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ABSTRACT

Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host
interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4� T cell death.
The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the
very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes
(dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodefi-
ciency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation mRNA sequencing
(RNA-seq). At 6 and 10 dpi, concomitant with increased SIV replication, 366 and 1,350 DEGs were detected, respectively, includ-
ing upregulation of genes encoding proteins that play a role in innate antiviral immune responses, inflammation, and immune
activation. Notably, genes (IFI16, caspase-1, and interleukin 1� [IL-1�]) in the canonical pyroptosis pathway were significantly
upregulated in expression. We further validated increased pyroptosis using flow cytometry and found that the number of CD4�

T cells expressing activated caspase-1 protein, the hallmark of ongoing pyroptosis, were significantly increased, which is corre-
lated with decreased CD4� T cells in dLNs. Our results demonstrated that pyroptosis contributes to the CD4� T cell death in
vivo in early SIV infection, which suggests that pyroptosis may play a pivotal role in the pathogenesis of SIV, and by extension,
that of HIV-1, since pyroptosis not only induces CD4� T cell death but also amplifies inflammation and immune activation.
Thus, blocking CD4� T cell pyroptosis could be a complementary treatment to antiretroviral therapy.

IMPORTANCE

Although secondary lymphoid tissues (LTs) are principal sites of human immunodeficiency virus type 1 (HIV-1) replication,
inflammation, immune activation, and CD4� T cell death, immunopathogenesis in LTs during early infection remains largely
unknown. Using the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV rectal infection, we investigated early
virus-host interactions. Our results revealed elevated potent host responses in early infection in LTs, including upregulation of
genes involved in antiviral immune response, inflammation, and immune activation. Importantly, genes involved in the canoni-
cal pyroptosis pathway were significantly upregulated, and there was a strong correlation between CD4� T cell decrease and in-
creased number of CD4� T cells expressing activated caspase-1 protein, demonstrating that pyroptosis contributes to CD4� T
cell death in vivo in very early SIV infection. Our finding suggests that blocking pyroptosis may be able to decrease CD4� T cell
loss during early SIV infection.

Secondary lymphoid tissues (LTs) are the principal sites where
human immunodeficiency virus type 1 (HIV-1) replicates and

host-virus interactions take place, resulting in immune activation,
inflammation, CD4� T cell death, and ultimately immune defi-
ciency (1–3). However, the mechanisms underlying immuno-
pathogenesis in LTs during very early infection, especially CD4� T
cell death, remain incompletely understood.

CD4� T cell death is a hallmark of disease progression in
HIV-1 infection. To date, several mechanisms have been proposed
to explain CD4� T cell death during HIV-1 infection in LTs. First,
CD4� T cell death results directly from HIV-1 productive infec-
tion via viral cytopathic effect. However, only a small fraction of
total CD4� T cells in LTs are productively infected by HIV-1 (4,
5); therefore, pathogenic effect alone is not sufficient to account
for the overall CD4� T cell death in vivo. Another proposed mech-
anism is apoptosis in HIV-1 uninfected bystander CD4� T cells

mediated through Fas and TRAIL (tumor necrosis factor [TNF]-
related apoptosis-inducing ligand) signaling (6–8). It was also
demonstrated that HIV-1 Gp120 protein, expressed on the mem-
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branes of infected cells or in soluble forms, can bind CD4 and
CCR5 (chemokine [C-C motif] receptor 5)/CXCR4 (chemokine
[C-X-C motif] receptor 4) of uninfected cells to induce apoptosis
(9). Moreover, HIV-1 Tat, Vpr, and Nef proteins also can induce
apoptosis of uninfected CD4� T cells (10–12). Additionally, cyto-
toxic CD8� T cells can lyse infected CD4� T cells (13). Last, a
recent seminal study by Greene research group showed that py-
roptosis is the major cause (95%) of death of HIV-1 nonproduc-
tively infected CD4� T cells (14), suggesting that CD4� T cell
death, inflammation, and immune activation driven by pyropto-
sis make up a unified theme in the immunopathogenesis of HIV
infection. However, the role of pyroptosis in CD4� T cell death in
vivo, especially during early infection, remains largely unknown.

