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ABSTRACT

Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal in-
jury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic
damage to the CMV-infected fetus but also from indirect effects through placental infection and dysfunction. CMV alters Wing-
less (Wnt) signaling, an essential cellular pathway involved in placentation, as evidenced by reduced transcription of canonical
Whnt target genes and decreased Wnt3a-induced trophoblast migration. Whether CMV affects the noncanonical Wnt signaling
pathway has been unclear. This study demonstrates for the first time that CMV infection inhibits Wnt5a-stimulated migration of
human SGHPL-4 trophoblasts and that inhibition of the pathway restores normal migration of CMV-infected cells. Western blot
and real-time PCR analyses show increased expression of noncanonical Wnt receptor ROR2 in CMV-infected trophoblasts.
Mimicking the CMV-induced ROR?2 protein expression via ectopic expression inhibited Wnt5a-induced trophoblast migration
and reduced T cell-specific factor (TCF)/lymphoid enhancer-binding factor (LEF)-mediated transcription as measured using
luciferase reporter assays. Gene silencing using small interfering RNA (siRNA) duplexes decreased ROR2 transcript and protein
levels. In contrast, proliferation of SGHPL-4 trophoblasts, measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazo-
lium bromide (MTT) assay was not affected. The siRNA-mediated downregulation of ROR2 in trophoblasts rescued CMV-in-
duced reduction in trophoblast migration. These data suggest a mechanism where CMYV alters the expression of the Wnt recep-
tor ROR2 to alter Wnt5a-mediated signaling and inhibit trophoblast motility. Inhibition of this mechanism may be a target for
therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infections.

IMPORTANCE

Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal in-
jury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic
damage to the CMV-infected fetus but also from indirect effects through placental infection and placental dysfunction. No effec-
tive therapy is currently proven to prevent or treat congenital CMV infection. Understanding the molecular underpinnings of
CMYV infection of the placenta is essential for therapeutic innovations and vaccine design. CMV alters canonical Wingless (Wnt)
signaling, an essential cellular pathway involved in placental development. This study suggests a mechanism in which CMV al-
ters the expression of noncanonical Wnt receptor ROR2 to alter motility of placental cells, which has important implications in
the pathogenesis of CMV-induced placental dysfunction. Inhibition of this mechanism may be a target for therapeutic interven-
tion for CMV-induced placental damage and consequent fetal damage in congenital CMV infection.

Cytomegalovirus (CMV) is now the leading infectious cause of
congenital malformation in developed countries, with a mean
prevalence of 0.64% (ranging from 0.2 to 2%) of pregnancies (1—
4). This translates to an estimated 120,000 infants born each year
in developed countries with congenital CMV infection, of whom
~25% develop symptoms, including sensorineural hearing loss
(SNHL), vision loss, seizures, and mental disability (1-3, 5-7).
Congenital CMV infection has also been associated with fetal
death in utero, neonatal death, intrauterine growth restriction
(IUGR), preterm birth, and preeclampsia (5, 8-12). Clinical dis-
ease in the neonate may result not only from direct viral cyto-
pathic damage to the CMV-infected fetus (13) but also from indi-
rect effects through placental infection (8, 14—16). No effective
therapy is currently proven to prevent or treat congenital infec-
tion. Studies of prevention using vaccines are continuing, and
recent studies on efficacy of administration of CMV hyperimmu-
noglobulin or antiviral drugs to pregnant women with primary
CMV infection await confirmation in ongoing randomized stud-
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ies (17). Understanding the molecular underpinnings of CMV
infection of the placenta and the fetus is essential for therapeutic
innovations and vaccine design.

