
Automated 3D Ultrasound Image Segmentation to Aid Breast 
Cancer Image Interpretation

Peng Gu1, Won-Mean Lee2, Marilyn A. Roubidoux2, Jie Yuan1,*, Xueding Wang2, and Paul 
L. Carson2,#

1 Department of Electronic Science and Engineering, Nanjing University, 210093, China

2Department of Radiology, University of Michigan, 48109, USA

Abstract

Segmentation of an ultrasound image into functional tissues is of great importance to clinical 

diagnosis of breast cancer. However, many studies are found to segment only the mass of interest 

and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an 

automated segmentation method to make results operator-independent. Furthermore, manual 

segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-

intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D 

ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular 

tissue. To test its efficacy and consistency, the proposed automated method was employed on a 

database of 21 cases of whole breast ultrasound. Experimental results show that our proposed 

method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying 

cyst/mass. Comparison of density assessment between the automated method and manual 

segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison 

of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, 

consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great 

potential as an automated approach to segment 3D whole breast ultrasound volumes into 

functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and 

assist in density based prognosis of breast cancer.
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1. Introduction

Breast cancer is one of the most commonly diagnosed cancers in women worldwide and is 

one of the leading causes for cancer mortality among women [1]. Currently, X-ray 
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mammography is the most effective and widely deployed method for detecting and 

diagnosing breast cancer [2]. Initially an adjunct to mammography, breast ultrasound 

imaging has been playing a progressively more important role in image-guided interventions 

and therapy [3] due to its low cost, lack of ionizing radiation, and real-time interactive 

visualization of underlying anatomy [4].

Occasionally, limitations of conventional two-dimensional (2D) ultrasound imaging, such as 

suboptimal projection angle, make it difficult to discern a suspicious finding from an 

imaging artifact. Compared to 2D ultrasound imaging, 3D ultrasound imaging allows the 

clinician to examine, visualize, and interpret the patient's 3D anatomy immediately [5].

Image segmentation is of great importance to computer assisted breast cancer diagnosis and 

for treatment [6]. Due to the increasing use of 3D breast ultrasound imaging for disease 

diagnosis, computer assistance if even more effective in helping clinicians evaluate the 

images [7]. However, manually segmenting whole 3D ultrasound volumes is an exhausting 

process and clinically impractical [8]. Even with experienced radiologists, inter- or intra-

observer differences are commonly found in breast ultrasound segmentations. Differences 

and inconsistencies in ultrasound interpretation call for an operator-independent method to 

assist diagnosis [9].

Many image segmentation methods have been developed for mass segmentation. As 

reported in an extensive review by Noble [10], some methods treat segmentation as a 

general image processing problem while others use a priori information of ultrasound.

Basic 2D mass segmentation methods include thresholding [11-15], neural network [16-23], 

mode-based methods such as expectation-maximization [24, 25], and deformable active 

contour [11, 26-30]. These methods are often utilized together with image feature 

information to distinguish malignant and benign masses. Feature information can include 

mass shape, posterior acoustic behavior, radial gradient or margin, variance or 

autocorrelation contrast, and distribution distortion in the wavelet coefficients [31]. In 

contrast, literature on 3D image segmentation is comparatively sporadic. Among them, 

statistical shape models (SSM) have been established as one of the most successful methods 

for image analysis [32]. Zhan and Shen et al. (2006) [33] use statistical shape model method 

to segment 3D ultrasound prostate images. Besides the correspondence issue and local 

appearance model, the employed search algorithm is also a major component in an SSM-

based segmentation framework. A potential pitfall with local search algorithms is that they 

always detect a local minimum of the cost function, not the global optimum.

Interestingly, no significant work has looked at screening cases, i.e., most research assume 

the presence of a single, suspicious mass. In addition, mass segmentation is often performed 

inside an area called region of interest (ROI), selected manually by the user. For the 

purposes of improving breast ultrasound imaging, segmentation of all tissues is important 

since different tissue properties affect the propagation of ultrasound and electromagnetic 

waves. Hooi et al. (2014) [34] and Zhang et al. (2014) [35] both applied image correction on 

the reconstruction of phantom ultrasound volumes by inclusion of a priori information. 
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These limited-angle or -aperture reconstructions require a priori information such as 

boundaries of major tissues, which can be obtained by all-tissue segmentation.