Pyroptosis resembles apoptotic programmed cell death but is a
form of proinflammatory programmed cell death characterized
by cell membrane rupture and release of inflammatory intracellu-
lar contents (15, 16). Pyroptosis can be induced by various micro-
bial infections and noninfectious stimuli (17, 18). It was not ini-
tially distinguished from apoptosis, because both apoptosis and
pyroptosis are self-destructive processes induced by activation of
caspases, a group of cysteine proteases (19). However, further
studies revealed that the mechanisms and characteristics of pyrop-
tosis differ from those of apoptosis. Pyroptosis involves
caspases-1, -4, and -5 and is inherently proinflammatory, whereas
apoptosis involves caspase-2, -3, -6, -7, -8, -9, and -10 and occurs
in the absence of inflammation (20). Although extensively studied
in bacterial infections (21, 22), the roles of pyroptosis in viral
infections were just recently recognized (14, 23). While the elegant
ex vivo study demonstrated that pyroptosis induced by abortive
HIV-1 infection is the predominant means of CD4� T cell deple-
tion in HIV-1 infection (14), the in vivo role of pyroptosis in CD4�

T cell death in HIV-1/simian immunodeficiency virus (SIV) in-
fection, especially in very early infection, remains largely un-
known. Pyroptosis not only can lead to cell death but it also in-
duces inflammation and immune activation (24). Therefore,
understanding the in vivo role of pyroptosis in driving vicious
cycles of CD4� T cell death, inflammation, and immune activa-
tion in HIV pathogenesis is needed.

SIV infection of rhesus macaques recapitulates major aspects
of mucosal transmission and immunopathogenesis of HIV-1 in-
fection. Using an SIV/rhesus macaque model of HIV-1 rectal
transmission, our recent study showed that there are robust rectal
mucosal responses to acute SIV infection (25). However, host re-
sponses in LTs during very early infection are largely unknown. In
this study, we used next-generation mRNA sequencing (RNA-
seq) and found that draining lymph nodes (dLNs) of virus rectal
entry had a significant response as early as 3 days after intrarectal
inoculation (days postinoculation [dpi]) and more robust antivi-
ral innate immune response, inflammation, and immune activa-
tion at 6 and 10 dpi. Importantly, our transcriptome data unbi-
asedly revealed significant upregulation in expression of many
genes in the signaling pathway of pyroptosis. Furthermore, pyrop-
tosis in CD4� T cells was verified using flow cytometry.

In all, our data show there is a significant increase of pyroptosis
in CD4� T cells in LTs, which correlates with a decline in CD4� T
cells, and increases of inflammation and immune activation dur-
ing early SIV infection. Thus, we unambiguously demonstrate, for
the first time to our knowledge, that pyroptosis contributes to in
vivo CD4� T cell death in LTs during early SIV infection. Further
study is warranted to develop therapeutic measures targeting py-

roptosis in order to simultaneously block CD4� T cell death, re-
duce inflammation, and decrease immune activation as a comple-
mentary treatment to antiretroviral therapy.

MATERIALS AND METHODS
Rhesus macaques and SIV rectal inoculation. This study was reviewed
and approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Nebraska—Lincoln (protocol number 559)
and BIOQUAL, Inc. (protocol number 10-0000-01). Twenty-two adult
male rhesus macaques (Macaca mulatta) of Indian origin housed at BIO-
QUAL, Inc., in accordance with the regulations of the American Associa-
tion for Accreditation of Laboratory Animal Care standards were used in
this study. All these animals tested negative for HIV-2, SIV, type D retro-
virus, and simian type D retrovirus 1 (SRV-1) infections. The macaques
were intrarectally inoculated with SIVmac251 (3.4 � 104 50% tissue cul-
ture infective doses [TCID50], provided by Nancy Miller, NIAID, NIH).
For the RNA-seq study, draining lymph node (dLN) tissues from ma-
caques at day 0 (uninfected; n � 3), 3 (n � 3), 6 (n � 4), and 10 (n � 3)
postinoculation were used. For quantification of CD4� T cells and acti-
vated caspase-1 level using flow cytometry, more macaques at days 0 (un-
infected; n � 3), 14 (n � 3), and 28 (n � 3) postinoculation were added.
A portion of dLNs were snap-frozen in liquid nitrogen immediately after
collection and stored at �80°C until they were analyzed, and another
portion was immediately used for lymphocyte isolation.