The pathological changes observed in CMV-infected placentae
in vivo include avascular and immature villi, thrombosis of villous
capillaries, villitis, and necrosis of villous tissue and trophoblasts
(16, 18, 19). We and others have reported that CMV infection
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TABLE 1 Real-time PCR primers

Human CMV Inhibits Noncanonical Wnt Signaling

Primer sequence

Gene Forward (5'-3") Reverse (5'-3")

ror2 GGATCCGAACGACCCTTTAG AGTAACCTTTCAGAGTTGGAATCG

mapk8 TCTGGTATGATCCTTCTGAAGCA TCCTCCAAGTCCATAACTTCCTT

rhoA GGAAAGCAGGTAGAGTTGGCT GGCTGTCGATGGAAAAACACAT

eif4a2 GTGTGAACTGGACCCTGTTG TATTTAACATTCAAACTTCATTAAGACATG

mediates alterations in cytokines, cell-cell and cell-matrix adhe-
sion molecules, key integrins, and peroxisome proliferator-acti-
vated receptor y (PPARY) signaling in trophoblasts (8, 15,20-31).
In vitro, CMV dramatically reduces invasion and migration of
trophoblasts (25, 32). The molecular signaling underlying the ob-
served CMV-induced placental damage remains to be elucidated,
and cellular mechanisms known to alter trophoblast motility pro-
vide logical targets. Intracellular signaling pathways have been
identified as regulators of trophoblast invasion and migration,
including cascades mediated by phosphatidylinositide 3-kinases
(PI3K), extracellular signal-regulated kinase 1 (ERK1), ERK2, fo-
cal adhesion kinase (FAK), Akt/protein kinase B, mechanistic tar-
get of rapamycin (mTOR), and Smads (33, 34). Additionally, the
Wingless (Wnt) signaling pathway plays an important role in the
differentiation and migration of trophoblasts (35). Abnormal ex-
pression of Wnt signaling has been reported to occur in placental
tissue from clinical cases of spontaneous abortion (36) and pre-
eclampsia (37), suggesting that aberrant Wnt signaling contrib-
utes to the pathogenesis of these diseases of pregnancy. Wnt li-
gands are evolutionarily conserved and couple to various
receptors to activate different downstream pathways. Wnt3a li-
gand is generally thought to activate 3-catenin-dependent (ca-
nonical) Wnt signaling. Activation of the canonical pathway in-
volves stabilization and nuclear translocation of B-catenin,
followed by T cell-specific factor (TCF)/lymphoid enhancer-
binding factor (LEF)-mediated transcription of Wnt target genes,
including c-mycand ccnd1 (38). CMV has been reported to inhibit
Wnt3a-induced migration of trophoblasts by affecting canonical
Wnht signaling (39). In contrast, Wnt5a ligand mediates intracel-
lular signaling via a B-catenin-independent (noncanonical) Wnt
pathway to regulate cell polarity and migration in a variety of
tumor types, including metastatic melanoma (40), thyroid carci-
noma (41), and colon cancer (42). Wnt5a associates with tyrosine
kinase-like orphan receptor 2 (ROR2) (43, 44), which leads to Rho
GTPase (RhoA and Rac)-dependent activation of the Wnt-Jun
N-terminal kinase (JNK) pathway and activation of the Wnt-
Ca2" pathway through calcium/calmodulin-dependent protein
kinase II (CaMKII) (45-47). The role of this noncanonical Wnt
pathway in trophoblast migration has not been investigated so far
and needs to be elucidated given the importance of Wnt signaling
in embryonic development and disease.

The proven importance of Wnt signaling in trophoblast motil-
ity led us to investigate Wnt5a signaling in trophoblast motility
and to analyze the role of the Wnt receptor ROR2 in CMV-in-
duced reduction in trophoblast migration. Wnt5a induced migra-
tion of trophoblasts in a concentration-dependent manner. CMV
infection inhibited this Wnt5a-mediated trophoblast migration
and altered expression of ROR2. Ectopic expression of ROR2 in-
hibited Wnt5a-mediated trophoblast migration and reduced
TCF/LEF-mediated transcription as measured by luciferase re-

January 2016 Volume 90 Number 2

Journal of Virology

porter assays. Small interfering RNA (siRNA) targeting ROR2
partially rescued CMV-inhibited trophoblast migration. These re-
sults suggest that CMV infection controls the expression of ty-
rosine kinase receptor ROR2 to regulate trophoblast motility,
which has important implications in the pathogenesis of CMV-
induced placental dysfunction.

