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Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report
that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-
sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a
role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy.

Influenza viruses cause significant morbidity and mortality in
humans (1, 2). An outstanding feature of the virus is its ability to

regulate host cellular pathways for its benefit (3). Recent studies
showed that influenza A virus perturbs the autophagy process in
infected cells (4–6). Autophagy is an intracellular degradation
process that can be divided into two stages. The first is the forma-
tion of autophagosomes in which the cytoplasmic materials, in-
cluding cellular organelles, protein aggregates, and pathogens, are
directed to the double-membrane vesicles. In the second, the ma-
tured autophagosomes fuse with lysosomes to form autolyso-
somes to degrade their contents (7). Autophagy is involved in
both the sensing of and resistance to viruses invading the host. As
a result, the viruses appear to have evolved mechanisms to subvert
the autophagy response for their own benefit (8–10). Although
influenza A virus has been shown to modulate the autophagy pro-
cess (4, 5, 11–13), the underlying mechanism has remained not
well defined.

To observe the effect of influenza A virus on autophagy, we
used influenza viruses A/Hong Kong/8/68 (H3N2) and A/Wis-
consin/33(H1N1) to infect HEK293 cells at a multiplicity of infec-
tion (MOI) of 5. We measured the relative amounts of autopha-
gosome marker light chain 3 (LC3) proteins (lipidated LC3-II [16
kDa] and nonlipidated LC3-I [18 kDa]) in the cells at 12 h after
infection. At that time point, the cells appeared healthy, without
obvious signs of cell death. We also used a cell line stably express-
ing a green fluorescent protein (GFP)-LC3 fusion protein for
easy observation of autophagosomes (14). Both influenza viruses
A/Hong Kong/8/68 (H3N2) and A/Wisconsin/33 (H1N1) in-
creased the autophagosome marker LC3-II level (Fig. 1A) and
induced punctate LC3 perinuclear localization (Fig. 1B). These
results demonstrated that influenza A virus infection can induce
autophagosome accumulation, which was consistent with a pre-
vious report (4). We then used amantadine, an influenza A virus
M2 proton channel blocker, and oseltamivir, an influenza A virus
neuraminidase inhibitor, to assess if these two antiviral agents
have any effect on autophagosome accumulation at the early stage
of infection. Amantadine or oseltamivir was added at 3 h, and cells
were harvested at 12 h postinfection for analysis. Surprisingly,
amantadine can significantly block autophagosome accumulation
in influenza virus A/Hong Kong/8/68(H3N2)-infected cells but
not in influenza virus A/Wisconsin/33(H1N1)-infected cells

(Fig. 1A and B). It is worth noting that influenza virus A/Hong
Kong/8/68(H3N2) is sensitive to amantadine and influenza virus
A/WS/33 (H1N1) is resistant to amantadine because of an S31N
mutation on M2 (15). Oseltamivir showed no effect on autopha-
gosome accumulation in response to both influenza A viruses,
indicating that neuraminidase plays no role in autophagosome
accumulation, at least in the early stage of infection (Fig. 1A and
B). Our study suggested that the proton channel activity of M2
might play a role in modulation of the autophagy process, in con-
trast to a previous report that showed that its proton channel
activity was not involved in autophagy arrest (4). To further in-
vestigate whether M2 proton channel activity is sufficient to in-
duce autophagosome accumulation and because the constitutive
expression of M2 is lethal to the cells, we generated TREx-293 cell
lines carrying an amantadine-sensitive (S31) or -resistant (N31)
mutant form of avian influenza A virus H5N1/Vietnam/1194/
2004 M2 under the control of a tetracycline-inducible promoter
(15, 16). These inducible M2-expressing cell lines enabled us to
observe the sole effect of M2 without the interference of influenza
A virus replication or other viral proteins. Upon the expression of
either H5M2 (S31) or H5M2 (N31) with induction of tetracycline,
we observed remarkable autophagosome accumulation in the
cells, as shown by the increase in LC3-II in a Western blot assay
(Fig. 1C). Consistent with influenza A virus infection, amantadine
could inhibit the increase in LC3-II and perinuclear localization
induced by amantadine-sensitive H5M2 (S31) (Fig. 1C and D). In
GFP-LC3-transfected cells expressing H5M2(S31), both punctate
LC3 in the perinuclear region and LC3 distribution to the plasma
membrane could be observed if cells were weakly permeabilized
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for immunostaining of M2 protein. The observation of LC3 dis-
tribution to the plasma membrane concurred with an earlier re-
port (11). In amantadine-sensitive H5M2(S31)-expressing cells,
amantadine treatment diminished both perinuclear and plasma
accumulation of LC3, although the M2 protein remained at the

