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Abstract

High-resolution and anatomically realistic computer models of biological soft tissues play a 

significant role in the understanding of the function of cardiovascular components in health and 

disease. However, the computational effort to handle fine grids to resolve the geometries as well 

as sophisticated tissue models is very challenging. One possibility to derive a strongly scalable 

parallel solution algorithm is to consider finite element tearing and interconnecting (FETI) 

methods. In this study we propose and investigate the application of FETI methods to simulate the 

elastic behavior of biological soft tissues. As one particular example we choose the artery which is 

– as most other biological tissues – characterized by anisotropic and nonlinear material properties. 

We compare two specific approaches of FETI methods, classical and all-floating, and investigate 

the numerical behavior of different preconditioning techniques. In comparison to classical FETI, 

the all-floating approach has not only advantages concerning the implementation but in many 

cases also concerning the convergence of the global iterative solution method. This behavior is 

illustrated with numerical examples. We present results of linear elastic simulations to show 

convergence rates, as expected from the theory, and results from the more sophisticated nonlinear 

case where we apply a well-known anisotropic model to the realistic geometry of an artery. 

Although the FETI methods have a great applicability on artery simulations we will also discuss 

some limitations concerning the dependence on material parameters.

Keywords

artery; biological soft tissues; all-floating FETI; parallel computing

1 Introduction

The modeling of hyperelastic materials is realized by using a strain–energy function Ψ. For a 

comprehensive overview and the mathematical theory on elastic deformations, see, e.g., [1, 

2, 3, 4]. A well established model for arterial tissues was introduced by Holzapfel et al. [5, 
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6]. This model was further developed and enlarged to collagen fiber dispersion in [6, 7, 8]; 

see [9] for the modeling of residual stresses in arteries which play also an important role in 

tissue engineering. An adequate model for the myocardium can be found in [10]. The fine 

mesh structure to model cardiovascular organs normally results in a very large number of 

degrees of freedom. The combination with the high complexity of the underlying partial 

differential equations demands fast solution algorithms and, conforming to up–to–date 

computer hardware architectures, parallel methods. One possibility to achieve these 

specifications is to use domain decomposition (DD) methods which acquired a lot of 

attention in the last years and resulted in the development of several overlapping as well as 

non–overlapping DD methods, see [11]. They all work according to the same principle: the 

computational domain Ω0 is subdivided into a set of (overlapping or non–overlapping) 

subdomains Ω0,i. DD algorithms now decompose the large global problem into a set of 

smaller local problems on the subdomains, with suitable transmission or interface 

conditions. This yields a natural parallelization of the underlying problem. In addition to 

well established standard DD methods, other examples for more advanced domain 

decomposition methods are hybrid methods [12], mortar methods [13, 14, 15] and tearing 

and interconnecting methods [16].

In this paper we focus on the finite element tearing and interconnecting (FETI) method 

where the strategy is to decompose the computational domain into a finite number of non–

overlapping subdomains. Therein the corresponding local problems can be handled 

efficiently by direct solvers. The reduced global system, that is related to discrete Lagrange 

multipliers on the interface, is then solved with a parallel Krylov space method to deduce the 

desired dual solution. This is, in the case of elasticity, the boundary stress and 

subsequentely, in a postprocessing step, we compute the primal unknown, i.e. the 

displacements, locally. For the global Krylov space method, such as the conjugate gradient 

(CG) or the generalized minimal residual (GMRES) method, we need to have a suitable 

preconditioning technique. Here we consider a simple lumped preconditioner and an almost 

optimal Dirichlet preconditioner, as proposed by Farhat et al. [17].

A variant of the classical FETI method is the all-floating tearing and interconnecting 

approach (AF-FETI) where, in contrast to the classical approach, the Dirichlet boundary acts 

as a part of the interface. It was introduced independently for the boundary element method 

by Steinbach and Of [18, 19] and as the Total-FETI (TFETI) method for finite elements by 

Dostál et al. [20]. This approach shows advantages in the implementation and, due to 

mapping properties of the involved operators, improves the convergence of the global 

iterative method for the considered problems. This behavior is illustrated with numerical 

examples, which are – to the best of our knowledge – the first application of all-floating 

FETI method to nonlinear and anisotropic biological materials.

An essential part of FETI methods is solving the local subproblems. Challenges occur with 

so-called floating subdomains which have no contribution to the Dirichlet boundary. These 

cases correspond to local Neumann problems and the solutions are – in the case of elasticity 

– only unique up to the six rigid body modes. For classical FETI it can happen that the 

kernel of the local operator is non-trivial and its dimension is lower than six. The problem to 

identify these kernels reliably causes trouble. One possibility to overcome this trouble is a 
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modification of the classical approach, the dual-primal FETI (FETI-DP) method, cf. Farhat 

et al. [21] and Klawonn and Widlund [22]. In this variant some specific primal degrees of 

freedom are fixed. This yields solvable systems for all subdomains. Choosing the primal 

degrees of freedom may be very sophisticated [23]. This approach was already applied to 

model arterial tissues using FETI-DP by Klawonn and Rheinbach [24, 25], Brands et al. 

[26], Balzani et al. [28, 29] and Brinkhues et al. [27]. Note that for all-floating FETI the 

identification of the kernel of the local operators is no problem at all, since we treat all 

subdomains as floating subdomains, and hence have a kernel equal to six for all local 

operators. Moreover the resulting local systems are typically better conditioned than those 

arising in the FETI-DP approach, see Brzobohatỳ et al. [30]. All-floating FETI was used to 

model myocardial tissue in the preliminary work [31].

Both the classical FETI method, as well as all-floating FETI, need the construction of a 

generalized inverse matrix. This may be achieved using direct solvers with a sparsity 

preserving stabilization, see, e.g. [30], or stabilized iterative methods. For a mathematical 

analysis of FETI methods including convergence proofs for the classical one-level FETI 

method, see, e.g., [22, 32, 33].

2 Modeling Arterial Tissues

The deformation of a body  is described by a function ϕ : Ω0 → Ωt with the reference 

configuration  at time t = 0 and the current configuration Ωt at time t > 0. With this 

we introduce the displacement field U in the reference configuration and the displacement 

field u in the current configuration,

(1)

and the deformation gradient as, see, e.g., [2],

(2)

Moreover, we denote by J = det F > 0 the Jacobian of F and by C = F⊤F the right Cauchy–

Green tensor. For later use, to model the nearly incompressible behavior of biological soft 

tissues, we introduce the following split of the deformation gradient in a volumetric and an 

isochoric part, compare Flory [34], i.e.