MATERIALS AND METHODS

Cells, viruses, and reagents. The human extravillous trophoblast line
SGHPL-4 was derived from first-trimester chorionic villous tissue (32,
48). These trophoblasts were chosen because they share many phenotypic
and functional properties with extravillous trophoblasts in vivo (32) and
support productive replication of CMV (49). SGHPL-4 trophoblasts were
maintained in Ham’s F10 nutrient mix (Invitrogen) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-L-glu-
tamine at 37°C in 5% CO,.

CMV AD169 strain (ATCC) was propagated in MRC-5 fibroblasts.
Virus stock titers were determined via standard plaque assays using
MRC-5 fibroblasts. For CMV infections, cells were plated on 12-well tis-
sue culture plates at a density of 0.5 X 10° cells per well. The next day, cells
were infected with CMV at multiplicity of infection (MOI) of 1 PFU/cell.
Briefly, viral inoculum was added to the cells and allowed to adsorb for 4
hat 37°Cin 5% CO,. The virus inoculum was then removed and replaced
with fresh medium.

Nonsilencing RNA duplexes (Ambion; 20 uM), ROR2 siRNA du-
plexes (Ambion; 20 pM [s9760]), full-length ROR2-overexpressing plas-
mid (700 ng), and empty plasmid pcDNA3.1 (700 ng) transfections were
conducted using Lipofectamine 2000 reagent (Invitrogen) and Opti-
MEM I reduced serum medium (Invitrogen) according to the manufac-
turer’s instructions. The efficiency of overexpression or knockdown of
ROR?2 was determined using real-time PCR and Western blot analyses.

Real-time PCR. Total RNA was collected from biological triplicates
of mock- and CMV-infected cells using the RNAqueous total RNA
isolation kit (Life Technologies) according to the manufacturer’s in-
structions. Real-time PCR was performed using KAPA SYBR Fast 2X
mastermix (Geneworks) and the Stratagene Mx3000P detection sys-
tem (Agilent Technologies). Oligonucleotides (Sigma) used to detect
expression of the corresponding genes are shown in Table 1. Data were
analyzed using the MxPro qPCR software. Cycle threshold (C;) values
of each sample were normalized to C;s of the housekeeping gene eu-
karyotic translation initiation factor 4a2 (eIF4a2) by calculating the
difference of the C; values (dC;). Relative expression levels (fold
change) were determined using the value of mock-infected cells at each
time point examined.

Western blot analyses and antibodies. Protein extracts were prepared
and analyses were performed as described previously (50). The primary
antibodies used were mouse anti-ROR2 (QED Bioscience; 1:1,000), rabbit
anti-JNK (Cell Signaling; 1:1,000), mouse anti-RhoA (1B12; Abcam;
1:1,000), mouse anti-CMV immediate early/early (IE/E) (Dako clone
CCH2+DDGY; 1:1,000), and mouse anti-B-actin (Sigma; 1:2,000). The
secondary antibodies used were goat anti-mouse IgG-horseradish perox-
idase (HRP) (Thermo Scientific; 1:2,000) and goat anti-rabbit IgG-HRP
(Pierce; 1:2,000).
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Immunofluorescence. Immunofluorescence staining was per-
formed as described previously (15). Three days after CMV infection,
SGHPL-4 cells were stained with mouse anti-CMV IE/E (Dako clone
CCH2+DDG$Y; 1:1,000) goat anti-mouse Alexa Fluor 594 antibodies and
4',6-diamidino-2-phenylindole (DAPI). For image analyses, 5 fields of
view were captured. The number of CMV-infected cells was determined
by measuring the intensity of IE/E and DAPI staining using Image] soft-
ware. The percentage of IE/E-positive cells was calculated as (average IE/E
staining/average DAPI staining) X 100.

Migration assay. Two days postinfection (p.i.), SGHPL-4 tropho-
blasts were trypsinized and collected in Ham’s F10 nutrient mix (Invitro-
gen) supplemented with 1% FBS and 1% penicillin-streptomycin-L-glu-
tamine, and 5 X 10? cells were seeded into Transwells with 8.0-pm-pore-size
membranes (Corning) in medium containing phosphate-buffered saline
(PBS) control or human recombinant Wnt5a protein (200 ng/ml or 400
ng/ml) (R&D Systems). The mock- or CMV-infected cells were allowed to
migrate for 16 h at 37°C in 5% CO,. The 16-h time point was empirically
determined to be ideal for SGHPL-4 cell migration. Three days after CMV
infection, the nonmigrated cells were removed from the upper side of the
membranes, migrated trophoblasts were stained with 1% crystal violet
solution (Sigma), and five nonoverlapping images were taken of each
membrane. The average color intensity was determined using Image]J
analysis software.