plasma membrane (Fig. 1E). We also tested the expression of
H5N1-M2(S31) on autophagy in MDCK (Fig. 1F) and MCF-7
(Fig. 1G) cells. Autophagosome accumulation could be observed
in M2-expressing cells and could be inhibited by amantadine. The
recent outbreak of the novel avian influenza A virus H7N9 in Asia
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FIG 1 Inhibition of proton channel activity attenuates influenza A virus M2-induced autophagosome accumulation. (A) HEK293 cells were infected with
influenza virus A/Hong Kong/8/68 (H3N2) or A/Wisconsin/33(H1N1) at an MOI of 5. Amantadine (5 �M) or oseltamivir (200 nM) was added at 3 h after
infection. Cell were collected at 12 h after infection and subjected to Western blot analysis with the antibodies indicated. NP, nucleoprotein; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase. (B) HEK293 cells with stable expression of GFP-LC3 were treated as described for panel A and observed by confocal
microscopy. Scale bars, 20 �m. (C) TREx-293 cells carrying tetracycline-inducible amantadine-sensitive H5N1-M2 (S31) or amantadine-resistant H5N1-M2
(N31) were treated with tetracycline (1 �g/ml) with or without amantadine. Cells were collected at 24 h and subjected to Western blot analysis with the antibodies
indicated. (D) GFP-LC3-transfected TREx-293 cells carrying tetracycline-inducible H5N1-M2 (S31) or H5N1-M2 (N31) were treated with tetracycline with or
without amantadine. Cells were observed 24 h later by confocal microscopy. Scale bars, 20 �m. (E) GFP-LC3-transfected TREx-293 cells carrying tetracycline-
inducible amantadine-sensitive H5N1-M2 (S31) were treated with tetracycline with or without amantadine for 24 h. Cells were weakly permeabilized for M2
immunostaining and observed by confocal microscopy. Scale bars, 10 �m. (F, G) MDCK (F) or MCF-7 (G) cells stably expressing GFP-LC3 were transfected,
respectively, with plasmids expressing H5M2(S31). Amantadine was added at 6 h after transfection. Cells were collected at 24 h and subjected to immunofluo-
rescence staining with anti-M2 antibodies and a DyLight 549-labeled goat anti-mouse secondary antibody. The cells were observed by fluorescence microscopy.
Scale bars, 20 �m. (H) HEK293 cells were transfected with plasmid pcDNA4, pcDNA4-H7N9-M2 (S31), or pcDNA4-H7N9-M2 (N31) and then treated with or
without amantadine at 6 h after transfection. Cell were collected at 24 h after amantadine treatment and subjected to Western blot analysis with the antibodies
indicated. (I) HEK293 cells with stable expression of GFP-LC3 were transfected with plasmid pcDNA4, pcDNA4-H7N9-M2 (S31), or pcDNA4-H7N9-M2 (N31)
and then treated with amantadine at 6 h after transfection. Cells were observed by confocal microscopy at 24 h after amantadine treatment. Scale bars, 20 �m.
Representative data from one of three separate experiments are shown. The relative LC3-II/LC3-I, LC3-II/GADPH, and P62/GADPH ratios were analyzed with
ImageJ (National Institutes of Health) in the same Western blot assay. The anti-M2 mouse serum was generated in our lab, the anti-influenza A virus
nucleoprotein antibody was Abcam Ab139361, the anti-LC3-II antibody was Sigma-Aldrich L7543, and the anti-P62 antibody was Sigma-Aldrich P0067.
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FIG 2 Proton channel activity contributes to influenza A virus M2-induced autophagosome accumulation in a dose-dependent manner. (A) TREx-293 cells
carrying tetracycline-inducible amantadine-sensitive H5N1-M2 (S31) or amantadine-resistant H5N1-M2 (N31) were treated and with increasing concentra-
tions of amantadine with or without tetracycline as indicated. Cells were collected at 24 h and subjected to Western blot analysis with the antibodies indicated.
(B) HEK293 cells were transfected with plasmids expressing H5M2 (S31), H5M2 (N31), H5M2 (H37G), H5M2 (HDR/A), or H5M2 (HDR/L). Amantadine was
added at 6 h after transfection. Cells were collected at 24 h and subjected to Western blot analysis with the antibodies indicated. Representative data from one of
three separate experiments are shown. (C) MDCK cells were transfected with plasmids expressing H5M2 (S31), H5M2 (HDR/A), or H5M2 (HDR/L) with a
pH-sensitive EGFP protein in the wells of a 96-well plate in six replicates. At 16 h after transfection, the culture medium was replaced with pH 7.4 phosphate-
buffered saline containing 0.3% bovine serum albumin for detection of fluorescence intensity at neutral pH. The change in fluorescence intensity was detected
at 1 min after the medium was changed to pH 5.0. The relative fluorescence was the ratio of fluorescence intensity at pH 5.0 normalized to that at pH 7.4. Statistical
analyses were performed by two-tailed Mann-Whitney test. ***, P � 0.001. Representative data from one of three separate experiments are shown. The relative
LC3-II/LC3-I and LC3-II/�-actin ratios were analyzed by using ImageJ (National Institutes of Health) in the same Western blot assay. M2(HDR/A) has His37Ala,
Asp44Ala, and Arg45Ala mutations. M2(HDR/L) has His37Leu, Asp44 Leu, and Arg45Leu mutations.
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and the high mortality rate due to it have caused global concerns
(17, 18). The H7M2 protein contains asparagine (N) at amino acid
position 31, conferring resistance to amantadine (17). To see
whether H7M2 can also affect the autophagy process, we con-
structed two DNA plasmids, pCDNA4-H7N9-M2 (N31) and
pCDNA4-H7N9-M2 (S31), with the asparagine at amino acid po-
sition 31 replaced with serine to restore amantadine sensitivity.
Transfection of either H7M2 (N31) or H7M2 (S31) could induce
substantial autophagosome accumulation in HEK293 cells. Again,
amantadine could inhibit autophagosome accumulation induced
by H7M2 (S31) but not that induced by amantadine-resistant
H7M2 (N31) (Fig. 1H and I). We analyzed autophagosome turn-
over in the M2-expressing cells by using the marker SQSTM1/P62,
an adaptor protein that binds to LC3 and then is degraded
through the lysosomal pathway (19, 20). Both H7M2 (S31) and
H7M2(N31) could induce accumulation of SQSTM1/P62, sug-
gesting autophagy arrest, as indicated by the failure of autophagic
substrate degradation. Amantadine treatment could reverse the
accumulation of SQSTM1/P62 in cells transfected with H7M2
(S31) but not H7M2 (N31) (Fig. 1H). Therefore, data from differ-
ent subtypes of influenza A virus M2 and multiple cell lines dem-
onstrated that M2 proton channel activity is involved in the in-
duction of autophagy arrest.