RNA extraction and next-generation sequencing. Total RNA was ex-
tracted according to our previously published protocol (26). Briefly, dLNs
were homogenized in TRIzol (catalog no. 15596-018; Invitrogen) with a
power homogenizer for total RNA extraction. The extracted RNA samples
were further purified using the RNeasy minikit (catalog no. 74104; Qia-
gen). RNA quality was verified by using a Bioanalyzer 2100 (Agilent, Palo
Alto, CA), and RNA-seq libraries were generated using the Sample Prep
kit (catalog no. FC-122-1001; Illumina Inc.) according to the manufac-
turer’s instructions. Briefly, mRNA was purified from total RNA using
oligo(dT) magnetic beads, fragmented, and reverse transcribed into
cDNA, which went through an end-repair process followed by ligation to
adapters. A single DNA fragment was enriched by PCR and used for se-
quencing on an Illumina Genome Analyzer IIx sequencer at the Genomics
Core Research Facility of the University of Nebraska—Lincoln. Each of
the 13 sequenced samples had approximately 30 million 75-nucleotide
single-end reads, and the sequencing results passed quality control.

Transcriptome data analyses. Reads from each sample were mapped
to the rhesus macaque genome (Mmul_051212) and SIVmac251 full-
length reference sequences using GSNAP program (27) with default pa-
rameters, and the resulting SAM (sequence alignment/map) files were
converted to BAM (binary version of SAM) files using SAMtools (28).
Integrative Genomics Viewer (IGV) (29) was used for visualization and
quality check of mapping. For rhesus transcriptome analysis, Java Picard
utilities were used to count the number of reads mapped to each gene
annotated in the rhesus macaque reference genome. The read count data
for each annotated gene were then statistically analyzed using the DESeq
package, which implements an extended negative binomial distribution
model (30). Compared with genes in uninfected control macaques, genes
in SIV-infected samples with an adjusted P value (Benjamini-Hochberg
method) (30) lower than 0.05 and a fold change greater than two were
defined as differentially expressed genes (DEGs), which were further an-
alyzed for gene functional categorization and pathway activation by using
DAVID (31) and literature search. To analyze the level of SIV mRNA,
reads mapped to the SIVmac251 reference sequence were counted base by
base using SAMtools. The count data were normalized based on 30 mil-
lion mapped reads in each sample, averaged, and plotted.

Flow cytometry. To quantify CD4� T cells and their pyroptosis, the
rhesus macaques euthanized at 10, 14, and 28 dpi and uninfected controls
were studied. Lymphocytes freshly isolated from dLNs were stained with
antibodies against human CD3 (Alexa Fluor 700 conjugated; catalog no.
557917; BD Pharmingen), CD4 (phycoerythrin [PE]-Cy5.5 conjugated;
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catalog no. 35-0048-42; eBioscience) and 6-carboxyfluorescein (FAM)-
YVAD-fluoromethylketone (FMK) (catalog no. 97; ImmunoChemistry
Technologies). FAM-YVAD-FMK can bind to activated caspase-1, a
marker of ongoing pyroptosis (32). The samples were run on an Aria II
cell sorter (BD Company, Franklin Lakes, NJ). The collected data were
analyzed using FlowJo (FlowJo LLC, Ashland, OR).

Statistical analysis. The DESeq package, which implements an ex-
tended negative binomial distribution model (30), was used to analyze
read count data of each gene in the rhesus macaque genome to identify
differentially expressed genes (DEGs). In flow cytometric result analysis,
nonparametric Mann-Whitney U test was conducted using R scripts. A P
value of �0.05 was considered significant. To test the relationship of ac-
tivated caspase-1 in CD4� T cells and CD4� T cell counts, the Pearson
correlation coefficient was calculated.

