
Parameters of Mosquito-Enhanced West Nile Virus Infection

Lindsey A. Moser,a Pei-Yin Lim,a* Linda M. Styer,b Laura D. Kramer,b Kristen A. Bernarda

Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USAa; Wadsworth Center, New York State Department of Health, Albany,
New York, USAb

ABSTRACT

The arthropod-borne West Nile virus (WNV) emerged in New York State in 1999 and quickly spread throughout the United
States. Transmission is maintained in an enzootic cycle in which infected mosquitoes transmit the virus to susceptible hosts dur-
ing probing and feeding. Arthropod-derived components within the viral inoculum are increasingly acknowledged to play a role
in infection of vertebrate hosts. We previously showed that Culex tarsalis mosquito saliva and salivary gland extract (SGE) en-
hance the in vivo replication of WNV. Here, we characterized the effective dose, timing, and proximity of saliva and SGE admin-
istration necessary for enhancement of WNV viremia using a mouse model. Mosquito saliva and SGE enhanced viremia in a
dose-dependent manner, and a single mosquito bite or as little as 0.01 �g of SGE was effective at enhancing viremia, suggesting a
potent active salivary factor. Viremia was enhanced when SGE was injected in the same location as virus inoculation from 24 h
before virus inoculation through 12 h after virus inoculation. These results were confirmed with mosquito saliva deposited by
uninfected mosquitoes. When salivary treatment and virus inoculation were spatially separated, viremia was not enhanced. In
summary, the effects of mosquito saliva and SGE were potent, long lasting, and localized, and these studies have implications for
virus transmission in nature, where vertebrate hosts are fed upon by both infected and uninfected mosquitoes over time. Fur-
thermore, our model provides a robust system to identify the salivary factor(s) responsible for enhancement of WNV replica-
tion.

IMPORTANCE

Mosquito-borne viruses are a significant class of agents causing emerging infectious diseases. WNV has caused over 18,000 cases
of neuroinvasive disease in the United States since its emergence. We have shown that Culex tarsalis mosquito saliva and SGE
enhance the replication of WNV. We now demonstrate that saliva and SGE have potent, long-lasting, and localized effects. Our
model provides a robust system to identify the salivary factor(s) and characterize the mechanism responsible for enhancement of
WNV replication. These studies could lead to the identification of novel prophylactic or treatment options useful in limiting the
spread of WNV, other mosquito-borne viruses, and the diseases that they cause.

West Nile virus (WNV) emerged in New York State in 1999 (1,
2) and spread throughout the continental United States

within 5 years (3). While infection in humans is primarily asymp-
tomatic, it can develop into a mild febrile disease or a more severe
neuroinvasive disease. Over 18,000 cases of neuroinvasive disease
were documented from 1999 to 2014 (Centers for Disease Control
and Prevention). About 10% of patients who develop neuroinva-
sive disease succumb to infection; many others cope with persis-
tent sequelae, such as fatigue, muscle weakness, and memory
problems, for months to years after resolution of the primary in-
fection (4).

WNV is maintained in an enzootic cycle between its mosquito
vector and birds, its amplifying host. WNV can infect a variety of
mosquito species in the laboratory, but Culex mosquitoes are the
primary vectors in the field (5). In the United States, Culex pipiens,
C. quinquefasciatus, and C. tarsalis are the most important enzo-
otic vectors (5, 6). Culex mosquitoes can feed on birds and mam-
mals and, thus, can serve as bridge vectors between the enzootic
cycle and incidental hosts, such as humans (5, 6).

Mosquito saliva contains many pharmacologically active sub-
stances that affect hemostasis, inflammation, and the immune re-
sponse of the vertebrate host (7), and the contribution of mos-
quito saliva to virus transmission and infection has been
recognized for a variety of arthropod-borne viruses. Cache Valley
virus infects adult mice when the virus is inoculated after unin-
fected Aedes or Culex mosquitoes spot feed on the mice but not