To verify that the M2 proton channel activity is involved in the
induction of autophagosome accumulation, we tested the dose-
dependent effect of amantadine on the inhibition of M2-induced
LC3-II accumulation in TREx-293 cells expressing tetracycline-
inducible M2 proteins. Amantadine showed a dose-dependent
ability, starting at 0.2 �M, to block LC3-II accumulation in cells
expressing amantadine-sensitive H5M2 (S31), whereas amanta-
dine showed only a weak inhibitory effect at 125 �M in cells ex-
pressing amantadine-resistant H5M2 (N31) (Fig. 2A). To further
study the role of M2 proton channel activity on autophagosome
accumulation, mutations at the M2 transmembrane region were
made to eliminate proton channel activity. We first constructed an
M2-H37G mutation as reported previously (4). However, the M2-
H37G mutant protein could still induce LC3-II accumulation,
which could be inhibited by amantadine (Fig. 2B). Indeed, earlier
studies have reported that the H37G mutation does not decrease
ion channel activity but only eliminates its stringent ion selectivity
(21, 22). We subsequently constructed proteins with more severe
mutations by changing three amino acids, His37, Asp44, and
Arg45, in the M2 transmembrane region to abolish proton chan-
nel activity. M2(HDR/A) has His37Ala, Asp44Ala, and Arg45Ala
mutations, while M2(HDR/L) has His37Leu, Asp44Leu, and
Arg45Leu mutations. Expression of the M2(HDR/A) and