(3)

Consequently, this multiplicative split can be applied to other tensors such as the right 

Cauchy–Green tensor. Thus

(4)

As a starting point for the modeling of biological soft tissues the stationary equilibrium 

equations in the current configuration are considered to find a displacement field u 
according to
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(5)

where σ(u, x) is the Cauchy stress tensor and bt(x) is the body force at time t.

In addition, we incorporate boundary conditions to describe displacements or normal 

stresses on the boundary Γt = ∂Ωt, which is decomposed into disjoint parts such that 

. Dirichlet boundary conditions on Γt,D correspond to a given displacement 

field u = uD(x), while Neumann boundary conditions on Γt,N are identified physically with a 

given surface traction σ(u, x) nt(x) = gt(x), where nt(x) denotes the exterior normal vector at 

time t.

The equilibrium equations and the boundary conditions may also be formulated in terms of 

the reference configuration, i.e.

(6)

(7)

(8)

where S is the second Piola–Kirchhoff tensor and b0(X) is the body force at time t = 0. In 

order to formulate the boundary conditions we introduce a prescribed displacement field 

UD(X), the exterior normal vector N0(X) and the surface traction G0(X) in the reference 

configuration.

Considering the study of the properties of soft biological soft tissues we have to deal with a 

nonlinear relationship between stress and strain, with large deformations and an anisotropic 

material. Since linear elasticity models are not adequate for treating such a complex 

behavior, we take a look at the more general concept of nonlinear elasticity.

The nonlinear stress-strain response is modeled via a constitutive equation that links the 

stress to a derivative of a strain-energy function Ψ, representing the elastic stored energy per 

unit reference volume. Derived from the Clausius–Duhem inequality, see [35, 36], we 

formulate the constitutive equations as

(9)

We make use of the Rivlin–Ericksen representation theorem [37] and its extension to 

anisotropic materials, cf. [38], to find a representation of the strain-energy function Ψ in 

terms of the principal invariants of C.

Arteries are vessels that transport blood from the heart to the organs. In vivo the artery is a 

prestretched material under an internal pressure load. Healthy arteries are highly deformable 

composite structures and show a nonlinear stress-strain response with a typical stiffening 
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effect at higher pressures. Reasons for this are the embedded collagen fibers which lead to 

an anisotropic mechanical behavior of arterial walls. We denote by a0, 1 and a0, 2 the 

predominant collagen fiber directions in the reference configuration. An important 

observation is that arteries do not change their volume within the physiological range of 

deformation, hence they are treated as a nearly incompressible material, see, e.g., [5]. In this 

work we focus on the in vitro passive behavior of the healthy artery, see Fig. 1. To capture 

the nearly incompressibility condition we remember the decomposition (3), which yields an 

additive split of the strain-energy function into a so-called volumetric and an isochoric part, 

i.e.

(10)

This procedure leads to constitutive equations in which the stress tensors are also additively 

decomposed into a volumetric and an isochoric part, i.e., cf. [2],

(11)

Here, the scalar-valued hydrostatic pressure is defined as

(12)

To capture the specifics of this fiber-reinforced composite, Holzapfel and Weizsäcker [39] 

and Holzapfel et al. [5] proposed an additional split of the strain-energy function into an 

isotropic and an anisotropic part so that the complete energy function Ψ can be written as

(13)

Following the classical approach we describe the volume changing part by

(14)

where κ > 0, comparable to the bulk modulus in linear elasticity, serves as a penalty 

parameter to enforce the incompressibility constraint.

To model the isotropic non-collagenous matrix material the classical neo-Hookean model is 

used [2]. Thus

(15)

where c > 0 is a stress-like material parameter and  is the first principal invariant 

of the isochoric part of the right Cauchy–Green tensor. In (13),  is associated with the 

deformation of the collagen fibers. According to [5], this transversely isotropic response is 

described by
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(16)

(17)

with the invariants  and the material parameters k1 

and k2, which are both assumed to be positive. It is worth to mention that for the anisotropic 

responses, (16) and (17) only contribute for the cases  or , respectively. This 

condition is explained with the wavy structure of the collagen fibers, which are regarded as 

not being able to support compressive stresses. Thus, the fibers are assumed to be active in 

tension ( ) and inactive in compression ( ). This assumption is not only based on 

physical reasons but it is also essential for reasons of stability, see Holzapfel et al. [40].

The material parameters can be fitted to an experimentally observed response of the 

biological soft tissue. Following [5] we use the material parameters summarized in Table 1.

Similar models can also be used for the description of other biological materials, e.g., for the 

myocardium, cf. [10].

3 Finite Element Approximation

3.1 Variational formulation of nonlinear elasticity problems

In this section we consider the variational formulation of the equilibrium equations (5) and 

(6) with the corresponding Dirichlet and Neumann boundary conditions. In particular, using 

spatial coordinates, the boundary value problem (5) is formally equivalent to the variational 

equations

(18)

valid for a smooth enough tensor field  and all smooth enough vector 

fields , which vanish on Γt,D, see, e.g., [1, Theorem 2.4-1]. Additionally,

(19)

and  is the nonlinear operator in the current configuration which is induced by the stress 

tensor representation (11), and by using the related duality pairing ⟨·, ·⟩Ωt. For later use, we 

introduce the corresponding terms in the reference configuration Ω0 as  and 

. Note that (18) formally corresponds to a variational formulation in linear 

elasticity. However, the integral and the involved terms have to be evaluated in the current 

configuration which comprises the nonlinearity of the system. If the test function v is 

interpreted as the spatial velocity gradient, then ε(v) is the rate of deformation tensor so that 

 has the physical interpretation of the rate of internal mechanical work.
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In terms of the reference configuration, the boundary value problem (6), (8) is formally 

equivalent to the variational equations

(20)

valid for a smooth enough tensor field  and all smooth enough vector 

fields  with V = 0 on Γ0,D, see, e.g., [1, Theorem 2.6-1]. In (20) we use the 

definition of the directional derivative of the Green–Lagrange strain tensor, i.e.

(21)

which is also known as the variation or the material time derivative of the Green–Lagrange 

strain tensor in the literature.