when the virus is inoculated by needle alone (8). Similarly, vesic-
ular stomatitis virus infects adult mice more efficiently when the
mice are fed upon by infected Aedes mosquitoes than when they
are inoculated by needle (9). Deer and chipmunks infected with La
Crosse virus by infected Aedes mosquitoes have higher levels of
viremia than animals inoculated with virus by needle (10). Mice
inoculated with Rift Valley Fever virus and salivary gland extract
(SGE) or with Rift Valley Fever virus by infected Aedes aegypti
mosquitoes have increased levels of virus in the blood, liver, and
brain and enhanced mortality (11). Mice inoculated with dengue
virus (DENV) in areas of A. aegypti probing (12, 13) or by DENV-
infected A. aegypti mosquitoes (13) have higher levels of viremia
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than mice inoculated by needle. Our group and others have dem-
onstrated that WNV replication is enhanced by saliva from C.
pipiens and C. tarsalis mosquitoes (14, 15) and A. aegypti mosqui-
toes (16). Virus levels in the blood are higher, virus spread to
distant tissues such as the lymph nodes and spleen is accelerated,
and neuroinvasion is increased when mice are infected with WNV
by WNV-infected C. tarsalis mosquitoes than when mice are in-
fected with the virus by needle inoculation (15). A similar en-
hancement of infection is observed when uninfected mosquitoes
feed at the injection site immediately prior to WNV infection or
when SGE is injected with the virus (15, 16). Our current goal is to
further define three parameters of enhancement of WNV replica-
tion by mosquito saliva or SGE: dose, timing, and proximity.

MATERIALS AND METHODS
Cells and virus. Vero African green monkey kidney cells (CCL-81; ATCC,
Manassas, VA) were grown in minimal essential medium (MEM) with
10% fetal bovine serum (FBS) at 37°C in 5% CO2. A. albopictus mosquito
C6/36 cells (CRL-1660; ATCC) were grown in MEM with 10% FBS at
28°C in 5% CO2. WNV stocks were derived from an infectious clone (17)
using C6/36 cells as previously described (15). Briefly, the DNA plasmid
was digested with XbaI (New England BioLabs, Ipswich, MA), and RNA
was generated by in vitro transcription (mMessage mMachine; Invitrogen,
Grand Island, NY). C6/36 cells were electroporated with 10 �g RNA, and
virus was harvested 3 to 4 days postelectroporation upon observation of a
cytopathic effect. Viral supernatants were clarified and stored at �80°C.
The viral titers of the stocks were determined by plaque assay on Vero cells
as described previously (18).

Animals. Experiments conducted at the Wadsworth Center used a C.
tarsalis mosquito colony established in 2003 from mosquitoes collected in
the Coachella Valley, CA (15). The University of Wisconsin—Madison C.
tarsalis colony was established in 2014 from mosquitoes collected in 2002
from the Kern National Wildlife Refuge in California (both kind gifts of
William Reisen, University of California, Davis). Mosquitoes were main-
tained on an 18-h light, 6-h dark cycle; food (10% sucrose) and water were
provided ad libitum. Female C57BL/6 mice were obtained from The Jack-
son Laboratory (Bar Harbor, ME) and allowed to acclimate for at least 1
week in a biosafety level 3 facility. All mice were 6 to 7 weeks old at the start
of the studies. Food and water were provided ad libitum. All animal work
was approved by the appropriate institutional animal care and use com-
mittees at the University of Wisconsin—Madison and at the Wadsworth
Center and conducted in accordance with AAALAC standards.

SGE preparation. Salivary glands were dissected from female C. tar-
salis mosquitoes at 7 to 10 days postemergence and added to low-endo-
toxin phosphate-buffered saline (PBS) at a concentration of 200 glands/
ml. The solution was frozen and thawed three times and sonicated on ice
with three 20-s bursts at 100 mV, with each burst being separated by a
1-min incubation on ice. The solution was centrifuged at 5,000 � g for 10
min at 4°C. The supernatant was removed, and the protein concentration
was determined by the use of bicinchoninic acid (Thermo Scientific, Wal-
tham, MA). Extracts typically contained 150 to 200 �g/ml protein, which
corresponds to approximately 0.75 to 1 �g protein per salivary gland or
1.5 to 2 �g protein per salivary gland pair.