M2(HRD/L) proteins was verified in plasmid-transfected cells
(Fig. 2B). These two mutant proteins were confirmed to have no
proton channel activity by using pH-sensitive enhanced GFP
(EGFP) coexpressed in the cells (23). EGFP showed a significant
decrease in fluorescence intensity in H5M2(S31)-transfected cells
under acidic conditions due to M2 proton channel-mediated
acidification but not in M2(HDR/A)- or M2(HRD/L)-transfected
cells (Fig. 2C). Neither the M2(HDR/A) nor the M2(HRD/L) mu-
tant protein could induce autophagosome accumulation, as indi-
cated by no increase in LC3-II (Fig. 2B).

Previous studies have shown that the autophagy process can be
activated by the mTOR inhibitor rapamycin, which can be inhib-
ited by wortmannin, a general inhibitor of phosphatidylinositol-
3-phosphate kinases (24–27). We compared the effect of wort-
mannin on rapamycin- or chloroquine-treated cells with that on
cells that express H5M2 (S31) or H5M2 (N31). Rapamycin or
chloroquine could induce an LC3-II level increase in treated cells.
Wortmannin could significantly inhibit LC3-II accumulation in
rapamycin-treated cells and modestly inhibit LC3-II accumula-
tion in chloroquine-treated cells. Interestingly, wortmannin had
no inhibitory effect on M2-induced LC3-II accumulation (Fig.
3A). When the expression of Becline 1 (Atg6), and phosphatidyl-
inositol 3-kinase (PI3K) VPS34 was knocked down with small
interfering RNA (siRNA), the M2-mediated increase in LC3-II
was not affected by the silencing of either Beclin1 (Atg6) or VPS34
(Fig. 3B), indicating that M2 may induce LC3-II accumulation via
a VPS34/Beclin 1-indepedent pathway. In M2(S31)-expressing
cells, there was no obvious colocalization of GFP-LC3-labeled au-
tophagosomes with lysosomal marker LAMP2-labeled lysosomes
(Fig. 3C), indicating little fusion between autophagosomes and
lysosomes. Amantadine treatment for 3 h decreased punctate
GFP-LC3, and the preformed GFP-LC3 vesicles appeared to over-
lap LAMP2-positive compartments in M2(S31)-expressing cells.
In comparison, rapamycin induced colocalization of GFP-LC3-
labeled autophagosomes with LAMP2-labeled lysosomes (Fig.
3C). We finally confirmed M2-mediated blockage of autophago-
some fusion with lysosomes by using LysoTracker DND99 to label
lysosomes in living cells. In mock-transfected cells, there was no
punctate GFP-LC3. In M2(S31)-expressing cells, there was punc-
tate GFP-LC3 but little colocalization with LysoTracker-labeled
lysosomes. With amantadine treatment for just 1 h, punctate
GFP-LC3 appeared to localize with lysosomes in M2(S31)-ex-
pressing cells (Fig. 3D). Taking these results together, we propose
that M2 proton channel activity plays an important role in induc-
ing autophagy arrest by blocking the fusion of autophagosomes
with lysosomes.