It is important to note that results on existence of solutions in nonlinear elasticity can be 

stated given a polyconvex strain-energy function Ψ, which holds true for the anisotropic 

model (13) discussed in Section 2. For more details we refer to the results of Ball [41, 42], 

see also [1, 43] and Balzani et al. [44].

3.2 Linearization and discretization

In the following we confine ourselves to the reference configuration Ω0. The formulations in 

the current configuration Ωt can be deduced in an analogous way.

For the solution of the nonlinear system (20) we apply Newton’s method to obtain the 

recursion

(22)

with the tangential term , the displacement field of the k-th Newton step Uk, the 

increment ΔU and a suitable initial guess U0.

For the computational domain  we consider an admissible decomposition into N 

tetrahedral shape regular finite elements τℓ of mesh size hℓ, i.e. , and we 

introduce a conformal finite element space Xh ⊂ [H1 (Ω0)]3, M = dimXh, of piecewise 

polynomial continuous basis functions φi. Then the Galerkin finite element discretization of 

the linearized variational formulation (22) results in a system of algebraic equations to find 

ΔUh ∈ Xh, ΔUh = 0 on Γ0,D such that

(23)

holds for all Vh ∈ Xh, Vh = 0 on Γ0,D. Note that the initial guess  has to satisfy an 

approximate Dirichlet boundary condition  on Γ0,D to fulfill condition (7), where 
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UD,h ∈ Xh∣Γ0,D denotes a suitable approximation of the given displacement UD. For the 

computation of the tangential term  we need to evaluate

(24)

For a more detailed presentation how to compute the tangential term, in particular the forth-

order elasticity tensor  we refer to [46, 45].

Note that the convergence rate of the Newton method is dependent on the initial guess, on 

the parameters used in the model and on the inhomogeneous Dirichlet and Neumann 

boundary conditions which influence .

In a time-stepping scheme we use zero for the initial guess, and the result of the k-th time 

step as initial solution for the next step. The initial guess may also be the solution of a 

modified nonlinear elasticity problem such as the solution of the same nonlinear model but 

with modified parameters, e.g., a reduced penalty parameter κ, or modified boundary 

conditions, e.g., a reduced pressure on the surface. The latter is equivalent to an incremental 

load stepping scheme with a parameter τ ∈ (0, 1], τ → 1, so that

(25)

Klawonn and Rheinbach [24] used a load stepping scheme of this kind, for more information 

on load stepping and global Newton methods, see [48, 47]. The standard finite element 

method (FEM) now yields a linear system of equations which is equivalent to the discretized 

variational formulation (23). Finally, we have to solve

(26)

with the solution vector Uk in the k-th Newton step and the increment ΔU. The tangent 

stiffness matrix K′ is calculated according to

(27)

and the terms of the right hand side are constructed by

(28)

The additive split of the stress tensors (11) and the introduction of the hydrostatic pressure 

(12) leads to the additional equation

(29)
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which has to be satisfied in a weak sense. For this we use the idea of static condensation 

where this volumetric variable is eliminated element-wise, see, e.g., [46]. This may be 

achieved in using discontinuous basis functions; in this paper we will concentrate on 

piecewise constants. In the case of tetrahedral elements, this approach leads to 

elements. Here k is the order of the basis functions for the displacement field. It is known 

that linear finite elements are very prone to volumetric locking. Hence, for nearly 

incompressible materials piecewise quadratic elements (k = 2) are a better choice, see Simo 

[49]. The resulting P2 – P0 element is also the preferred choice to model nearly 

incompressible arterial materials in [24]–[29]. For the numerical results in this work 

(Section 5) we use both linear (P1 – P0 element) and quadratic (P2 – P0 element) ansatz 

functions for the displacement field and compare the results.

Note that due to the symmetry of the stress tensor S and the major and minor symmetry 

properties of the elasticity tensor  the operator  is self-adjoint. We can also show, 

using the positive definiteness of the elasticity tensor, see [4], and the polyconvexity of the 

strain-energy function (Section 3.1), that this operator is -elliptic and 

bounded, see [4, 45]. With these properties of the operator  we can state that the 

linearized system (23),(24) admits a unique solution ΔUh. Furthermore, the tangent stiffness 

matrix K′ is symmetric and positive definite.

Simulations with large deformations and the hence required derivative of the Neumann 

boundary conditions (8) would yield an additional non-symmetric mass matrix on the left 

hand side of (26). To stay with an symmetric system we neglect this matrix but compensate 

it with a surface update of the geometry after each Newton step. Thus, our whole system is 

symmetric and we can use the CG method as an iterative solver. Nonetheless, the FETI 

methods described in Section 4 also work for non-symmetric systems by using the GMRES 

method.

4 Finite Element Tearing and Interconnecting

To solve the linearized equations (26) arising in the Newton method we apply the finite 

element tearing and interconnecting approach [16], see also [24, 50, 51], and references 

given therein. The derivation of the FETI system for nonlinear mechanics will be performed 

in the reference configuration. In an analogous way this is also valid for the formulation in 

the current configuration. For a bounded domain  we introduce a non-overlapping 

domain decomposition

(30)

see Fig. 2. The local interfaces are given by Γ0,ij := Γ0,i ∩ Γ0,j for all i < j. The skeleton of 

the domain decomposition (30) is denoted as
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(31)

We assume that the finite element mesh  matches the domain decomposition (30), i.e., we 

can reorder the degrees of freedom to rewrite the linear system (26) as

(32)

where the increments , the stiffness matrices  and the terms on the right hand 

side , are related to the local degrees of freedom within the subdomain 

Ω0,i. All terms with an index C correspond to degrees of freedom on the coupling boundary 

Γ0,C, see (31), while Ai denote simple reordering matrices taking boolean values.

4.1 Classical FETI method

Starting from (32), the tearing is now carried out by

(33)

where  is related to degrees of freedom on the coupling boundary Γ0,iΓ0. As the 

unknowns  are typically not continuous over the interfaces we have to ensure the 

continuity of the solution on the interface, i.e.

(34)

This is done by applying the interconnecting

(35)

where the matrices Bi are constructed from {0, 1, −1} such that (34) holds. By using discrete 

Lagrange multipliers λ to enforce the constraint (35) we finally have to solve the linear 

system
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(36)

4.2 all-floating FETI method

The idea of this special FETI method, cf., e.g., Of and Steinbach [19], is to treat all 

subdomains as floating subdomains, i.e. domains with no Dirichlet boundary conditions. In 

addition to the standard procedure of ‘gluing’ the subregions along the auxiliary interfaces, 

the Lagrange multipliers are now also used for the implementation of the Dirichlet boundary 

conditions, see Fig. 3. This simplifies the implementation of the FETI procedure since it is 

possible to treat all subdomains in the same way. In addition, some tests (Section 5) show 

more efficiency than the classical FETI approach and the asymptotic behavior improves. 