Mouse studies. (i) Mosquito spot feeding. Mice were fed upon by
uninfected C. tarsalis mosquitoes (spot feeding) at 7 to 10 days postemer-
gence as previously described (15). Briefly, the mosquitoes were divided
into groups of five mosquitoes each and starved for approximately 40 h.
The mice were anesthetized with isoflurane. The toes and heel of the left
rear foot were covered with tape, exposing only the distal footpad. One
group of five starved mosquitoes was allowed to probe and feed on the
exposed footpad for 10 min or until they were fully engorged. The number
of mosquitoes probing and feeding on the footpad over this period was
recorded (one to five mosquitoes probed with or without feeding). The
mosquitoes were examined afterward for the presence of blood in the

abdomen, which was indicative of a blood meal. Control mice were anes-
thetized in parallel but were not exposed to mosquitoes. The mice were
inoculated subcutaneously (s.c.) at the feeding site with 105 PFU WNV,
the median dose inoculated by mosquitoes (19). Mice were immediately
subjected to spot feeding by mosquitoes prior to inoculation (see Fig. 1A
and B) or at various times relative to the time of infection (16 h prior to,
immediately before, or 3 h after), as indicated below (see Fig. 2C).

(ii) SGE studies. For dose dependence studies, WNV (105 PFU) was
mixed with diluent (low-endotoxin PBS with 1% FBS) or 0.01 �g, 0.1 �g,
or 1 �g SGE in a final volume of 10 �l and injected s.c. into the left rear
footpads of the mice.

For SGE timing studies, mice were injected with 105 PFU WNV in 5 �l
diluent s.c. in the left rear footpad at time zero. At various times relative to
the time of virus inoculation (time zero), the mice were injected s.c. in the
same area with 0.5 �g SGE in 5 �l diluent. Control mice received diluent
and virus in the left rear footpad at time zero.

For SGE localization studies, SGE (0.5 �g in 5 �l) was injected s.c. into
the left or right rear footpad at 16 h prior to inoculation with virus (see Fig.
3A). Alternatively, 0.5 �g SGE in 5 �l was injected s.c. into the left rear
thigh, calf, or footpad immediately before virus inoculation (Fig. 3B).
Control mice received diluent in the left rear footpad at the time corre-
sponding to the time of SGE administration. Mice were inoculated with
105 PFU WNV in 5 �l s.c. in the left rear footpad at time zero.

Blood collection and processing. Mice were serially bled from the tail
or maxillary vein at 24, 48, and/or 72 h postinfection (hpi), and blood was
collected by terminal exsanguination at 72 or 96 hpi. Blood was collected
in Microtainer serum separator blood collection tubes (BD Biosciences,
San Jose, CA) and centrifuged at 5,000 � g for 5 min at 4°C. Serum was
removed and stored at �80°C. Viral titers in sera were determined by
plaque assay on Vero cells. Viral titers below the limit of detection were
assigned the value that would be obtained if one plaque were detected if an
additional replicate was included (e.g., if the limit of detection was 500
PFU/ml, then a titer of 333 PFU/ml was assigned).

Data normalization and statistical analysis. All data were log trans-
formed. Data derived from a single experiment (see Fig. 2 and 4B) are
graphed as the log10 level of viremia (number of PFU per milliliter). Raw
data from multiple experiments were not combined due to variation be-
tween experiments. Rather, data were standardized before they were com-
bined. To do this, the average value for the control group was determined
at each time point. Each control and experimental value was divided by
the average control value for the corresponding time point. The result-
ing value is defined as a ratio of viremia (experimental value/average
control value). The ratio of viremia standardizes the results of an ex-
periment by controlling for the natural variation that exists in animal
studies, allowing data from multiple experiments to be directly com-
pared. Statistical analysis of these data was performed with normalized
data. Graphs containing data combined from multiple experiments are
indicated by a y axis labeled ratio of viremia (see Fig. 1, 3, and 4A). All
data are presented as the mean. Statistical significance was determined
by the Mann-Whitney U test and defined as a P value of �0.05. In the
figures, significance between a control group and an experimental
group is indicated with asterisks and significance between experimen-
tal groups is indicated with number symbols.