Microarray data accession number. The raw sequence data were de-
posited in the Sequence Read Archive (SRA) of the National Center
for Biotechnology Information (NCBI) under accession number
SRP056872.

RESULTS
SIV productive infection in dLNs at different days after rectal
inoculation. To identify the genome-wide gene expression pat-
tern of SIV, viral mRNA reads were mapped to the SIV genome,
the read coverage at each position was calculated, and the data
were then normalized and plotted (Fig. 1), which provided un-
precedented detail of SIV mRNA transcripts with single-nucleo-
tide resolution. At 3 days after rectal inoculation (days postinoc-
ulation [dpi]), SIV mRNA was detected in the dLNs using RNA-
seq, albeit with low read coverage, which is consistent with the
results of quantitative reverse transcription-PCR (qRT-PCR) and
in situ hybridization (ISH) (unpublished data). At 6 and 10 dpi,
significantly higher SIV mRNA was detected in the dLNs using
RNA-seq and viral RNA (vRNA) levels increased 100-fold from 6
dpi to 10 dpi (Fig. 1). The level of expression of different SIV genes
varied, with accessory protein genes expressed higher than gag and
pol genes, which may help antagonize host antiviral restriction
factors discussed below (see Fig. S1 in the supplemental material).

Robust host responses to early SIV infection in dLNs. To elu-
cidate host responses in dLNs during very early SIV infection, the
RNA-seq reads were mapped to each gene in the rhesus macaque
genome, counted, and statistically analyzed. As shown in Fig. 2A
and Table S1 in the supplemental material, there were 103, 366,
and 1,350 DEGs at 3, 6, and 10 dpi, respectively. This increased

number of DEGs correlated with the levels of SIV RNA at 3, 6, and
10 dpi. To understand their functions, the DEGs were categorized
by using DAVID based on their adjusted P values (31). There was
no significantly enriched category at 3 dpi. However, there were
multiple enriched functional categories at 6 dpi and more at 10
dpi, including cytosolic DNA sensing, Toll-like receptor signaling,
retinoic acid-inducible gene I (RIG-I)-like receptor signaling,
chemokine signaling (Fig. 2B), immune activation, and pyropto-
sis as shown in the respective sections below.

Activation of pattern recognition receptors. In the enriched
functional categories at 6 dpi, cytosolic DNA sensing, Toll-like
receptor signaling, and RIG-I receptor signaling for recognition of
foreign pathogens were detected, indicating that SIV was sensed,
through which immune responses were initiated. For clarity,
DEGs of pattern recognition of pathogens and interferon signal-
ing pathways were illustrated (Fig. 2C). At 6 dpi, RIG-I, melanoma
differentiation-associated protein 5 (MDA5), LGP2 and DDX60,
all involved in double-stranded RNA (dsRNA) recognition, were
upregulated. At 10 dpi, additionally, the levels of expression of
Toll-like receptor 3 (TLR3), TLR7, and TLR8 were significantly
upregulated, of which TLR3 recognizes dsRNA in endosomes, and
TLR7 and TLR8 recognize single-stranded RNA (ssRNA) in en-
dosomes (33).

After HIV-1/SIV entry, the ssRNA genome is used as a tem-
plate to synthesize its cDNA. The presence of DNA in eukaryotic
cell cytoplasm is a danger signal that triggers defense responses
(34). The upregulated genes in cytosolic DNA recognition at 10
dpi include DLM-1/ZBP1 (DAI), cyclic GMP-AMP synthase
(cGAS), and IFI16 (Fig. 2C), reflecting host responses to the pres-
ence of SIV DNA. After sensing HIV-1 and other retroviruses,
cGAS can induce type I interferons and cytokines (35), and IFI16
can control HIV-1 replication (36). In addition to viral recogni-
tion, our results showed the upregulation of genes involved in
bacterial recognition (TLR2, TLR4, and caspase-4 and -5) (37, 38)
at 10 dpi.