This is due to the mapping properties of the Steklov–Poincaré operator, see [19, Remark 1]. 

The drawback is an increasing number of degrees of freedom and Lagrange multipliers. 

Compare also to Dostál et al. [20] for the related Total-FETI method. If all regions are 

treated as floating subdomains the conformance of the Dirichlet boundary conditions is not 

given; they have to be enhanced in the system of constraints using the slightly modified 

interconnecting

(37)

where  is a block matrix of the kind  and the vector b is of the form b = 

[0, bD]⊤ such that BD,i[j, k] = 1, if and only if k is the index of a Dirichlet node j of the 

subdomain Ωi, while b[j] equals the Dirichlet values corresponding to the vertices Xk ∈ Γ0,D, 

see also [19].

For three-dimensional elasticity problems all subdomain stiffness matrices have now the 

same and known defect, which equals the number of six rigid body motions and which also 

simplifies the calculation of the later needed generalized inverse matrices . For all-

floating FETI we finally get the linearized system of equations

(38)

4.3 Solving the FETI system

To solve the linearized systems (36) and (38) we follow the standard approach of tearing and 

interconnecting methods. For convenience we outline the procedure by means of the 
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classical FETI formulation (Section 4.1). However the modus operandi is analogous for the 

all-floating approach.

First, note that in the case of a floating subdomain Ω0,i, i.e. , the local matrices 

 are not invertible. Hence, we introduce a generalized inverse  to represent the local 

solutions as

(39)

Here, rk,i ∈ ker  correspond to the rigid body motions of elasticity and γk,i are unknown 

constants. For floating subdomains we additionally require the solvability conditions

(40)

In the case of a non-floating subdomain, i.e. ker , we may set . Note that it 

may happen that the kernel ker  is non-trivial and its dimension is lower than 6. This is 

the case if the set Γ0,i ∩ Γ0,D is either a vertex or an edge. For classical FETI methods this 

requires the implementation of an effective method to identify these kernels reliably. Note 

that this is a key advantage of the all-floating FETI approach because all subdomains are 

here treated as floating subdomains, and hence we know the kernel of each local operator 

ker . With these kernels the solution of the local problems to find the generalized 

inverse  can be reduced to sparse systems which are typically better conditioned as the 

systems arising from the FETI-DP method, see Brzobohatỳ et al. [30]. In Section 4.2 we 

comment on an all-floating approach where also Dirichlet boundary conditions are 

incorporated by using discrete Lagrange multipliers.

In general, the Schur complement system of (36) is constructed to obtain

(41)

This can be expressed as

(42)

with

(43)

and e is constructed using ek,i = (fi, rk,i for i = 1, … , p and k = 1, … , 6. For the solution of 

the linearized system (42) the projection
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(44)

is introduced. It now remains to consider the projected system

(45)

This can be solved by using a parallel iterative method with suitable preconditioning of the 

form

(46)

with modified jump operators BD,i which are obtained by multiplicity scaling, see [24, 51]. 

Since the local subproblems all yield symmetric tangent stiffness matrices , i = 1, … , p, 

cf. Section 3, the matrix P⊤F is also symmetric. This enables us to use the CG method as the 

global solver for (45). Be aware that the initial approximate solution λ0 has to satisfy the 

compatibility condition G⊤ λ0 = e. A possible choice is

(47)

In a post processing we finally recover the vector of constants

(48)

and subsequently the desired solution (39).

4.4 Preconditioning

Following Farhat et al. [17] we apply either the lumped preconditioner

(49)

or the optimal Dirichlet preconditioner

(50)

where

(51)

is the Schur complement of the local finite element matrix . Alternatively, one may also 

use scaled hypersingular boundary integral operator preconditioners, as proposed in [52]. 

For comparison we employ an identity preconditioner which is constructed by using the 

identity matrix for Yi in eq. (46).

Augustin et al. Page 13

Int J Numer Methods Eng. Author manuscript; available in PMC 2016 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



5 Numerical Results

In this section some representative numerical examples for the finite element tearing and 

interconnecting approach for linear and nonlinear elasticity problems are presented. First, 

the FETI implementation is tested within linear elasticity. Here we are able to compare the 

computed results to a given exact solution. This enables us to show the efficiency of our 

implementation and also the convergence rates, as predicted from the theory. We compare 

the different preconditioning techniques and present differences between the classical FETI 

and the all-floating FETI approach.

Subsequently, we apply the FETI method to nonlinear elasticity problems. Thereby, we 

focus on the anisotropic model, as described in Section 2, and use a realistic triangulations 

of the aorta and a common carotid artery. As in the linear elastic case, different 

preconditioning techniques for the all-floating and for the classical FETI method are 

compared. In Section 5.3, we analyze the biomechanical behavior of an aorta up to an 

internal pressure of 300 mmHg and plot stress and displacement evolutions as a function of 

the internal pressure. Finally, in Section 5.4, we analyze our computational framework with 

respect to strong scaling properties.

The calculations were performed by using the VSC2-cluster (http://vsc.ac.at/) in Vienna. 

This Linux cluster features 1314 compute nodes, each with two AMD Opteron Magny 

Cours 6132HE (8 Cores, 2.2 GHz) processors and 8 × 4 RAM. This yields the total number 

of 21 024 available processing units. As local direct solver we use Pardiso [53, 54], included 

in Intel’s Math Kernel Library (MKL).

5.1 Linear elasticity

In this section of numerical benchmarks we consider a linear elastic problem with the 

academic example of a unit cube which is decomposed into a certain number of subcubes. 

Dirichlet boundary conditions are imposed all over the surface ΓD = ∂Ω. The parameters 

used are Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.45. The calculated 

solution is compared to the fundamental solution of linear elastostatics

(52)

for all  is an arbitrary point outside of the domain Ω, and δij is the Kronecker 

delta, see [55]. The different strategies of preconditioning are compared and also the all-

floating and classical FETI approaches. As global iterative method we use the CG method 

with a relative error reduction of ε = 10−8. Under consideration is a linear elasticity problem 

using linear tetrahedral elements (  elements) with a uniform refinement over five levels (ℓ 

= 1, … , 5) given a cube with 512 subdomains.