RESULTS
Dose dependence of saliva enhancement phenotype. Previous
studies by others allowed between 3 and 30 mosquitoes to probe
and feed in a single spot to demonstrate enhancement of arboviral
infection (8, 12, 13, 16). We used two methods to examine if
enhancement of viral replication by mosquito saliva exhibited a
dose-response. We first fed different numbers of uninfected C.
tarsalis mosquitoes on the left rear footpad of mice (spot feeding)
prior to needle inoculation of WNV in the same location. One to
five uninfected mosquitoes probed with or without feeding on the
left rear footpad. Control mice were anesthetized without expo-
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sure to mosquitoes. All mice were immediately injected in the left
rear footpad with WNV. Spot feeding by even a single mosquito
enhanced the level of viremia at 24 hpi (Fig. 1A). Regression anal-
ysis demonstrated a modest correlation (R2 � 0.78) between the
number of mosquitoes that spot fed and the virus levels at 24 hpi.
Probing by more mosquitoes extended the enhancement pheno-
type. The levels of viremia at 48 hpi were significantly elevated in
mice probed by two or more mosquitoes (Fig. 1B), and the level of
viremia remained significantly higher at 72 hpi in mice probed by
four mosquitoes (Fig. 1C).

We next treated mice with increasing amounts of SGE to quan-
titate the relationship between SGE dose and enhancement of
WNV replication. A mosquito is estimated to deposit the contents

of 0.3 to 0.4 salivary gland pairs each time that it probes or feeds
(20). This corresponds to approximately 0.4 to 0.8 �g of protein
extract in our system. We tested doses above and below this range
by inoculating mice in the left rear footpad with WNV plus diluent
or 0.01, 0.1, or 1 �g SGE (Fig. 2). The level of viremia at 24 hpi was
significantly elevated in all groups that received SGE compared to
that in the control group, demonstrating that as little as 0.01 �g
SGE is sufficient for enhancement of viral replication. In addition,
a dose-response was observed. At 24 and 48 hpi, the mean level of
viremia increased with the dose of SGE. These differences were
significant between 0.01 �g and 1 �g SGE at both time points,
between 0.1 �g and 1 �g at 24 hpi, and between 0.01 �g and 0.1 �g
at 48 hpi. At 72 hpi, virus levels were significantly higher with the
1-�g treatment than with the 0.1-�g and 0.01-�g treatments.
Higher doses of SGE also extended the duration of enhancement.
Mice receiving 1 or 0.1 �g but not mice receiving 0.01 �g had
significantly higher levels of viremia at 48 hpi than the controls.
Only mice that received 1 �g of SGE had significantly elevated
levels of viremia at 72 hpi. No differences between any treatment
groups were observed at 96 hpi when viremia was low or had
cleared (19). These data mirror the dose-dependent effects of
mosquito saliva observed in spot-feeding experiments and dem-
onstrate that SGE exerts a potent dose-dependent effect on the
extent and duration of enhancement of WNV replication.

Temporal separation of mosquito saliva and virus inocula-
tion. Our previous experiments involved the administration of
saliva or SGE at the same time or immediately before WNV inoc-
ulation; however, mosquito spot feeding up to 4 h before virus
inoculation enhanced Cache Valley virus replication (8). We
therefore asked whether SGE could enhance WNV infection if it
was administered before or after virus inoculation. SGE was deliv-
ered at a range of times relative to the time of WNV inoculation
(defined as time zero) from 48 h before to 12 hpi, when WNV
production was first detectable in mice (18). Control animals re-
ceived virus diluent at the time of WNV inoculation. SGE and
WNV were inoculated only in the left rear footpad, regardless of

FIG 1 Mosquito spot feeding enhances WNV viremia in a dose-dependent
manner. Up to five uninfected C. tarsalis mosquitoes were allowed to probe on
the left rear footpad of mice (open diamonds). Control mice were not exposed
to mosquitoes (solid circles). Mice were immediately inoculated s.c. with
WNV at the site of feeding. Viremia was measured at 24 (A), 48 (B), or 72 (C)
hpi. Note that no mice were fed upon by five mosquitoes at the 72-hpi time
point (C). The data shown were combined from multiple experiments. Each
symbol represents a single mouse (n � 2 to 38 mice), and bars indicate the
means. Statistical significance between saliva-exposed and control mice was
determined by the Mann-Whitney U test and is indicated as follows: *, P �
0.05; **, P � 0.01; ***, P � 0.001.