Proliferation assay. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assays were performed as described previ-
ously (51). Briefly, MTT reagent diluted in culture medium was incubated
with cells for 2 h at 37°C in 5% CO,. Medium was removed and isopro-
panol added to each well. After 10 min of incubation at room temperature
with gentle shaking, absorbance was measured at 565 nm.

Luciferase assay. SGHPL-4 trophoblasts were cotransfected with 700
ng of full-length ROR2-expressing plasmid or empty plasmid pcDNA3.1,
1 g of either TopFlash (which contains multimeric TCF/LEF sequences
upstream of a firefly luciferase reporter gene) or FopFlash (which contains
mutated TCF/LEF binding sites, used as a specificity control for TopFlash
activity) expression plasmids (Millipore, Temecula, CA), and 100 ng of
pRL-TK (Renilla-thymidine kinase [TK]-luciferase vector [Promega], asa
transfection control), using Lipofectamine 2000. Seven hours later, the
cells were treated with 150 ng/ml of human recombinant Wnt3a (R&D
Systems) for 16 h prior to luciferase activities being measured using a
Glomax 96 microplate luminometer (Turner Biosystems, Sunnyvale,
CA). Firefly luciferase activity was normalized for transfection efficiency
by dividing it by the Renilla luciferase activity.

Statistical analysis. Statistical analysis was performed using Graph-
Pad Prism version 6. Comparison of two groups was carried out using a ¢
test. Statistical significance was accepted at a P value of <0.05. Data are
expressed as means + standard errors of the means (SEMs).

RESULTS

CMV infection inhibits Wnt5a-induced migration of human
trophoblasts. Immunofluorescence staining of CMV-infected
human SGHPL-4 extravillous trophoblasts at 3 days postinfection
(p.i.) showed that IE/E protein was present (Fig. 1A), indicating
that viral entry into the cell and induction of productive viral
replication had occurred. Image analyses revealed that ~15% of
trophoblasts were infected with CMV. As no study to date has
addressed whether Wnt5a-mediated signaling affects tropho-
blast motility, transwell assays were performed. Wnt5a in-
creased migration of SGHPL-4 trophoblasts in a dose-depen-
dent manner (Fig. 1B). Compared with controls, treatment
with 200 ng/ml and 400 ng/ml of Wnt5a increased migration
2-fold and ~3.5-fold, respectively. Analyses of the effect of
CMV infection on this Wnt5a-induced migration in SGHPL-4
trophoblasts showed that CMV infection caused a decrease in
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FIG 1 CMV infection inhibits Wnt5a-induced migration of SGHPL-4 tro-
phoblasts. Human trophoblasts were infected with CMV (H) at an MOI of 1
PFU/cell or mock infected ([J). (A) CMV-infected cells were analyzed by im-
munofluorescence at 3 days p.i. Representative images of CMV IE/E protein
(red) and DAPI (blue) are shown. (B) Cell migration was analyzed using
Transwell assays, with or without addition of recombinant Wnt5a protein.
Images are representative of four independent experiments. (C) Average mi-
gration, combined from four independent experiments, was determined by
capturing five images (20 fields per treatment) from each well and measuring
the intensity using Image] software (means + SEMs; *, P < 0.05).

400

migration compared with uninfected trophoblasts (Fig. 1C)
(P <0.05).