FIG 3 Proton channel activity of influenza A virus M2 is required to block the fusion of autophagosomes with lysosomes. (A)TREx-293 cells carrying
tetracycline-inducible H5N1-M2 (S31) or H5N1-M2 (N31) were treated with different compounds as indicated. Cells were collected at 24 h and subjected to
Western blot analysis. (B) TREx-293 cells carrying tetracycline-inducible H5N1-M2 (S31) were transfected with siRNA for Beclin 1 (Atg6), hVPS34, or negative
siRNA as a control (purchased from RiboBio). Twenty-four hours later, cells were treated with 1 �g/ml tetracycline for another 24 h. Cell lysates were subjected
to Western blot analysis with the antibodies indicated (anti-Beclin 1 [Sigma B6186] and anti-PI3K hVPS34 [Cell Signaling 3358] antibodies). (C) HEK293 cells
stably expressing GFP-LC3 were either transfected with a plasmid encoding H5N1-M2 (S31) or treated with rapamycin for 24 h. Amantadine was then added for
another 3 h of incubation. Cells were stained with an anti-LAMP2 antibody (Abcam Ab18529) and a Cy3-conjugated goat anti-rabbit secondary antibody and
observed by confocal microscopy. Scale bars, 20 �m. (D) GFP-LC3-transfected TREx-293 cells with tetracycline-inducible H5N1-M2 (S31) were treated with
tetracycline for 24 h and then treated with LysoTracker Red DND99 (Life Technologies L7528) for 2 h and amantadine for 1 h. The cells were observed by
fluorescence microscopy. Scale bars, 20 �m. The colocalization of GFP-LC3 with the lysosome marker LAMP2 or LysoTracker Red DND99 was analyzed with
Image Pro (Media Cybernetics). Overlap is indicated by Manders’ overlap coefficients ranging from 0 to 1. A value of 1 implies that 100% of both selected
channels is colocalized. A total of 10 cells were analyzed. Statistical analyses were performed by two-tailed Mann-Whitney test. **, P � 0.01; ***, P � 0.001.
Representative data from one of three separate experiments are shown. Relative LC3-II/LC3-I, LC3-II/�-actin, Beclin 1/�-actin, and hVPS34/�-actin ratios were
analyzed by using ImageJ (National Institutes of Health) in the same Western blot assay.
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A recent study reported that the cytoplasmic tail of M2 can
directly interact with autophagy protein LC3 and promote LC3
relocation to the plasma membrane, which may contribute to vi-
rion stability (11). M2 has been implicated to interact with Be-
clin-1, which may also modulate the autophagy process (4). We
also found that wortmannin could inhibit LC3-II accumulation in
rapamycin-treated cells but not in M2-expressing cells. The fusion
of autophagosomes with lysosomes is driven by multiple proteins,
and any impairments may disturb the completion of an autophagy
process (7). Acidification of the lumenal space of endosomes,
lysosomes, and autophagosomes is an important step. Basic
chemical compounds such as chloroquine and ammonium chlo-
ride can raise the pH in acidic cytoplasmic compartments and
block the degradation of autophagosomes by lysosomes (28). Ba-
filomycin A1, an inhibitor of V-ATPase, prevents autophagosome
acidification and fusion with endosomes and lysosomes (29). It
has been proposed that M2 protein can insert itself into the cellu-
lar membrane system to act as a proton channel (30–33), resulting
in perturbation of the pH of the environment in cellular compart-
ments. It is possible that M2 plays multiple roles in the modula-
tion of the autophagy process. At least part of the mechanism of
autophagy arrest by M2 is proton channel activity to prevent the
fusion of autophagosomes with lysosomes, thereby leading to au-
tophagosome accumulation. Further studies are needed to eluci-
date the mechanism in more detail.
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