Elevated antiviral responses. The antiviral activities of alpha
interferon (IFN-�) and IFN-� are exerted through induction
of a large number of interferon-stimulated genes (ISGs). At 6
and 10 dpi, numerous ISGs were upregulated in expression. For
clarity, the ISGs were classified based on their functions (see
Fig. S1 in the supplemental material). It is striking that these

FIG 1 Genome-wide SIV gene expression quantified using RNA-seq. The read coverage values on the SIV genome were normalized based on 30 million reads
mapped to rhesus macaque and SIV genomes.
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upregulated ISGs target various steps of the HIV-1/SIV life
cycle, i.e., inhibition of viral entry (IFITM1 and IFITM3);
blockade of viral disassembly (TRIM5); introduction of hyper-
mutations (APOBEC3A, APOBEC3C, APOBEC3D, APOBEC3F,
APOBEC3G, and APOBEC3H); blockade of viral DNA synthe-
sis (SAMHD1 and MOV10); inhibition of viral transcription
(MX1, MX2, PML, and SP100); degradation of mRNA (OAS1,
OAS2, OAS3, and OASL); inhibition of protein translation
(SLFN13, SLFN14, PKR, and IFIT protein family); blockade of
viral Gag protein trafficking (TRIM22); blockade of viral as-
sembly (HERC5 and HERC6); and blockade of viral release
(ISG15, BST2/tetherin, and viperin). Other upregulated ISGs
(e.g., IFI44L and IFI6) also belong to viral restriction factors,
but the inhibitory mechanisms are unclear.

Besides ISGs, the upregulated DEGs also showed enrichment
of antigen presentation, with upregulated expression of major his-
tocompatibility complex (MHC) class I �-chain, �-chain (B2M),
TAP1, and TAP1-binding protein (TAP1BP) at 10 dpi. Further-
more, upregulated DEGs also include CD94 (KLRD1), perforin

(PRF1), KIR2DL4, FcgRIII (FCGR3), and IFN-�, indicating the
activation of NK cell-mediated cytotoxicity (Fig. 2B).

Immune activation and inflammation. Immune activation
and inflammation stimulated by foreign pathogens through pat-
tern recognition receptors as discussed above manifest increased
expression of ISGs and proinflammatory chemokines and cyto-
kines. As shown in Table S1 in the supplemental material, RNA-
seq revealed, as early as 3 dpi, that CCL13 and CCL20 were signif-
icantly upregulated. At 6 dpi, CXCR3 ligands chemokine (C-X-C
motif) ligand 9 (CXCL9), CXCL10, and CXCL11 were upregu-
lated. At 10 dpi, a larger number of cytokine genes were upregu-
lated, including chemokine (C-C motif) ligand 3 CCL3 (macro-
phage inflammatory protein 1� [MIP-1�]), CCL5 (RANTES),
IL-10, IL-1�, IFN-�, IFN-�, and IFN-�.

CD4� T cell death. CD4 T cell death in LTs is a hallmark of
HIV-1 infection. As expected and as reported previously (26, 39,
40), RNA-seq revealed an upregulated expression of genes in-
volved in apoptosis, including FasL and TNF-related apoptosis-
inducing ligand (TRAIL). Importantly, genes involved in canon-

FIG 2 Robust host responses in dLNs during early SIV infection. (A) Number of differentially expressed genes (DEGs) at 3, 6, and 10 dpi. (B) Enriched functional
categories of DEGs at 6 dpi and 10 dpi. (C) DEGs involved in interferon signaling pathways. (D) Schematic representation of canonical pyroptosis pathway. The
DEGs at 10 dpi are shown in red.
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ical pyroptosis were also upregulated (Fig. 2D). There was an
upregulated expression of caspase-1 and IL-1� genes, the former
is the hallmark of canonical pyroptosis, indicating there is an on-
going pyroptosis in LTs during early SIV infection. Since the in
vivo role of pyroptosis during HIV-1/SIV infection remains poorly
defined, we quantified CD4� T cell pyroptosis in dLNs of infected
and uninfected macaques by measuring activated caspase-1 in
CD4� T cells using flow cytometry (Fig. 3A and C). The mean of
CD4� T cells expressing activated caspase-1 increased 1.5-fold at
10 dpi compared with uninfected macaques, although it does not
reach statistical significance (Fig. 3C). At 14 and 28 dpi, the mean
of CD4� cells expressing activated caspase-1 significantly in-
creased 3.8- and 6.4-fold, respectively (P 	 0.05).