CMYV infection alters expression of noncanonical Wnt sig-
naling receptor ROR2. The effect of CMV infection on the mRNA
expression of (-catenin-independent Wnt signaling mediators
was studied in human SGHPL-4 trophoblasts using real-time PCR
analyses and Western blotting. CMV infection increased ROR2
mRNA levels ~2-fold, although this change did not reach statis-
tical significance. At the protein level, ROR2 receptor expression
increased 4.5-fold in CMV-infected trophoblasts compared to
values for uninfected cells (Fig. 2B and C) (P < 0.05). CMV infec-
tion also increased mRNA expression of the GTPase RhoA (~1.5-
fold; P < 0.01) (Fig. 2A) compared with that in uninfected
SGHPL-4 trophoblasts. However, this increase in RhoA was not
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FIG 2 CMV infection alters expression noncanonical Wnt receptor ROR2 in
SGHPL-4 trophoblasts. Human trophoblasts were infected with CMV (H) at
an MOI of 1 PFU/cell or mock infected ([1J). (A) Three days postinfection,
mRNA expression was analyzed using real-time PCR. Data, displayed as rela-
tive to mock infected, are combined from three independent experiments
(means + SEMs; ** P < 0.01). (B) Protein expression was analyzed using Western
blotting. Data are representative of three independent experiments. (C) Densi-
tometry analysis of data presented in panel B. Data are combined from three
independent experiments (means + SEMs; *, P < 0.05).

observed at the protein level (Fig. 2B). The level of expression of
the kinase JNK did not significantly change during CMV infection
in trophoblasts (Fig. 2).

Increased ROR2 expression inhibits Wnt5a-induced migra-
tion and TCF/LEF-mediated transcription in SGHPL-4 tropho-
blasts. The influence of Wnt5a treatment and/or increased ROR2
expression on cell proliferation was first studied by transfecting
SGHPL-4 trophoblasts with ROR2-expressing plasmid. Western
blotting and MTT assays showed that although ROR2 expression
was significantly increased in these ROR2 plasmid-transfected
cells (Fig. 3A), ectopic ROR2 expression, with or without Wnt5a
treatment, did not alter the amount of proliferating trophoblasts
(Fig. 3B).

The effect of increased ROR2 expression on trophoblast migra-
tion was studied in these trophoblasts. Ectopic ROR2 expression
alone did not alter trophoblast migration (Fig. 3C, top images, and
D), suggesting that ROR2 does not play a role in basal trophoblast
migration. However, increased ROR2 protein caused a statistical
significant reduction in Wnt5a-induced migration of these tro-
phoblasts (Fig. 3C, lower images, and D) (P < 0.01).

The consequence of increased expression of ROR2 on TCF/
LEF-mediated transcription was examined using a luciferase Wnt
reporter assay. While FopFlash activity remained unchanged (Fig.
3F), increased ROR2 protein impaired Wnt3a-induced activity of
TopFlash (Fig. 3E) (P < 0.05), suggesting that ROR2 signaling
antagonizes canonical Wnt signaling.
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Gene silencing of ROR2 partially restores CMV-induced re-
duction in trophoblast migration. Functional studies on the ef-
fect of ROR2 knockdown were performed in order to further clar-
ify the role of ROR2 in CMV-induced reduction in trophoblast
migration. Trophoblasts were transfected with nonsilencing (NS)
control RNA duplexes or siRNA duplexes that specifically target
ROR2, followed by infection with CMV (Fig. 4). Real-time PCR
analyses showed that ROR2 siRNA reduced ROR2 mRNA levels to
~40% of that in NS RNA control-treated cells (100%) (Fig. 4A)
(P < 0.001). Western blotting demonstrated that ROR2 transla-
tion was also reduced by the ROR2-specific siRNA treatment (Fig.
4B), as expected.

The effect of reduced ROR2 expression on trophoblast migra-
tion was then analyzed using this ROR2 siRNA-mediated gene
silencing (Fig. 5A and B). Downregulation of ROR2 did not sig-
nificantly alter basal or Wnt5a-stimulated trophoblast migration
(Fig. 5A, compare upper images 1 and 3 and upper images 2 and
4). However, downregulation of ROR2 increased migration of
CMV-infected cells nearly to that of the wild type—that is, unin-
fected trophoblasts (86%) (Fig. 5A, compare lower images 2 and
4) (P<0.01). These data indicate that inhibition of CMV-induced
altered expression of ROR2 protein partially restores CMV-re-
duced trophoblast migration.