Hence, the number of degrees of freedom associated with the coarsest mesh is 9 981 for the 

all-floating FETI approach and 6 621 for the classical FETI approach. The difference of the 

numbers is due to the decoupling of the Dirichlet boundary ΓD. For the finest mesh we have 

31 116 861 (all-floating) and 31 073 181 (classical) degrees of freedom. The number of 
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Lagrange multipliers varies between 38 052 for level 1 and 2 908 692 for level 5. Again we 

have a higher number of Lagrange multipliers for the all-floating approach due to the 

decoupling of the Dirichlet boundary conditions. The computations were performed on 

VSC2 using 512 processing units.

First note in Table 2 that for all examined settings, the L2 error, i.e.

(53)

where uh is the approximate and u the exact solution, and the estimated order of 

convergence

(54)

behaves as predicted from the theory, i.e. it is of second order. As expected the least 

iteration numbers were observed for the optimal Dirichlet preconditioner. Nonetheless, since 

no additional time is required to compute the lumped preconditioner, in contrast to the more 

sophisticated Dirichlet preconditioner, this type of preconditioning yields comparable 

computational times for each level of refinement. As a comparison we also list the results of 

a very simple preconditioning technique, using the identity matrix for Yi in (46), where 

almost no reduction of the condition numbers can be noticed.

Moreover, we observe that all-floating FETI yields better condition numbers for all 

preconditioners, and hence better convergence rates of the global conjugate gradient method. 

Although the global iterative method converges in less iterations for this approach, we 

achieve lower computational time for the classical FETI method for the linear elastic case 

with  elements. This is mainly due to the larger expenditure of time to set up the all-

floating FETI system, the larger coarse matrix GG⊤, cf. (44), and due to the higher amount 

of Lagrange multipliers.

From level 4, with a maximum of 8 907 local degrees of freedom, to level 5, with a 

maximum of 66 195 local degrees of freedom, we observe an increase in the local 

assembling and factorization time from approximately 1.8 seconds up to about 13 seconds 

for all kinds of preconditioners. This is mainly due to the higher memory requirements of 

the direct solver. Note also that the factorization of the local stiffness matrices by the direct 

solver is unfeasible, if the number of local degrees of freedom gets too large. The reason for 

that are memory limitations on the VSC2 cluster. A possibility to overcome this problem is 

the use of fast local iterative solvers, e.g., the CG method with a multigrid or a BPX 

preconditioner. Summing it up seems that the simple lumped preconditioner and the 

classical FETI approach appear to be favorable for this academic example, with very 

structured subdomains and the boundary ΓD = ∂Ω. The latter yields a large number of 

floating subdomains for all-floating FETI which are non-floating for the classical FETI 

approach, and hence a much larger coarse matrix GG⊤ for all-floating FETI. The inversion 

of this matrix is the most time consuming part for the levels ℓ = 1, … , 4 that also results in 

the higher computational time for all-floating FETI in these cases.
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Next, we consider a linear elastic problem by using tetrahedral elements and quadratic 

ansatz functions, i.e.  elements for the same mesh and parameter properties as above. The 

number of degrees of freedom now varies between 53 181 (level ℓ = 1) and 26 398 269 

(level ℓ = 4) and the number of Lagrange multipliers between 77 700 and 2 908 692. Note 

that for all preconditioning types and for both the all-floating and the classical FETI method 

the L2 error compared to the fundamental solution behaves as predicted from the theory as 

we get a cubic convergence rate, see Table 3.

For all-floating FETI we have the very interesting case that the global CG iteration numbers 

remain almost constant for the lumped preconditioner, and it even seems to be a decay for 

the identity and the Dirichlet preconditioner, if we increase the local degrees of freedom, i.e. 

increase the refinement level ℓ.

For the classical FETI approach the iteration numbers stay almost constant for the Dirichlet 

preconditioner and increase marginally for the other two preconditioning techniques. 

Concerning the computational time we have an analogous result as in the previous case with 

linear ansatz functions: the classical approach with the lumped preconditioner seems to be 

the best choice for this particular example.

5.2 Arterial model on a realistic mesh geometry

In this section we present examples to show the applicability of the FETI approaches for 

biomechanical applications, in particular the inflation of an artery segment. We consider the 

mesh of an aorta and the mesh of a common carotid artery, see Figs. 4 and 5. The geometries 

are from AneuriskWeb [56] and Gmsh [57]. The generation of the volume mesh was 

performed using VMTK and Gmsh [57].

The fiber directions, see Fig. 6 (right), were calculated using a method described by Bayer et 

al. [58] for the myocardium. To adapt this method for the artery we first solved the Laplace 

equation on the domain Ω0 with homogeneous Dirichlet boundary conditions on the inner 

surface and inhomogeneous Dirichlet boundary conditions on the outer wall. The gradient of 

the solution is used to define the transmural direction  in each element. As a second step 

we repeat this procedure using homogeneous Dirichlet boundary conditions on the inlet 

surface and inhomogeneous boundary conditions on the outlet surfaces which yields the 

longitudinal direction . The cross product of these two vectors eventually provides the 

circumferential direction . With a rotation we get the two desired fiber directions a0,1 and 

a0,2 in the media and the adventitia, respectively. Thus,

(55)

The value for the angle α are 29° for the media and 62° for the adventitia, taken from [5].

To describe the anisotropic and nonlinear arterial tissue, we use the material model (13–17), 

with the parameters given in Table 1 and κ is varied. Dirichlet boundary conditions (7) are 

imposed on the respective intersection areas. We perform an inflation simulation on the 
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artery segment where the interior wall is exposed to a constant pressure p. This is performed 

using Neumann boundary conditions (8). If not stated otherwise, we present the results of 

one load step applying a rather low pressure of 1 mmHg. This is necessary to have a 

converging Newton method. Nonetheless, the material model as used is anisotropic. To 

simulate a higher pressure, an appropriate load stepping scheme, see (25), has to be used. 

However, this does not affect the number of local iterations significantly. As already 

mentioned in Section 4 we use the CG method as global iterative solver. Experiments with a 

standard non-symmetric nonlinear elasticity system and the necessary GMRES method as an 

iterative solver showed similar results, as presented in the following with the symmetric 

system. However, the memory requirements of the GMRES solver are much higher.