Furthermore, all-tissue segmentation is a potential method to obtain breast density. Breast 

density is a measure of the relative amount of fibroglandular tissue in the breast, both 

stromal and epithelial, which can be affected by various genetic, hormonal, and 

environmental factors [36-41]. Mammographically-determined dense breasts [42] have been 

correlated with a breast cancer risk 1.8 to 6.0 times that of women with lower densities 

[43-45]. Moon et al. (2011) has shown that ultrasound and MRI exhibit high correlation in 

their quantification of breast density and volume [46]. Both modalities could provide 

physicians with useful information on breast density.

In this study, we propose an automated 3D segmentation method to demarcate all major 

tissue types in 3D breast ultrasound volumes to assist correction of the images for breast 

cancer interpretation and diagnosis in pulse echo and speed of sound imaging. Our 3D 

segmentation method helps localized aberrating tissues and streamline the workflow of 

image segmentation of the breast, thus accelerating and promoting the use of 3D ultrasound 

images diagnoses. Furthermore, the proposed segmentation method has the potential to 

provide Breast Imaging-Reporting and Data System (BI-RADS)-critical information, 

including breast density; mass size, shape, and margin; echo pattern; and post-mass 

ultrasound features.

2. Materials and Methods

2.1 Materials

The 3D ultrasound data of human breasts was acquired using a dual-sided automated breast 

ultrasound system named the Breast Light and Ultrasound Combined Imaging (BLUCI) 

system [47] at the Department of Radiology, University of Michigan, USA.

BLUCI is an ultrasound breast imaging system that allows for the acquisition of 3D 

ultrasound and photoacoustic volumetric imaging in the classic, mammographic geometry. 

As shown in Fig.1, high-frequency transducers positioned above and below the breast allow 

for pulse-echo acquisition of high contrast and resolution image volumes. Polyester chiffon 

meshes stretched over the paddle frames provide great windows for ultrasound penetration 

and better patient comfort than with regular mammographic compression, at the slight 

expense of compression on the central mammary tissues. Lithoclear ultrasound gel (NEXT 

Medical Products Company, North Branch, NJ) and containment apparatuses acoustically 

couple two GE M12L transducers (GE Health Systems, Milwaukee, WI) to the breast skin. 

Containment apparatuses, which consist of a gel-holding cylindrical roll of polyester mesh 

[48] and rubber walls [49] or a thermos-elastomer phantom material molded to a breast, help 

to hold the ultrasound gel in place and minimize trapping of bubbles. With the breast in 

compression, the transducers are swept across the paddles using a precision 6K Motion 

Controller system (Parker Hannifin, Cleveland, OH). The controller coordinates transducer 

positioning and firing sequences, given scan parameters from a control computer. The 

system typically acquires 250 slices with 800 μm separation over 120 seconds. Larger 

breasts take two, and occasionally three, sweeps for a full coverage of the breast past the 
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nipple. The acquired volumes are spliced into a single 3D volume for interpretation of the 

entire breast in comparison to digital breast tomography (DBT) or mammography [50]. 

Overlapping areas of the sweep volumes are filtered through an arctangent function to 

provide smooth transitions. Top and bottom volumes are also visualized separately to aid 

detection and interpretation of shadow and posterior enhancement artifacts. All major tissue 

components of breast, such as the skin, subcutaneous fat, glandular tissue and 

retromammary fat are observed in the acquired view.

This study involving 21 human imaging exams was IRB approved for asymptomatic 

volunteers and patients with masses prior to biopsy at our health center. The dataset cases’ 

image size ranges from 333×456 to 579×628. Each case typically contains 250 slices. The 

voxel size is 0.1153mm×0.1153mm×0.8mm in X, Y, and Z directions, respectively.

2.2 Principles of the Segmentation Methodology

Our proposed segmentation approach consists of three main stages: (1) morphological 

reconstruction, (2) image segmentation, and (3) region classification.

2.2.1 Morphological Reconstruction—Ultrasound images are characterized by speckle 

noise, which degrades the image by concealing fine structures and reducing the signal-to-

noise ratio (SNR) [51]. Speckle noise is the main drawback leading to over-segmentation 

when performing watershed segmentation. Pre-processing the images using morphological 

reconstruction minimizes the effect of speckle noise on segmentation performance.

Morphological reconstruction is a type of powerful morphological transformation involving 

one structuring element. The proposed morphological reconstruction can be defined as [52]

(1)

where se denotes structuring element, OR denotes opening-by-reconstruction and CR 

denotes closing-by-reconstruction with respect to the mask f. A 3D ellipsoid-shaped 

structuring element is used during morphological reconstruction to accommodate the non-

isotropic voxel size. Since tissues inside the breast are continuous, neighboring slices are 

similar to each other while speckle noise is randomly multiplicative. Ultrasound signal and 

noise are statistically independent of each other, and thus, filtering in the Z direction can 

incorporate 3D information into the image and reduce speckle noise.

