between PCa patients and BPH controls by
multivariate analysis. By MS analysis we showed that several of the
acylcarnitines are increased in plasma from PCa patients, while
several glycerophospholipids are decreased. The GC method does
not tell which lipid groups the various fatty acids are bound in, and
it is possible that the summed effect cancel out the differences
between fatty acids in different lipid groups.

Although the classification models separating cancer patients
and BPH controls were highly significant, none of the individual
metabolites were significantly different between the groups after
correcting for multiple testing by the false discovery rate approach.
This might be because of a relatively low number of included
samples compared with the large number of metabolites quantified
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by the combination of MRS, MS and GS analyses. In addition, our
results show the beneficial effect of applying multivariate
techniques that do not only look at the metabolites individually,
but takes into account interactions between the metabolites.
Metabolism is complex, and will be affected by several internal
and external factors such as genetics, time-of-day variation and
food intake, in addition to the individual’s health status. It is
unlikely that the levels of only one or a few metabolites will be
predictive of cancer, but instead the interactions between several
co-varying metabolites may provide a better picture of the disease.

In this study, we chose patients with BPH as a control group.
This is a highly relevant clinical setting as BPH is very common in
elderly and middle-aged men. Although not significant, there was a
trend of larger prostates in the BPH control group compared with
the patients (P¼ 0.082). It is possible that prostate size might affect
the metabolic patterns of the prostate that are visible in the
individual’s blood stream. However, comparing PCa patients to
controls with enlarged prostates is a highly relevant problem to be
addressed and a typical setting where PSA measurements are not
optimal. The control patients with PSAo4 may, however, have a
small chance of holding undiagnosed PCa, which can affect the
metabolic state towards a more PCa like profile and blur the
differences between PCa and BPH. Another challenge with patients
typically referred to the urology clinic is the use of medications for
unrelated diseases such as high blood pressure, high cholesterol
levels and diabetes. This was also the case for our study, where 34
of the study participants were taking different types of medications.
However, none had yet started taking any cancer-related medica-
tions. We did not observe any systematic effects of the different
types of medications in the metabolic profiles of the study
participants, but it is conceivable that some of the medications will
affect the metabolic profiles measured in the blood. Thus, it is
possible that metabolic differences between PCa patients and BPH
controls would have been more prominent if none of the
participants were taking medications.

To conclude, this pilot study shows significant differences in the
metabolic profiles of blood samples from PCa patients and BPH
controls. The combined analysis of serum and plasma samples by
different measurement techniques gave successful discrimination
of patients and controls with BPH, and provided an insight into the
metabolic processes characteristic of PCa, with data suggesting
changes in fatty acid metabolism and choline metabolism. Blood
samples from a larger study cohort are currently being collected for
further validation of the metabolic differences between PCa
patients and controls with clinically relevant BPH.
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