FIG 2 SGE enhances WNV viremia in a dose-dependent manner. Mice were
inoculated s.c. in the left rear footpad with WNV mixed with diluent (0 �g
SGE; solid circles) or the indicated dose of SGE (open squares). Data are from
a representative study. Each symbol represents a single mouse (n � 8 mice),
and bars indicate the means. Statistical significance was determined by the
Mann-Whitney U test. Statistically significant differences between SGE-
treated and control mice are indicated as follows: *, P � 0.05; **, P � 0.01; ***,
P � 0.001. Statistically significant differences between SGE doses are indicated
as follows: #, P � 0.05; ##, P � 0.01. Dashed line, limit of detection of 500
PFU/ml at 24 to 72 hpi or 50 PFU/ml at 96 hpi.
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timing. SGE treatment enhanced viremia at 24 hpi when it was
administered at any time from 24 h before to 12 h after WNV
inoculation (Fig. 3A). Enhancement was more variable when SGE
was administered at 48 hpi; groups that received SGE 16 h prior to,
3 or 12 h after, or at the time of inoculation demonstrated signif-
icant enhancement (Fig. 3B). A trend toward enhancement was
often observed in the groups between the time points with statis-
tically significant enhancement (those that received SGE 4 or 8 h
prior to or 1 h postinfection). These groups contained fewer mice,
suggesting that significance might be achieved with larger sample
sizes. No enhancement was observed in any treatment group that
received SGE at 72 hpi (Fig. 3C).

Spot-feeding studies with mosquitoes were conducted at select
time points to confirm the physiological relevance of the observa-
tions made using SGE administration. One to five uninfected C.
tarsalis mosquitoes (average, 1.95) were allowed to probe and feed
on the left rear footpad 16 h prior to, immediately before (time
zero), or 3 h after WNV inoculation. Viremia levels were signifi-
cantly higher in all groups of mice on which mosquitoes were
allowed to spot feed than in control mice at 24 hpi (Fig. 3D). Mice
on which mosquitoes were allowed to spot feed immediately prior
to inoculation also had significantly higher levels of viremia at 48
hpi. No differences in virus titers between mice on which mosqui-
toes were allowed to spot feed and mice on which mosquitoes were
not allowed to spot feed were observed at 72 hpi. These data cor-
roborate our results with SGE (Fig. 3A to C) and suggest that
exposure to probing and feeding by uninfected mosquitoes can

enhance the replication of virus transmitted by an infected mos-
quito in the same location over a broad time frame.

Spatial separation of mosquito saliva and virus inoculation.
We next asked whether SGE was effective if it was administered
to a site physically distant from the WNV inoculation site. We
previously demonstrated that SGE injected in the footpad op-
posite that inoculated with WNV immediately prior to WNV
inoculation failed to enhance viremia (15). It is possible that
SGE triggers a systemic effect favorable for WNV replication
that requires time to develop. We tested this possibility by in-
jecting SGE into the right rear footpad 16 h prior to WNV
inoculation. Control mice received diluent or SGE in the left
rear footpad 16 h prior to inoculation. All mice were inoculated
with WNV in the left rear footpad at time zero. WNV titers in
the blood at 24, 48, and 72 hpi were significantly enhanced
when SGE and WNV were injected into the same (left rear)
footpad 16 h apart (Fig. 4A). SGE injected into the right rear
footpad did not enhance viremia at any time point. Thus, SGE
did not cause a delayed systemic effect to enhance virus repli-
cation; its activity was locally restricted. To define the effective
local range of SGE activity, SGE was injected into the left rear
thigh, calf, or footpad followed immediately by WNV inocula-
tion into the left rear footpad. Control mice received diluent
and virus in separate injections in the left rear footpad. The
level of viremia was significantly enhanced at 24 and 48 hpi
when SGE and WNV were both injected into the footpad (Fig.
4B). SGE injected into the thigh or the calf had no effect on

FIG 3 SGE or mosquito spot feeding enhances WNV viremia over a broad time frame. (A to C) Mice were inoculated s.c. with 0.5 �g SGE in the left rear footpad
at the indicated times before (negative numbers) or after (positive numbers) inoculation with WNV (time zero). Control mice (identified by C on the x axis)
received diluent and WNV at time zero. Viremia was measured at 24 (A), 48 (B), or 72 (C) hpi. (D) One to five uninfected C. tarsalis mosquitoes (average, 1.95)
probed on the left rear footpad of mice at the indicated times relative to the time of inoculation with WNV (time zero). Control mice were not exposed to
mosquitoes. (A to D) The data shown are combined from multiple experiments. Each symbol represents a single mouse (in panels A to C, n � 4 to 20 mice; in
panel D, n � 8 to 16 mice), and bars indicate the means. Statistically significant differences between experimental and control mice were determined by the
Mann-Whitney U test and are indicated as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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virus levels compared to those in the controls at any time point
examined. Together, these data suggest that SGE activity is
extremely localized.

