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ABSTRACT

Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional acti-
vation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These
early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a pro-
ductive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription
factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chro-
matin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relax-
ation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antivi-
ral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely,
we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decon-
densation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic
gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism.

IMPORTANCE

Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation pro-
cesses in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in
HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 re-
presses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during produc-
tive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial
step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection.
We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These
findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the
SUMO modification of E1B-55K by a so far unknown mechanism.

Before efficient replication can occur, various DNA virus ge-
nomes must be transported into the nucleus. Simultaneously,

host cells perceive the introduction of noncellular nucleic acids or
unscheduled replication as danger signals and activate a DNA
damage response (DDR) that leads to cell cycle arrest and/or
apoptosis. To counteract this, human adenovirus (HAdV) ex-
presses early viral genes to degrade or displace key regulators of
cellular antiviral measures. In turn, to repress viral expression,
cells mobilize a network of transcriptional repressors and activa-
tors that normally control cellular homeostasis (1, 2).

The nuclear domains thought to be responsible for repress-
ing viral genomes are promyelocytic nuclear bodies (PML-
NBs) (3, 4) combining host proteins with transcriptional re-
pressive functions via covalent posttranslational SUMO
modification. The cellular transcription factor Daxx, found in
these PML-NBs in a complex with the ATRX protein, induces
histone deacetylation. Together these factors negatively regu-
late HAdV gene expression (5, 6). This Daxx/ATRX-mediated
restriction imposed upon virus growth is counteracted by the
early viral protein E1B-55K alone and in combination with
E4orf6, leading to the reduction of Daxx/ATRX via a protea-
some-dependent pathway (5–7).

We have also shown that HAdV inhibits the SPOC1 restriction

factor, which is dynamically associated with chromatin and in-
duces chromosome condensation to regulate proper cell division
(8). SPOC1 is proposed to increase histone H3 lysine 9 (H3K9)
lysine methyltransferases (KMTs) and trimethylated H3K9
(H3K9me3) histone marks to promote chromatin condensation
by recruiting histone methyltransferases (HMTs). We found that
SPOC1 protein levels were decreased in HAdV-infected cells,
which we could attribute to proteasomal degradation mediated by
the E1B-55K/E4orf6 E3 ligase complex (8).

Another well-studied SPOC1-interacting protein is the hetero-
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chromatin-associated transcription factor KAP1 (Kruppel-associ-
ated box [KRAB]-associated protein 1)/transcriptional interme-
diary factor 1� (TIF1�)/KRAB-interacting protein 1 (KRIP1)/
tripartite motif containing 28 (TRIM28) (9, 10). Recruitment of
this protein to genetic loci increases H3K9me2/3 repressive his-
tone marks, induces the formation of heterochromatin, and
blocks gene expression (8). Upon DNA damage, KAP1 is rapidly
phosphorylated at serine 824 (S824) by the nuclear phosphatidyl-
inositol 3 kinase-like (PIKK) family members ataxia telangiectasia
mutated (ATM), ataxia telangiectasia and Rad3 related (ATR),
and the DNA-dependent protein kinase catalytic subunit (DNA-
PKcs). It was shown that the ATM-mediated phosphorylation of
KAP1 at S824, in concert with the chromatin remodeler chro-
modomain helicase DNA binding protein 3 (CHD3), which is
essential for DDR in heterochromatin, induces functionally inac-
tive protein and relaxed chromatin (11, 12). This is followed by the
activation of proteins involved in cell cycle control, apoptosis, and
the interferon response (13, 14). Conversely, inhibition of KAP1
phosphorylation prevents decondensation of heterochromatin
repair foci, which renders cells hypersensitive to double-strand
break (DSB)-inducing agents.