The influence of decreased ROR2 expression on cell prolifera-
tion was studied in SGHPL-4 trophoblasts. Knockdown of ROR2
did not alter the amount of proliferating trophoblasts (Fig. 5C),
consistent with ROR2 not being involved in trophoblast growth
(Fig. 3B).

DISCUSSION

Inadequate trophoblast invasion and migration result in abnor-
mal placentation, which is associated with early pregnancy loss,
preeclampsia, IUGR, and stillbirth. All of these pregnancy com-
plications are also associated complications of maternal CMV in-
fection during pregnancy (8-10), consistent with a role for CMV
infection in impaired placental establishment and abnormal pla-
cental development. Therefore, understanding the molecular
mechanisms underlying CMV-induced placental damage is essen-
tial in identifying new therapeutic strategies to prevent diseases of
pregnancy related to CMV infection.

Previous studies demonstrated that treatment of trophoblasts
with recombinant Wnt3a induced elevated expression of
B-catenin/TCF target genes, including cyclin D1, TCF4, and
B-catenin (52), and increased trophoblast invasion and migra-
tion (52, 53). Despite these comprehensive investigations, the
involvement of Wnt5a and the noncanonical Wnt pathway in
trophoblast differentiation and migration has not been eluci-
dated. Here, we demonstrate for the first time that Wnt5a in-
creased migration of human SGHPL-4 trophoblasts in a dose-
dependent manner (Fig. 1). Wnt5a treatment did not result in
altered proliferation of trophoblasts (Fig. 3), suggesting that
this Wnt ligand does not directly alter trophoblast growth.

Since Wnt5a-mediated B-catenin-independent signaling reg-
ulates epithelial-to-mesenchymal transition (EMT) of cancerous
cells (54), which is partly a disorder of cell movement, we hypoth-
esized that Wnt5a signaling could be involved in the molecular
mechanisms underlying CMV-induced reduction of trophoblast
motility. Indeed, CMV infection reduced Wnt5a-induced tropho-
blast migration (Fig. 1) (P < 0.05) compared to that of uninfected
trophoblasts.
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FIG 3 ROR2 overexpression inhibits Wnt5a-induced migration and TCF/LEF-mediated transcription in SGHPL-4 trophoblasts. Human trophoblasts were
transfected with control or ROR2 expressing plasmid. Twenty-four hours posttransfection, the cells were stimulated with Wnt5a (200 ng/ml) or PBS control for
16 h. (A) ROR2 protein expression was analyzed using Western blotting (*, longer exposure). (B) Proliferation was analyzed using MTT assays (means + SEMs).
(C) Cell migration was measured using Transwell assays. Images are representative of three independent experiments. (D) Average migration was determined by
capturing five images (15 fields per treatment) from each well and measuring the intensity using ImageJ software (means + SEMs; **, P < 0.01). (E and F) Cells
were transfected with control or ROR2 plasmid with either TopFlash (E) or FopFlash (F) and pRL-TK plasmids and 7 h later stimulated with Wnt3a (150 ng/ml)
or PBS control for 16 h. Data are representative of two independent experiments (means + SEMs; *, P < 0.05).

CMV has been shown to directly modulate chemokine CCL2
expression within infected cells during viral replication (24), al-
though previously, Hirsch and Schenk (55) reported that the ini-
tial upregulation of CCL2 in CMV-infected cells may be due to
indirect (paracrine) effects, possibly due to the use of different
experimental systems. Likewise, a previous study suggests that
CMV reduced trophoblast invasion through paracrine effects that
increase interleukin 10 (IL-10) (25). In this and our previous stud-
ies, we found no evidence that CMV infection acts on trophoblast
migration in a paracrine manner, although further experiments
using different experimental approaches are needed to confirm
these preliminary observations.