DISCUSSION

In previous studies, we demonstrated enhancement of WNV in-
fection in the presence of salivary proteins using a mouse model.
The degree and duration of enhancement are similar when (i)
WNV-infected mosquitoes feed on or probe mice, (ii) uninfected
mosquitoes spot feed on mice prior to WNV inoculation, or (iii)
mice are inoculated with WNV mixed with SGE (15). Since the
enhancement phenotype occurs under all three experimental con-
ditions, we conclude that viral enhancement is caused by mos-
quito salivary components and not the virus dose, virus source,
location of virus inoculation, or mechanical damage due to mos-
quito probing. In the current study, we dissected three parameters
that influence enhancement of virus replication by mosquito sa-
liva: dose, time of administration, and proximity.

To our knowledge, we are the first to demonstrate that mos-
quito saliva acts in a dose-dependent manner to enhance virus
levels in the blood. The enhancement phenotype persisted for 3
days when five mosquitoes spot fed on mice or when larger doses
of SGE were inoculated. In addition, mosquito saliva is very po-
tent, since probing or feeding by even a single mosquito enhanced
the levels of viremia in mice in our spot-feeding studies. Previous

studies by others allowed at least 3 and up to 30 mosquitoes to
probe and feed in a single spot to demonstrate enhancement of
arboviral infection (8, 12, 13, 16). A mosquito deposits the con-
tents of 0.3 to 0.4 salivary gland pairs (20), corresponding to ap-
proximately 0.4 to 0.8 �g SGE, each time that it probes, but we
demonstrated enhancement with as little as 0.01 �g SGE. Due to
the potency of SGE and the likelihood that the active component
represents only a fraction of the mixture, we hypothesize that the
effective dose of the salivary component(s) is very low.

We were surprised to find that SGE enhanced the level of
viremia over a broad time frame. A dose of SGE approximately
equivalent to the amount of saliva deposited during probing or
feeding by a single mosquito (0.5 �g) enhanced the level of
viremia if it was administered from 24 h prior to through 12 h after
virus inoculation. Previous studies showed that mosquito spot
feeding enhances the level of replication of another arbovirus,
Cache Valley virus, for 4 h but not 8 h prior to virus inoculation
(8). The difference in the duration of enhancement activity could
be due to the different mosquito species tested (Aedes triseriatus
versus C. tarsalis), intrinsic differences between the viruses, differ-
ent experimental conditions (the mouse strain used, the endpoint
readout used, etc.), or a combination of these factors. We con-
firmed our results on timing with mosquito spot-feeding studies,
in which the level of WNV viremia was enhanced when mosquito
saliva was delivered 16 h before and 3 h after virus inoculation. To
our knowledge, we are the first to show enhancement of virus
replication when mosquito saliva is delivered after virus inocula-
tion, and our results suggest that probing and feeding by unin-
fected mosquitoes can enhance WNV infection before or after
virus transmission in nature. It will be interesting to see if trends
for the time frame of enhancement emerge as more groups inves-
tigate this parameter.

Although the time frame for enhancement was broad, the lo-
cation required for enhancement was localized. SGE did not en-
hance WNV replication unless it was administered in the same
immediate location, whether SGE administration was separated
by 16 h from the time of virus inoculation or SGE was adminis-
tered at different locations on the same leg. Cache Valley virus also
requires colocalization of virus and uninfected A. triseriatus mos-
quito bites (8). In contrast, DENV replication is enhanced when
uninfected A. aegypti mosquitoes bite the host at a site distant
from virus inoculation in a humanized mouse model (13). Fur-
ther studies with other virus-mosquito-host systems are needed to
investigate the requirement of colocalization of mosquito saliva
and virus.