Traditional pre-processing uses smoothing filters such as a Gaussian filter to eliminate noise, 

which may result in smoothing out pertinent features, blurring contours, or creating an 

artificial offset in the contour position and area [53-56]. Compared to traditional pre-

processing, morphology reconstruction can maintain the shape of the image, preventing any 

false contours caused by filtering operations [57]. This is accomplished by several steps of 

dilation and erosion operations with grayscale reconstruction. As shown in Fig. 2 (a) and (b), 

morphological reconstruction enhances useful information in the images by limiting peaks 

and minimizing speckle noise. This pre-processing step homogenizes pixels inside cysts, as 

shown in Fig. 2 (b), and enhances our ability to extract edge information for watershed 

segmentation.
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2.2.2 Image Segmentation—Edge information extraction uses Sobel operators to obtain 

a gradient magnitude image for the watershed transform [58] as shown in Fig. 2 (c). 3D 

Sobel operators are used in order to achieve better segmentation than that obtained from 2D 

gradient operators, which are more sensitive to noise. The operator uses two 3×3×3 kernels 

which are convolved with the original image to calculate approximations of the derivatives: 

one for horizontal changes and one for vertical. If we define Ai as the slice i of the source 

image, and GXi and GYi are two images, which at each point contain the horizontal and 

vertical derivative approximations, and Gi gives the gradient magnitude, the computations 

are as follows [59]:

(2)

(3)

(4)

After 3D pre-processing, watershed is performed on the planes of 2D image slices instead of 

using time-consuming 3D segmentation. Thus Sobel operators are applied on image planes, 

X and Y axes shown in Fig. 1.

An example slice of image segmentation results is shown in Fig. 2 (d). White pixels are 

boundaries of different regions. Gray regions, such as the one denoted by the bottom yellow 

arrow, consist of many smaller regions as shown in Fig. 2 (e). Black regions, such as the one 

indicated by the top yellow arrow, represent relatively homogenous regions of low 

echogenicity.

2.2.3 Region Classification—After these regions with various tissue compositions are 

acquired using the watershed transform, region classification is performed as the final stage 

of the segmentation process. Normally, ultrasound images are mainly divided into two 

regions, big and small. The big region covers the skin, fibrous connective and glandular 

tissue, and cysts. The small region, covering fat and areas of no signal, still contain over-

segmentation problems and are assigned to be merged. In addition, the big regions must be 

classified into two functionally different tissues: cyst and fibroglandular. Quantitative 

features were extracted from the regions in order to distinguish different tissues. In addition 

to the region size, we use mean intensity of regions as another criteria for classification.

Fig. 3 shows the quantitative analysis of the sample slice. Fatty tissue regions are over-

segmented and have similar characteristics. We use a single threshold value on region size to 

distinguish big or small regions, which correlate to fatty and non-fatty tissues. Using another 

threshold value of mean intensity for fibroglandular and cyst/mass differentiation, all 

regions are divided into four categories: no signal, fat, fibroglandular, and cyst/mass. We 
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have empirically found that 100 pixels per region to be the best threshold value to 

distinguish big or small regions. With 8-bit grayscale ultrasound images, 80 and 120 are two 

threshold values suitable for fibroglandular and cyst/mass classification, respectively. These 

values were determined based on experimentation. Final result of region classification is 

shown in Fig. 2 (f), where each segmented region was classified into one of four categories.

3. Experimental Results

Here are several images reformatted in coronal planes that have some greater lateral 

variation in dense tissues. The different speeds of sound and acoustic impedances in fat and 

denser tissues can defocus and misdirect the ultrasound beams. If we can identify these 

different tissues, approximate corrections can be made in the images. As shown in Fig. 4 (d), 

(f), (e) and (g), segmented results show good consistency with the manual segmentation by 

radiologists in CC view. Fig. 4 (h) represents segmented volumes in real 3D view.

4. Quality Assessment

In order to evaluate the results of our proposed segmentation method, density assessment 

and overlap ratio between manual and automated segmentations were computed. The semi-

manual segmentation process was aided by active contouring with seeds picked manually by 

an experienced breast imaging radiologist. Since the manual segmentation was performed 

only on fibroglandular and other internal connective tissues, the automated segmentation 

was processed for those tissues before the overlap ratio calculation.