Interestingly, tyrosine kinase receptor ROR2 expression was
significantly increased in CMV-infected trophoblasts, while the
protein expression of noncanonical Wnt pathway mediators JNK
and RhoA (Fig. 2) or EMT markers N-cadherin and Snail (data
not shown) was not significantly altered. CMV infection increased
expression of Wnt5a-mediating receptor ROR2 4.5-fold in CMV-
infected trophoblasts (Fig. 2) (P < 0.05), suggesting that ROR2
plays a critical role in the effects of CMV on trophoblast migra-
tion. Supporting this proposition is the fact that mimicking this
CMV-induced ROR2 protein expression via ectopic expression
inhibited Wnt5a-induced trophoblast migration (Fig. 3). In addi-
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FIG 4 Gene silencing of ROR2 in SGHPL-4 trophoblasts. Human tropho-
blasts were transfected with nonsilencing RNA duplexes or siRNA duplexes
that specifically target ROR2. At 24 h posttransfection, trophoblasts were in-
fected with CMV at MOI of 1 PFU/cell or mock infected and analyzed at 3 days
p-i. (A) mRNA expression was analyzed using real-time PCR analyses. Data are
displayed relative to NS-treated cells (means + SEMs; ***, P < 0.001) B)
Protein expression was analyzed using Western blotting. All data are represen-
tative of two independent experiments.
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FIG 5 Genesilencing ROR2 partially restores CMV-reduced migration of SGHPL-4 trophoblasts. Human trophoblasts were transfected with nonsilencing RNA
duplexes or siRNA duplexes that specifically target ROR2. At 24 h posttransfection, trophoblasts were infected with CMV (H) at an MOI of 1 PFU/cell or mock
infected (0J). (A) Two days p.i., uninfected or infected cells were seeded in Transwells, stimulated with Wnt5a (200 ng/ml) or PBS control for 16 h, and analyzed
3 days p.i. Images are representative of three independent experiments. (B) Average migration was determined by capturing five images (15 fields per treatment)
from each well and measuring the intensity using ImageJ software (means + SEMs; **, P < 0.01). (C) Proliferation was analyzed using MTT assays. Data are
presented as means + SEMs and are representative of three independent experiments.

tion, the use of siRNA duplexes targeting ROR2 restored CMV-
induced reduction in trophoblast migration (Fig. 5). ROR2 siRNA
treatment, however, did not fully recover CMV-reduced tropho-
blast migration (Fig. 5), indicating that additional components of

Reduced Trophoblast Migration

FIG 6 Proposed model of the underlying molecular mechanism of CMV-
reduced trophoblast migration. CMV infection of trophoblasts (1) increases
the expression of Wnt5a-mediating receptor ROR2 (2). We propose that this
increase in tyrosine kinase receptor ROR2 alters Wnt5a-mediated signaling,
which leads to inhibition of canonical Wnt signaling downstream of 3-catenin
stabilization, at the level of TCF/LEF mediated transcription (3), resulting in
reduced trophoblast migration (4).
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Wnt signaling (39) or other pathways that affect trophoblast mi-
gration are likely also affected by CMV infection

A previous study reported that CMV infection decreases
Wnt3a-induced TCF/LEF activity in trophoblasts (39). The cur-
rent study demonstrated that increased ROR2 protein expression
impaired Wnt3a-induced luciferase transcription of the TCEF/LEF
reporter in human trophoblasts (Fig. 3E) (P < 0.05), as previously
observed for the ROR2-ligand Wnt5a (56), suggesting that ROR2
may be involved in antagonizing canonical Wnt signaling in these
cells. Therefore, increased ROR2 by CMV may be responsible for
inhibition of canonical Wnt signaling downstream of (3-catenin
stabilization, at the level of TCF/LEF mediated transcription, and
consequently CMV-induced reduction in trophoblast motility
(Fig. 6).

A previous study identified a link between canonical Wnt sig-
naling and CMV-reduced trophoblast motility (39), but did not
address the noncanonical Wnt signaling pathway in trophoblasts.
We demonstrate that Wnt5a-ROR?2 signaling is also critically in-
volved in CMV-reduced trophoblast motility. These findings sug-
gest a mechanism where CMV modulates expression of Wnt re-
ceptor ROR2 to alter Wnt5a-mediated signaling, antagonize
canonical Wnt signaling, and inhibit trophoblast motility (Fig. 6).
This provides the important possibility that inhibiting this mech-
anism pharmacologically using small molecules provides a target
for therapeutic interventions to reduce CMV-induced placental
damage and disease consequences of congenital CMV infection.
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