In the current studies, we did not use infected mosquitoes,
which inoculate a wide range of WNV doses (19), in order to
control for viral dose as an experimental parameter. Furthermore,
we previously showed viral replication enhancement similar to
that found in the present study when we use infected mosquitoes,
spot feeding by uninfected mosquitoes, and inoculation of SGE
(15). We used the last two methods, spot feeding by uninfected
mosquitoes and inoculation of SGE, in our current investigations;
however, each method has its limitations. First, mosquitoes de-
posit variable amounts of saliva and probe/feed for variable
lengths of time (19), which introduces variability and prevents us
from conducting actual saliva dose-response studies. In addition,
it is difficult to conduct closely spaced timing and location studies
with live mosquitoes. Thus, we limited studies with live mosqui-
toes to confirm the findings of our studies with SGE. Inoculation

FIG 4 The SGE-mediated enhancement of WNV is highly localized. (A) Mice
were inoculated s.c. with diluent (control) or 0.5 �g SGE in the left (L) or right
(R) rear footpad. Sixteen hours later, the mice were inoculated s.c. with WNV
in the left rear footpad. The data shown are combined from two experiments
(n � 8 to 12 mice). (B) Mice were inoculated s.c. with 0.5 �g SGE into the left
rear thigh (T), calf (C), or footpad (FP). Control mice received diluent in the
left rear footpad. Mice were immediately inoculated s.c. with WNV in the left
rear footpad. Data are from a single study (n � 8 mice). (A and B) Each symbol
represents a single mouse, and bars indicate the means. Statistically significant
differences between experimental and control mice were determined by the
Mann-Whitney U test and are indicated as follows: *, P � 0.05; **, P � 0.01;
***, P � 0.001. The dashed line in panel B indicates the limit of detection of 500
PFU/ml.
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of SGE with virus allows precise control of the protein dose and
the timing and location of inoculation. On the other hand, SGE is
an extract of all proteins in the salivary gland and not just the
secreted salivary proteins. We fully acknowledge this limitation;
however, we chose not to use mosquito saliva, which can be col-
lected artificially by placing the mosquito’s proboscis into a capil-
lary tube or by allowing mosquitoes to feed on a sucrose solution
through a membrane. Such saliva preparations differ qualitatively
and quantitatively from mosquito saliva that is inoculated into the
host during a natural blood meal. The mixture of salivary proteins
in saliva varies between blood and sucrose feeding (21). This is
most likely due to different salivary gland gene expression and
salivary secretion in the three lobes of the salivary gland. Genes
associated with blood feeding are expressed primarily in the me-
dial lobe (22, 23), which has unique innervation (24, 25). Proteins
present in the medial lobe are found in saliva collected during
blood feeding but are absent from saliva collected during sugar
feeding. In addition, the proteins present in artificially collected
saliva are substantially diluted (20) and must be precipitated prior
to use (26). We published evidence of this dilution in previous
studies, which showed that the amount of WNV in artificially
collected mosquito saliva is 100-fold lower than the amount of
virus inoculated by a mosquito into a live host (19). For these
reasons, artificially collected mosquito saliva is infrequently used
for in vivo studies, and SGE has been used as a substitute for mos-
quito saliva in numerous experimental systems (11, 16, 20, 27–
35). We thus used SGE, which contains secreted salivary factors
representative of those obtained by both blood and sugar feeding
and which can be produced in sufficient quantities with minimal
manipulations that could reduce or eliminate functional activity.
Finally, we confirmed our results with SGE by conducting mos-
quito spot-feeding studies with one to five mosquitoes, in which
the mosquito saliva composition and deposition mimic those as-
sociated with a natural blood meal.