In the quantification of CD4� T cells, CD4� T cells out of
CD3� T cells significantly declined from 70% in uninfected ani-
mals to 51.7% at 10 dpi and further decreased to 28.9% at 28 dpi
(Fig. 3B). This dramatic decrease is consistent with the results of a
previous study (41). To test the relationship between CD4� T cell
loss and pyroptosis of CD4� T cells, a linear regression was per-
formed, and Pearson correlation coefficient was calculated. The
correlation coefficient (R � �0.7663) indicated a strong negative
correlation between activated caspase-1 in CD4� T cells and

CD4� T cell decline. The coefficient of determination (R2 �
0.5872) further suggested that activated caspase-1 expression in
CD4� T cells partially (58.7%) accounts for the CD4� T cell de-
cline. Therefore, our results show that there is an increased pyrop-
tosis-mediated CD4� T cell death in LTs in early SIV infection.

DISCUSSION

HIV-1 immunopathogenesis mainly takes place in the second-
ary LTs. Accumulated evidence shows that inflammation, im-
mune activation, and CD4� T cell death resulting from HIV-1
infection are three major themes in LTs driving disease pro-
gression (3, 42). In this study, we systematically investigated
virus-host interactions in LTs during very early infection using
an SIV/Indian rhesus macaque model of HIV-1 rectal infec-
tion. At 3 dpi, RNA-seq analyses revealed 103 DEGs in draining
LNs, indicating a rapid host response to the fast SIV dissemi-
nation into dLNs following rectal transmission. A recent study
demonstrated that rhesus macaques receiving daily potent
combined antiretroviral therapy (ART), initiated 3 days after
intrarectal inoculation of SIVmac251, controlled viremia to an
undetectable level for 6 months. However, after interruption of
ART, viremia rebounded in all macaques (43). Consistent with

FIG 3 CD4� T cell pyroptosis correlates with decline of CD4� T cells assessed using flow cytometry. (A) Representative results of CD4� T cells expressing active
caspase-1 protein in dLNs of uninfected macaques and macaques 28 dpi. FSC, forward scatter: SSC, side scatter. (B) Decrease of CD4� T cells in dLNs after SIV
infection. (C) Increase of CD4� T cells expressing activated caspases-1 in dLNs after SIV inoculation. In panels B and C, each symbol represents the value for an
individual macaque, and each bar shows the average value for the group of macaques. Mean values that are significantly different (P � 0.05) are indicated by a
bar and asterisk. (D) Correlation analysis of CD4� T cells expressing activated caspase-1 and the levels of CD4� T cells.
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this observation, our results of clear host responses in dLNs by
RNA-seq demonstrated that SIV has disseminated into dLNs
and established a productive infection at 3 dpi. Over the course
of SIV infection from 6 to 10 dpi, there was a 100-fold increase
of viral mRNA in dLNs detected by RNA-seq (Fig. 1); and the
host responses were concurrently increased, from 366 to 1,350
DEGs. The DEGs at 6 and 10 dpi show increased inflammation
and immune activation manifested as increased expression
of pathogen pattern recognition receptors (PRRs), ISGs, cyto-
kines, and chemokines, such as CCL3 (MIP-1�), CCL5
(RANTES), IL-10, IL-1�, IFN-�, IFN-�, and IFN-�.

The host inflammation, immune activation, and antiviral re-
sponses are initiated by activation of PRRs. Our results showed
PRRs of cytosolic DNA sensing, Toll-like receptor signaling, and
RIG-I-like receptor signaling were upregulated both at 6 dpi and
at 10 dpi. NOD-like receptor signaling was significantly enriched
at 10 dpi (Fig. 2B). Viral RNA recognition receptors, including
RIG-I (3-fold), MDA5 (2.6-fold), LGP2 (3-fold), and DDX60
(3.8-fold), were upregulated from 6 dpi, and genes encoding these
proteins were further upregulated at 10 dpi (Fig. 2C). RIG-I,
MDA5, and LGP2 are key receptors that trigger interferon expres-
sion after RNA virus infection (44). The upregulation of the RNA-
sensing genes and detected SIV RNA suggest that major host re-
sponses to the presence of SIV in LTs are initiated at or before 6
dpi. Besides RNA sensing, genes encoding cytosolic DNA sensors
were also upregulated, including DAI (2.9-fold), cGAS (2.4-fold),
and IFI16 (2.4-fold) at 10 dpi, which are also upstream of the
canonical pyroptosis pathway.