The local generalized pseudo-inverse matrices are realized with a sparsity preserving 

regularization by fixing nodes, see, e.g., [30], and the direct solver package Pardiso. The 

global nonlinear finite element system is solved by a Newton scheme, where the FETI 

approach is used in each Newton step. For the considered examples the Newton scheme 

needed four to six iterations. Due to the non-uniformity of the subdomains the efficiency of 

a global preconditioner becomes more important. It may happen that the decomposition of a 

mesh results in subdomains that have only a few points on the Dirichlet boundary. This 

negatively affects the convergence of the CG method using classical FETI, but does not 

affect the global iterative method of the all-floating approach at all. This is a major 

advantage of all-floating FETI since here all subdomains are treated the same, and hence all 

subdomains are stabilized. This behavior is observed for almost all settings for 

preconditioners and the penalty parameter κ as well as for linear and quadratic ansatz 

functions, see Tables 4–7.

For example, applying all-floating FETI with the Dirichlet preconditioner to the mesh of the 

aorta using a penalty parameter κ = 1000 kPa the global CG method converged in 

considerable less iterations (209) than the CG method using classical FETI (263), see Table 

4. The advantage of the smaller number of iterations is not so significantly reflected in the 

computational time since, as for the linear case, we have higher set up times and a larger 

coarse system GG⊤. Nonetheless, for the considered examples it shows that all-floating 

FETI yields lower iteration numbers of the global systems and it is also competitive or even 

advantageous with respect to the classical approach concerning the computational time.

In contrast to the academic example in Section 5.1 the more complex Dirichlet 

preconditioner is the best choice for all considered settings. Especially for k ⪢ 1 the iteration 

numbers with the lumped and the identity preconditioner escalate. Admittedly, the numbers 

in Table 4 also show that the convergence of the CG method, within all FETI approaches 

and preconditioner settings, is dependent on the penalty parameter κ.

Using quadratic ansatz functions we have a total number of 23 031 620 degrees of freedom 

for the aorta mesh and 36 527 435 degrees of freedom for the carotid artery mesh. In order 

to not infringe the memory limitations on the VSC2 cluster we have to use a decomposition 

into 1024 subdomains (instead of 512) for the carotid artery. For the aorta it was possible to 

stay with 480 subdomains. The number of Lagrange multipliers are then 1 552 665 (aorta) 

and 4 585 203 (carotid artery). Comparing the numbers in Table 6 and Table 7 show similar 
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results as in the case with linear ansatz functions. The Dirichlet preconditioner is preferable 

for all test cases and the all-floating approach is competitive to the classical FETI approach. 

Albeit quadratic ansatz functions resolve the nearly incompressible elastic behavior better 

than linear ansatz functions we also notice a correlation between the global iteration 

numbers and the penalty parameter κ, see Table 6. Nonetheless, the iteration numbers do not 

increase as much as for the P1 – P0 element case and the values of J = det F in each element 

are much closer to 1 for the P2 – P0 elements.

5.3 Load stepping scheme

In this section we analyze the biomechanical behavior of the aorta up to an internal pressure 

of 300 mmHg. Higher pressures would induce damage and softening behavior which cannot 

be captured with the arterial model discussed in Section 2. For that purpose we consider a 

coarser version of the mesh of the aorta (see Fig. 4), which is subdivided into 32 subdomains 

since for this mesh the all-floating FETI method looks significantly advantageous. The 

reasons for that are as follows: (i) we have lower iteration numbers for the all-floating FETI 

approach, as already observed in Section 5.2; (ii) the matrix GG⊤ in (44) is small, and hence 

less time is needed to compute the inverse of this coarse system, especially in comparison to 

the assembly time and the global solving time of the CG method.

With this mesh we simulate an arterial model with the parameters from Table 1 and with c = 

6 kPa and κ = 1000 kPa using the Dirichlet preconditioner. The results of a load stepping 

scheme, where we applied an internal pressure up to 300 mmHg over 572 loading steps, are 

found in the Figs. 7 and 8. Note that the average iteration number over one time step 

increased from 248 to 268 for all-floating FETI and from 340 to 358 for the classical FETI 

approach for higher pressures, and, consequently, a more anisotropic material behavior. The 

simulation needed four to five Newton steps and the solving times for all-floating FETI are 

significantly faster, see Fig. 8.

In our plots we used a stress magnitude σmag according to

(56)

used as a measure to visualize our data. For advantages and disadvantages of certain stress 

values concerning the analysis of rupture and failure in aortic tissues, see, e.g., [59]. Other 

values used in Fig. 7 are the displacement norm unorm and the relative displacement urel, i.e.

(57)

for a point with the displacement vector u = (u1, u2, u3) at the time step t, and umax is the 

largest occurring displacement norm for that point over all time steps.

5.4 Strong scaling for nonlinear elasticity

Here we analyze our computational framework with respect to strong scaling efficiency, i.e.
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(58)

where tI is the amount of time to complete a computation with the initial number of 

processing units I (in our case I = 16) and tP is the amount of time to complete the same 

computation with P processing units. In particular, we consider the meshes of the carotid 

artery and the aorta as in Section 5.2, both subdivided into 512 subdomains. We apply the 

arterial model with the parameters from Table 1 and use a κ = 100 with the lumped 

preconditioner and linear ansatz functions. For the aorta we used all-floating FETI and 

needed an average of 324 global CG iterations to reach an absolute error of ε = 10−8 and 5 

Newton steps to reach an absolute error of 10−6. In the case of the carotid artery and 

classical FETI we needed 674 global CG iterations and also 5 Newton steps to reach the 

same error limits as above.

In the Tables 8 and 9 we present the following numbers: the local time is the sum of all 

assembling and local factorization times during the solution steps. The factorization of the 

local problems was performed with the direct solver package Pardiso. In most cases we 

observed a super-linear speedup, and hence an efficiency greater than 1 for this value. This 

is due to memory issues, mainly so-called cache effects. For more information on this well-

known phenomenon, see, e.g., [60]. The global CG time is the duration of all CG solution 

steps together. We see that this value scales very well up to 256 cores for the aorta and up to 

128 cores for the carotid artery. The total time is the total computational time including 

input and output functions. It also scales admissibly well up to 256 processing units for the 

aorta, and up to 128 cores for the carotid artery, see Tables 8 and 9, and Fig. 9. For a higher 

number of cores, at least for the specific examples, the speedup is rather low. Possibilities to 

overcome this problem are, for example, the usage of parallel solver packages such as hypre 

and a more efficient assembling of the coarse system of the FETI method. It also needs a 

more elaborate strategy with MPI and the memory management. Note that at some point the 

subdomains get too small and the increasingly dominant MPI communication impedes 

further strong scaling.