One radiologist read the mammographic data of all cases and reported breast density 

according to the BI-RADS annotation. This dataset included two cases of almost entirely 

fatty breasts (B-I), ten cases with scattered areas of fibroglandular density (B-II), seven 

cases with heterogeneously dense breasts (B-III), and two cases with extremely dense 

breasts (B-IV), that comprised the ground standard for breast density by automated 

segmentation.

Chen's method [60] was used to calculate density from segmented breast ultrasound images 

as:

(5)

Threshold values, defined through training on all cases, yielded density classification results. 

They were used to classify all cases into the same four categories. Results of breast densities 

derived from automated segmentation and manual segmentation are shown in Fig. 5. In three 

cases, the proposed method disagrees by one grade with the reference observer, for an 

accuracy of 86%.

A quantitative overlap measure of manual and automated segmentation is given on eight 

images, taken approximately every ten slices in each image stack. Similar agreements were 

visually observed in other cases when testing the manual segmentation software. Results of 

two segmentation efficacy measures are shown in Table 1. The segmentation error (SE) 
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expresses the ratio between misclassified pixels and the breast area in percentage. The 

Jaccard similarity index (JSI) calculates the set intersection of manually versus automated 

segmentations, divided by the set union of the two segmentations:

(6)

(7)

The comparison gives an average similarity value of 75%, consistent with those seen in 

published MRI brain segmentations [61].

As shown in Fig. 6, automated segmentation shows good congruence with manual 

segmentation, while conserving detailed structures, such as small cysts inside glandular 

tissues. This segmentation performance can be achieved in less than five minutes. Visual 

analysis of figures shows that our proposed method is capable of segmenting input US 

images into meaningful regions compared to manual segmentation.

5. Discussion

As a consequence of dual-sided imaging, shadow artifacts in this study had a minimal 

impact on image quality compared to regular single-sided imaging. However, since clinical 

ultrasound exams are acquired single-sided, these artifacts deserve more special, 

morphological criteria than we have provided here, as evidenced by our earlier work [62]. 

Within our classification system, selecting for large pixel numbers in a narrow band of 

grayscale values that indicates most cysts and hypoechoic lesions could also work on a 

certain fraction of shadow artifacts. Separating shadows from lesions is more difficult and 

also relies on 3D shape, orientation of upstream echogenic tissues, and its own shape 

parallel to the ultrasound beam axis. Until algorithms can take these advanced structural 

features into account, some manual correction of automated segmentation may be required 

to obtain the best 3D results.

Our proposed automated method was employed on a set of 21 human cases. Density 

assessment comparison between our method and the manual segmentation demonstrated 

good consistency, with an overlap ratio of 85.7%. This compares to 84.4% achieved with a 

proportion-based method and 87.5% for a threshold-based method in [63]. The threshold 

method works better on BI-RADS B-III cases, but only has an overlap ratio of 50% on B-IV 

cases, compared to 100% for the proposed method (Table 2). The proposed method is stable 

and works better on a larger range of cases.

Quantitative comparison, which uses overlap ratio, gives an average similarity result of 

74.54%. This is consistent with values seen in MRI brain segmentations. Experimental data 

shows that our proposed automated segmentation can find echogenic tissues and give similar 

segmentation results as a radiologist. Our proposed method is a stable algorithmic approach 

to segmenting 3D ultrasound images into functional tissues.
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This automated segmentation method can separate connective and glandular tissues from 

fatty areas with reasonably high precision in 3D image volumes. As these tissues have 

different speeds of sound, our automated segmentation method holds great potential for 

ultrasound image corrections for major aberrations. For our group's efforts in speed of sound 

correction in limited angle ultrasound tomography, the proposed method can provide a 

priori information to the speed of sound reconstruction algorithm in the form of a 

covariance matrix that delineates tissues for reconstruction's initial speed of sound estimates 

[34]. Ultrasound aberration correction in pulse echo imaging relies on increasing signal 

amplitude and phase coherence of echoes. If there are phase shifts beyond π such that the 

wave cycle number is unknown, a speed of sound map can help resolve this ambiguity by 

ray tracing methods, e.g. eikonal equation [64]. Large phase shifts can occur when part of a 

focused beam partially passes through cancer and fat, making acceptable segmentation of 

posterior tumor borders less likely.