Besides phosphorylation, KAP1-mediated recruitment of re-
pressive components can also be regulated by SUMOylation of
this host factor itself. Upon dephosphorylation by protein phos-
phatase 1� (PP1�), protein phosphatase 1� (PP1�), or protein
phosphatase 4 (PP4) (15–17), the bromodomain of KAP1 can be
SUMOylated by its adjacent PHD domain via a PHD/Ubc9 inter-
action (13, 18); SUMO1 as well as SUMO2 can be conjugated to
the C terminus of the KAP1 protein (14, 19). SENP1 and SENP7
SUMO proteases were shown to reverse KAP1 SUMOylation (14).

KAP1 contains an N-terminal RING, B-box, and coiled-coil
domain (RBCC)/tripartite interaction motif (TRIM) domain,
which is responsible for the interaction with KRAB domain-con-
taining zinc finger (KRAB ZNF) transcription factors (20) and
SPOC1 (10). The heterochromatin protein 1 (HP1) box, a central
PXVXL pentapeptide region within the KAP1 protein, mediates
the interaction with HP1 (21), and the C-terminal PHD domain
facilitates the recruitment of the Mi2� subunit within the NuRD
histone deacetylase complex (22) and the H3K9-specific HMT
SETDB1 (23).

KAP1 plays a role during infection with different human-
pathogenic viruses. For example, it was shown that KAP1 inhibits
human immunodeficiency virus type 1 (HIV-1) integration by
recruiting the viral integrase, followed by its deacetylation
through histone deacetylases (HDACs) (24). KAP1 was also iden-
tified to be a latency regulator for Kaposi’s sarcoma-associated
herpesvirus (KSHV), i.e., switching viral latency to lytic replica-
tion (25). Clearly, cellular chromatin remodeling mechanisms
and DDR impairment play key roles in regulating adenoviral gene
expression and illustrate the importance of epigenetic regulation
at the chromatin level. Recent studies of Forrester et al. showed
evidence that during HAdV infection KAP1 interacts with E1B-
55K and is phosphorylated at S824 (26).

In our study, we demonstrate that KAP1 represses HAdV
gene expression. This novel host restriction factor is efficiently
deSUMOylated upon infection via an SUMO E1B-55K-depen-
dent process. Additionally, we provide evidence that KAP1 in-
duces SUMOylation of the viral factor E1B-55K and therefore
plays a major role during productive HAdV infection.

MATERIALS AND METHODS
Cell culture and generation of knockdown cell lines. H1299 cells (27),
A549 cells (DSMZ ACC 107; Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH, Braunschweig, Germany), and HeLa cells stably
expressing 6His-SUMO1 or 6His-SUMO2 (kindly provided by Ron Hay,
University of Dundee) (28) were grown as monolayer cultures in Dulbec-
co’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf
serum (FCS), 100 U of penicillin, and 100 �g of streptomycin per ml in a
5% CO2 atmosphere at 37°C.

To generate KAP1-knockdown cell lines, H1299 and A549 cells were
transduced with lentiviral vectors expressing short hairpin RNA (shRNA)
targeted to the coding strand sequence 5=-GGAGTTGGATCTCTCAGA
A-3= located at nucleotides 626 to 643 in kap1. Transduced cells were
selected and maintained in medium containing puromycin (1 �g/ml).

Plasmids and transient transfections. The HAdV proteins examined
in this study were expressed from their respective complementary DNAs
under the control of the cytomegalovirus immediate early promoter de-
rived from the pcDNA3 vector (Invitrogen) to express wild-type (wt)
adenovirus type 5 (AdV5) E1B-55K (29, 30). pcDNA3.1-Flag-derived
plasmids expressing either the KAP1 wild-type construct, the M2 mutant,
a mutant lacking the RBCC domain (the �RBCC mutant), a mutant lack-
ing the PHD/bromo (PB) domain (the �PB mutant), or a mutant lacking
both the RBCC and PB domains [the �(RBCC�PB) mutant] were kindly
provided by Peggy Farnham (University of Southern California, Los An-
geles, CA, USA). TIF1�/KAP1 tagged with enhanced yellow fluorescent
protein (EYFP) and yellow fluorescent protein (EYFP-YFP-TIF1�/
KAP1), YFP-TIF1�, and YFP-TIF1� were kindly provided by Hans Will
(University Hospital Eppendorf, Hamburg, Germany). KAP1 point mu-
tations were introduced by site-directed mutagenesis using the primers
shown in Table 1. For transient transfection, subconfluent cells were
treated with a transfection mixture of DNA and 25-kDa linear polyethyl-
enimine as described recently (31).