6 Discussion and Limitations

We have shown the application of the finite element tearing and interconnecting method to 

elasticity problems, in particular to the simulation of the nonlinear elastic behavior of 

cardiovascular tissues such as the artery. The main ideas of domain decomposition methods 

were summarized and the classical and the all-floating FETI approach were discussed in 

detail.

Illustrated by representative numerical examples we have shown certain advantages of the 

all-floating FETI method compared to the classical FETI approach. To the best of our 

knowledge the application of the all-floating approach to nonlinear anisotropic elasticity 

problems cannot be found in the literature. Certainly, the mentioned advantages are 

influenced by the mesh structure and the choice of the boundary conditions, and hence the 

method to choose depends on the specific problem.
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We have presented and compared different techniques of preconditioning: the lumped 

preconditioner and the optimal Dirichlet preconditioner. Furthermore, the numerical 

examples exposed some instabilities of the global iterative method for nearly incompressible 

material parameters, i.e. for a very large penalty parameter κ. Here we were able to present, 

like it was also shown in earlier contributions, that quadratic ansatz functions resolve the 

incompressible elastic behavior better than linear ansatz functions.
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Figure 1. 
Diagrammatic model of the major components of a healthy elastic artery, from [5]. The 

intima, the innermost layer is negligible for the modeling of healthy arteries, it plays a very 

important role in the modeling of diseased arteries, though. The two predominant directions 

of the collagen fibers in the media and the adventitia are indicated with black curves.
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Figure 2. 
Decomposition of a domain Ω0 into four subdomains Ω0,i, i = 1, … , 4.
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Figure 3. 
Fully redundant classical FETI (a) and all-floating FETI (b) formulation: Ω0,i, i = 1, … , 5, 

denote the local subdomains, the black dots correspond to the subdomain vertices and the 

dashed lines correspond to the constraints (34). The gray strip indicates Dirichlet boundary 

conditions. Note that the number of constraints for the all-floating approach rises with the 

number of vertices on the Dirichlet boundary.
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Figure 4. 
Mesh of an aorta seen from above showing the brachiocephalic artery, and the left common 

carotid and subclavian arteries. The fine mesh consists of 5 418 594 tetrahedrons and 1 055 

901 vertices, while colors indicate the displacement field with an internal pressure of 1 

mmHg. Additionally, the splits show the decomposition of the mesh into 480 subdomains 

(left). Coarser mesh consisting of 720 060 tetrahedrons and 150 725 vertices used in Section 

5.3 with 5 selected vertices A–E (right); colors show the distribution of the stress magnitude 

σmag according to (56) with an internal pressure of 300 mmHg. For both images red 

indicates high and blue low values.
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Figure 5. 
Mesh of a segment of a common carotid artery from two different points of view. The mesh 

consists of 9 195 336 tetrahedrons and 1 621 365 vertices. Color indicates the distribution of 

the stress magnitude σmag according to (56) due to an internal pressure of 1 mmHg, red 

indicates high and blue low values. Additionally, the splits show the decomposition of the 

mesh into 512 subdomains.
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Figure 6. 
Distribution of the stress magnitude σmag inside the aorta (left); values of high stress in red 

and of low stress in blue. To the right the fiber directions (black curves) and the two layers 

(adventitia in red and media in orange) of the carotid artery are shown.
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Figure 7. 
Stress magnitude σmag versus relative displacement urel (left) and evolution of the 

displacement norm unorm over the load steps up to an internal pressure p of 300 mmHg 

(right). The plots were generated using data at the specific points A–E, as shown in Fig. 4 

(right).
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Figure 8. 
Comparison of all-floating FETI (gray) and classical FETI (black) for a time stepping 

scheme. Average iteration numbers of one time step (left) and solving times in seconds for 

one time step (right) over 572 load steps.
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Figure 9. 
Computation times (in s) for a simulation of the anisotropic arterial model with the aorta 

mesh (left) and the carotid artery mesh (right) using a varying number of cores.
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Table 1

Material parameters used in the numerical experiments; parameters taken from Holzapfel et al. [5].

c = 3.0 kPa k1 = 2.3632 kPa k2 = 0.8393 (−)
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Table 2

Iteration numbers (it.), condition numbers and computational time (in s) for each preconditioning technique 

using  elements; ℓ is the level of uniform refinement. For the L2 error the definition is given in (53), while 

for the estimated error of convergence eoc the definition is given in (54).

all-floating

ℓ identity prec. lumped prec. Dirichlet prec. L2 error eoc

1 61 it. 53.6 20.9 s 27 it. 10.3 19.7 s 21 it. 7.6 19.5 s 1.42E-04 -

2 71 it. 70.0 19.6 s 38 it. 19.7 18.8 s 26 it. 10.4 18.4 s 3.71E-05 1.94

3 88 it. 108.8 21.7 s 45 it. 26.1 22.3 s 27 it. 9.7 22.3 s 9.40E-06 1.98

4 119 it. 216.8 28.8 s 62 it. 53.2 26.4 s 32 it. 13.1 26.6 s 2.37E-06 1.99

5 160 it. 432.7 116.6 s 91 it. 126.2 99.0 s 37 it. 16.8 105.9 s 5.96E-07 1.99

classical

ℓ identity prec. lumped prec. Dirichlet prec. L2 error eoc

1 80 it. 98.2 7.1 s 35 it. 14.1 5.9 s 29 it. 10.0 5.9 s 1.47E-04 -

2 105 it. 161.4 7.8 s 58 it. 41.9 6.1 s 37 it. 16.4 5.8 s 3.72E-05 1.98

3 140 it. 295.7 9.3 s 85 it. 105.9 7.9 s 46 it. 25.4 7.7 s 9.41E-06 1.98

4 188 it. 580.9 15.2 s 125 it. 252.1 13.1 s 54 it. 35.8 12.2 s 2.37E-06 1.99

5 251 it. 1150.3 103.4 s 179 it. 555.7 88.2 s 60 it. 46.3 83.6 s 5.96E-07 1.99
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Table 3

Iteration numbers (it.), condition numbers and computational time (in s) for each preconditioning technique 

using  elements; ℓ is the level of uniform refinement. For the L2 error the definition is given in (53), while 

for the estimated error of convergence eoc the definition is given in (54).