6. Conclusion

We present an efficient method for automatically segmenting 3D breast ultrasound images 

for the purpose of assisting detection and diagnosis of breast cancer. Segmented results on 

human cases indicate that our proposed method can be used to automatically distinguish 

fatty and non-fatty tissue. Breast density measurement using automated and manual 

segmentation demonstrate good agreement. Quantitative analysis results are also comparable 

to those in MRI segmentation. This proposed automated segmentation method has the 

potential to help correct aberrations in pulse echo ultrasound imaging and may easily be 

applicable to other modalities, such as microwave and photo-acoustic imaging such as that 

performed on our combined imaging system.
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All major tissues segmentation: Segmentation an ultrasound image into functional tissues 

is of great importance for clinical breast cancer diagnosis. Many studies are found to 

segment masses only while few are found to segment all major tissues. The proposed 

method segment ultrasound images into major tissue components, which include fatty 

tissues, fibro-glandular tissues, cyst or tumor.

Automated segmentation on 3D ultrasound images: Manually segmenting 3D ultrasound 

images in their entirety is very time-consuming and impractical. The proposed fully 

automated segmentation method helps to eliminate differences and inconsistencies in 

ultrasound interpretation. No human intervention makes segmentation results operator-

independent.

Good consistency with manual segmentation: The proposed automated method was 

deployed on a database of 21 human cases. Density assessment and overlap ratio 

comparison between the automated method and manual segmentation demonstrated good 

consistency.

Gu et al. Page 12

Ultrasonics. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Left, BLUCI system with an ultrasound phantom between two mesh compression paddles 

and transducers in the vertical, craniocaudal (CC) view. Middle, schematic of the breast 

imaging geometry with ultrasound transducers scanning in and out of the plane of the figure. 

One to two sweeps of the 38.4 mm-long arrays are typically required to cover the whole 

breast. Right, acquired view of the data with the coordinate system. (a) Skin, (b) 

subcutaneous fat, (c) glandular tissue and (d) retromammary fat.
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Fig. 2. 
Main stages of the proposed method. (a) A grayscale image slice. Top yellow arrow shows 

the position of a cyst. Bottom yellow arrow indicates a shadow artifact. Following 

operations are performed in 3D and these images are but one slice of the whole image stack. 

(b) Morphological reconstruction in 3D space. (c) Application of 3D Sobel operator on the 

images. (d) Watershed segmentation in 2D image space. The two arrows are in the same 

positions as (a), showing that artifact is distinguished from the cyst during pre-processing. 

(e) Magnified view of watershed boundaries. White pixels are the boundaries of individual 

watershed regions. (f) Tissue-specific region classification result.
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Fig.3. 
Region classification based on mean intensity and number of pixels per region. Left plot is a 

scatter plot of all watershed regions. Each circle indicates one region, showing the mean 

grayscale and pixel number of the region. (a) Threshold value for classification of big and 

small regions. (b) Threshold for mean grayscale values, or brightness. Plot on the right is an 

intensity map of the left plot, with the higher intensities indicating a great number of regions 

with the same characteristics. Four categories can be delineated: regions of no-signal, cyst/

mass, fatty tissue, and fibroglandular tissue.
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Fig.4. 
Different views of original and segmented images. (a), (b) and (c) are orthogonal views of 

the segmented volume; (d) and (f) are original ultrasound data in the acquired CC view, with 

manually delineated boundaries of a cyst and major fibroglandular tissues in red and blue, 

respectively. (e) and (g) are segmented results of (d) and (f) in the acquired CC view. (d) and 

(e) are cropped regions of (b) in the same orientation. (f) and (g) are from a different slice in 

the same image stack. (h) is segmented volume in real 3D view. The dark purple is cyst/

mass like tissue. The tan is fibroglandular tissue.
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Fig. 5. 
Density grading results of automated and ground standard (radiologist's) assessments.
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Fig. 6. 
Comparison of manual and automated segmentation of fibroglandular tissues. Red contours 

are from manual segmentation, blue contours from automated segmentation.
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Table 1

Quantitative comparison of manual segmentation and automated segmentation using segmentation error-SE 

and Jaccard similarity index-JSI

Test image 1 2 3 4 5 6 7 8 Average

SE (%) 6.3 10.2 10.0 8.0 7.6 8.6 5.1 9.3 8.1

JSI (%) 79.7 70.3 71.4 72.0 76.3 71.6 80.6 70.3 74.5
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Table 2

Comparison between two density assessment methods

Overlap Ratio B-II B-III B-IV

Threshold method 88.9% 100% 50%

Proposed method 90% 85.7% 100%
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