CD4� T cell death in LTs is one of the consequences of HIV-1
infection. In this study, the average frequency of CD4� T cells
(percentage of CD4� T cells out of CD3� T cells) decreased at
10 dpi as measured by flow cytometry (Fig. 3B). With regard to
the mechanism of CD4� T cell decline, RNA-seq results show a
significantly increased expression of apoptosis genes of FasL
(5-fold) and TRAIL (2.6-fold) at 10 dpi, indicating ongoing
apoptosis in LTs, which is consistent with our and other’s pre-
vious reports showing that the activated Fas/FasL pathway con-
tributes to CD4� T cell death in HIV-1 and SIV infection (26,
39, 40). Importantly, genes involved in pyroptosis (IFI16,
caspase-1, and IL-1�) were significantly upregulated (Fig. 2D),
suggesting that pyroptosis also contributes to CD4� T cell
death in vivo in early SIV infection. Flow cytometric study of
lymphocytes freshly isolated from the same dLNs showed that
the percentage of CD4� T cells that expressed active caspase-1
protein increased during early SIV infection compared with
uninfected controls. The percentage of CD4� T cells expressing
activated caspase-1 protein at 10 dpi was higher than that for
the controls but did not reach statistical significance, although
caspase-1 mRNA at 10 dpi was already significantly upregu-
lated in dLNs. This discrepancy may reflect the different regu-
latory mechanisms and kinetics of mRNA versus protein ex-
pression. However, the percentage of CD4� T cells expressing
activated caspase-1 protein significantly increased at 14 and 28
dpi. Furthermore, there is a strong negative correlation be-
tween increased expression of active caspase-1 in CD4� T cells
and the decline of CD4� T cells. The coefficient of determina-
tion suggests that pyroptosis contributes to more than half
(58.7%) of CD4� T cell loss during early SIV infection. The
remaining CD4� T cell loss might be mediated by apoptosis
and other mechanisms as discussed above. Of note, in addition

to increased expression of caspase-1, which is involved in ca-
nonical pyroptosis, our RNA-seq results also revealed in-
creased expression of caspase-4 and caspase-5 of the nonca-
nonical pyroptosis pathway. The noncanonical pyroptosis
pathway can be activated by intracellular lipopolysaccharide
(LPS) (38), the major structural element of the outer mem-
brane in Gram-negative bacteria. The plasma LPS level was
elevated in HIV-1 chronically infected individuals and SIV
chronically infected rhesus macaques (45, 46). Recently, it was
also documented that 14 and 28 days after SIV infection, the
gut epithelial barrier was compromised (47, 48), and LPS levels
in the colon and mesenteric lymph nodes were significantly
increased in rhesus macaques (48). Considering the damage to
the intestinal epithelial barrier, microbial translocation in SIV
infection, and the increased expression of caspase-4, caspase-5,
and bacterial recognition receptor TLR2 and TLR4 genes re-
vealed in this study, noncanonical pyroptosis may also contrib-
ute to CD4� T cell death in vivo during early SIV infection.
However, further studies are required to further examine this
hypothesis.

Collectively, our study demonstrates a striking pattern of host
responses to early SIV infection in LTs characterized by upregula-
tion of gene expression of antivirus, inflammation, immune acti-
vation, and CD4� T cell death. Importantly, to our knowledge,
this is the first in vivo study to demonstrate that canonical pyrop-
tosis contributes to CD4� T cells death in vivo in LTs during early
SIV infection. Since pyroptosis can drive a vicious cycle of CD4� T
cell death, proinflammatory cytokine release, and intensified im-
mune activation, blocking pyroptosis could be a complementary
treatment to antiretroviral therapy.
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