Saliva from female mosquitoes is a complex mixture of mole-
cules required for blood feeding and sugar feeding and includes
mucins, proteases, vasodilators, anticoagulants, and immune
modulators. The specific composition differs for each genus, with
unique proteins being found in Culex, Aedes, and Anopheles spp.,
and the function of the majority of the proteins is unknown (re-
viewed in reference 7). For example, transcriptome analysis of
female C. tarsalis salivary glands reveals 80 putatively secreted sal-
ivary proteins, but the functions for less than half of them are
known (36). Thus, it is difficult to speculate on the identity of the
WNV replication-enhancing component(s). Recently, Conway et
al. (27) demonstrated that a serine protease in saliva from A. ae-
gypti and C. tarsalis mosquitoes enhances WNV levels in vivo. The
enhancement activity is abolished by heat treatment and also oc-
curs in cell culture (27). Neither of these is true for our system
(unpublished data), suggesting that a different active component
enhances viremia in our system. It is possible that more than one
salivary factor contributes to the enhancement of WNV replica-
tion. We plan to examine the replication enhancement ability of
different species of mosquitoes, identify common salivary compo-
nents, and test candidate factors for their ability to enhance WNV
replication in vivo. This methodical approach will provide insight
into currently uncharacterized factors and inform the mechanism
of enhancement of WNV replication.

The mechanism of enhancement is unclear. Viral enhance-
ment occurs even when virus and saliva or SGE are administered

separately, suggesting an indirect effect on the virus. The saliva
perhaps stimulates a persistent local host response conducive to
enhanced viral replication and spread, as saliva is known to alter
immune responses (37). Mosquito saliva induces TH2 polariza-
tion in mouse skin, leading to higher levels of interleukin-4 (IL-4)
(38) or IL-10 (30), and in cultured splenocytes, leading to higher
levels of IL-4 and IL-10 and decreased gamma interferon (IFN-�)
levels as long as 10 days after exposure (39). Saliva may also recruit
host cells to the feeding site. Anopheles saliva increases the number
of neutrophils at the feeding site and the number of dendritic cells
in draining lymph nodes (40); both of these cell types support
WNV replication (41, 42). Thus, the observed increase in virus
levels in our system may be due to an increased number of infected
cells rather than an increase in the level of viral replication per cell.
Alternatively, mosquito saliva may prevent the early detection and
clearance of virus. A. aegypti saliva has been shown to reduce the
amount of IFN-� and inducible nitric oxide synthase in macro-
phages as well as to decrease the influx of T cells (30). The damp-
ening of the normal immune response may provide the virus time
to gain an early foothold for replication and spread.

The immune response to mosquito saliva and salivary proteins
clearly plays a complex role in infection. Sensitization of mice to A.
aegypti saliva enhances WNV pathogenicity (43). In contrast, sen-
sitization of mice to C. tarsalis saliva has no effect on virus levels or
morbidity in our previous studies (15). Immunization of mice
with C. tarsalis SGE reduces the rates of morbidity and mortality
after WNV infection (28), but vaccination against D7, a promi-
nent mosquito salivary protein, increases the rate of mortality
during WNV infection (44). Further work is needed to map the
interplay between the host immune response, mosquito saliva,
and virus replication.

Another possible mechanism for enhancement is the lingering
of the active salivary component(s) at the site of infection. Salivary
proteins can linger at a mosquito feeding site for up to 18 hpi (45,
46), and we have found that SGE incubated overnight at 37°C
retains its viral replication enhancement activity (data not
shown). Perhaps any remaining components prime host cells for
infection. SGE could stabilize infected cells, preventing virus-in-
duced cell death and allowing viral replication to continue longer
than it otherwise would. Alternatively, the residual salivary com-
ponents could act as a bridge for infection, transforming previ-
ously nonpermissive cells into permissive cells.

Arthropod saliva plays an intimate role in the transmission and
replication of vector-borne viruses. Future studies will be aimed at
identifying the active salivary component(s) and determining the
underlying mechanism responsible for enhancement of WNV
replication. C. tarsalis saliva increases WNV levels in the blood,
enhances spread to distant tissues, and accelerates central nervous
system invasion, but it has no effect on morbidity in mice (15).
Virus levels in the blood are, however, a predictor of morbidity
and mortality from infections caused by other mosquito-borne
viruses, such as dengue virus (47). Furthermore, higher levels of
viremia in amplifying hosts lead to higher levels of transmission in
nature (48). Thus, studies in the WNV model system will provide
insight into the interactions between vector, host, and pathogen.
Characterization of these interactions could lead to the identifica-
tion of novel prophylactic or treatment options useful in limiting
not only WNV pathogenesis but also the transmission of other
mosquito-borne viruses and the diseases that they cause as well.
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