all-floating

ℓ identity prec. lumped prec. Dirichlet prec. L2 error eoc

1 149 it. 444.7 23.3 s 73 it. 73.7 22.0 s 47 it. 36.7 18.7 s 1.13E-05 -

2 129 it. 330.8 21.9 s 75 it. 74.3 20.8 s 43 it. 27.7 19.3 s 1.44E-06 2.97

3 114 it. 210.3 30.3 s 73 it. 68.8 27.3 s 36 it. 16.6 28.5 s 1.81E-07 2.99

4 105 it. 167.8 99.8 s 69 it. 65.2 93.4 s 33 it. 14.4 90.2 s 2.26E-08 3.00

classical

ℓ identity prec. lumped prec. Dirichlet prec. L2 error eoc

1 120 it. 405.0 7.5 s 65 it. 48.9 6.9 s 40 it. 21.0 6.5 s 1.17E-05 -

2 108 it. 302.6 7.5 s 69 it. 57.6 6.7 s 41 it. 20.6 7.5 s 1.46E-06 3.00

3 112 it. 253.4 12.6 s 91 it. 116.2 11.7 s 42 it. 21.0 12.3 s 1.82E-07 3.01

4 136 it. 273.1 76.3 s 128 it. 262.8 77.3 s 48 it. 27.7 79.1 s 2.26E-08 3.01
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Table 4

Iteration numbers (it.) per Newton step and computational time (in s) per Newton step for the all-floating and 

the classical FETI approach with linear ansatz functions comparing the three considered preconditioners. The 

penalty parameter κ was varied from 10 to 1000 kPa. Mesh: mesh of the aorta subdivided in 480 subdomains, 

computed with 480 cores.

all-floating

κ identity preconditioner lumped preconditioner Dirichlet preconditioner

10 1052 it. 57.6 s 160 it. 31.0 s 56 it. 22.8 s

100 1879 it. 94.6 s 305 it. 29.5 s 85 it. 25.4 s

1000 4122 it. 177.1 s 681 it. 48.8 s 209 it. 31.8 s

classical

κ identity preconditioner lumped preconditioner Dirichlet preconditioner

10 2056 it. 98.7 s 305 it. 35.5 s 117 it. 27.2 s

100 3711 it. 149.8 s 540 it. 35.5 s 144 it. 28.4 s

1000 8245 it. 327.8 s 1190 it. 60.9 s 263 it. 32.9 s
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Table 5

Iteration numbers (it.) per Newton step and computational time (in s) per Newton step for the all-floating and 

the classical FETI approach with linear ansatz functions comparing the three considered preconditioners. The 

penalty parameter κ was set to 1000 kPa. Mesh: mesh of the carotid artery with two layers (adventitia and 

media) subdivided in 512 subdomains, computed with 512 cores.

type identity preconditioner lumped preconditioner Dirichlet preconditioner

all-floating > 10000 it. − s 1084 it. 100.6 s 497 it. 85.5 s

classical 5130 it. 357 s 1794 it. 200.2 s 588 it. 97.7 s
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Table 6

Iteration numbers (it.) per Newton step and computational time (in s) per Newton step for the all-floating and 

the classical FETI approach with quadratic ansatz functions comparing the three considered preconditioners. 

The penalty parameter κ was varied from 10 to 1000 kPa. Mesh: mesh of the aorta subdivided in 480 

subdomains, computed with 480 cores.

all-floating

κ identity preconditioner lumped preconditioner Dirichlet preconditioner

10 940 it. 491.1 s 283 it. 209.5 s 71 it. 157.3 s

100 1519 it. 1186.4 s 523 it. 332.0 s 105 it. 178.1 s

1000 3371 it. 2584.5 s 1372 it. 746.0 s 206 it. 282.7 s

classical

κ identity preconditioner lumped preconditioner Dirichlet preconditioner

10 1319 it. 654.2 s 333 it. 225.2 s 113 it. 188.4 s

100 2362 it. 1140.6 s 664 it. 402.6 s 110 it. 177.5 s

1000 5563 it. 4168.3 s 1742 it. 943.1 s 204 it. 280.1 s
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Table 7

Iteration numbers (it.) per Newton step and computational time (in s) per Newton step for the all-floating and 

the classical FETI approach with quadratic ansatz functions comparing the three considered preconditioners. 

The penalty parameter κ was set to 1000 kPa. Mesh: mesh of the carotid artery with two layers (adventitia and 

media) subdivided in 1024 subdomains, calculated with 1024 cores.

type identity preconditioner lumped preconditioner Dirichlet preconditioner

all-floating > 10000 it. − s 2163 it. 1133.9 s 674 it. 994.6 s

classical 6006 it. 2672.6 s 4798 it. 2306.8 s 764 it. 771.2 s
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Table 8

Computational time (in s) and efficiency (eff) according to (58) for a nonlinear elastic problem using a varying 

number of processing units P. The time is measured for 1 time step with 5 Newton steps for all-floating FETI 

and the lumped preconditioner.

P local time eff global CG time eff total time eff

16 407.7 s 1.000 1311.7 s 1.000 2028.6 s 1.000

32 203.1 s 1.004 666.4 s 0.984 1054.2 s 0.962

64 101.7 s 1.002 345.4 s 0.949 562.0 s 0.902

128 50.5 s 1.009 184.7 s 0.888 316.7 s 0.801

256 25.3 s 1.007 103.8 s 0.790 192.8 s 0.658

512 12.7 s 1.000 67.6 s 0.606 161.0 s 0.394
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Table 9

Computational time (in s) and efficiency (eff) according to (58) for a nonlinear elastic problem on the carotid 

artery mesh using a varying number of processing units P. The time is measured for 1 time steps with 5 

Newton steps for classical FETI and the lumped preconditioner.

P local time eff global CG time eff total time eff

16 726.0 s 1.000 4725.8 s 1.000 6519.7 s 1.000

32 351.3 s 1.033 2368.2 s 0.998 3497.0 s 0.932

64 170.5 s 1.065 1262.9 s 0.936 1991.2 s 0.819

128 90.7 s 1.001 694.5 s 0.851 1194.1 s 0.682

256 47.3 s 0.960 443.6 s 0.666 914.4 s 0.446

512 23.9 s 0.949 297.2 s 0.497 667.4 s 0.305
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