Viruses. H5pg4100 served as the wild-type virus in these studies (32).
The mutant viruses H5pm4149 and H5pm4154 were generated as de-
scribed recently (33, 34). Both viruses carry point mutations in the E1B-
55K (H5pm4149) or E4orf6 (H5pm4154) open reading frame and do not
express the respective viral protein. Viruses were propagated and titrated
in HEK293 cell monolayer cultures, and infections were performed as
described previously (34).

Antibodies and protein analysis. Primary antibodies specific for the
viral proteins used in this study included E1A mouse monoclonal anti-
body (MAb) M73 (35), E1B-55K mouse MAb 2A6 (36), E2A-72K mouse
MAb B6-8 (37), E4orf6 mouse MAb RSA3 (38), L4-100K rat MAb 6B-10
(39), E4orf3 rat MAb 6A11 (40), and HAdV type 5 (HAdV5) rabbit poly-
clonal serum L133 (34). Primary antibodies specific for cellular proteins
included KAP1 rabbit polyclonal antibody H-300 (Santa Cruz Biotech-
nology), phospho-KAP1 (S824) rabbit polyclonal antibody (Bethyl Lab-
oratories, Inc.), SPOC1 rat monoclonal antibody 6F6 (8, 10), GAPDH

TABLE 1 Primers used in this study

Primer
no. Primer descriptiona Primer sequence

2542 KAP1S824A fwd 5=-CTGGCCTGAGTGCCCAGGAGCTG-3=
2543 KAP1S824A rev 5=-CAGCTCCTGGGCACTCAGGCCAG-3=
2548 KAP1K554A fwd 5=-GTCTCCTCCTCCGCGACAATGG-3=
2549 KAP1K554A rev 5=-CCATTGTCGCGGAGGAGGAGAC-3=
2550 KAP1K779A fwd 5=-TGCACGTCTGCCGCGTCCTCAG-3=
2551 KAP1K779A rev 5=-CTGAGGACGCGGCAGACGTGCA-3=
2552 KAP1K804A fwd 5=-ACAGCAGAGAACGCGGTGTCACC-3=
2553 KAP1K804A rev 5=-GGTGACACCGCGTTCTCTGCTGT-3=
2645 KAP1K676A fwd 5=-CATCCTCCTCCGCCAGGTCAGG-3=
2646 KAP1K676A rev 5=-CCTGACCTGGCGGAGGAGGATG-3=
a fwd, forward; rev, reverse.
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FIG 1 HAdV induces KAP1 phosphorylation in a virus concentration-dependent manner. (A and B) H1299 cells (A) and A549 cells (B) were infected with wt
virus (H5pg4100) at a multiplicity of infection of 50 focus-forming units per cell and harvested after the indicated time points postinfection. Total cell extracts
were prepared, separated by SDS-PAGE, and subjected to immunoblotting using mouse MAb 2A6 (anti-E1B-55K), rabbit polyclonal Ab H-300 (anti-KAP1),
rabbit polyclonal Ab against KAP1 phosphorylated at S824 (pKAP1S824), and mouse MAb AC-15 (�-actin) as a loading control. (C) H1299 cells were infected
with wt virus (H5pg4100) at the indicated multiplicity of infection (moi). Cells were harvested at 24 h p.i., and total cell extracts were separated by SDS-PAGE and
subjected to immunoblotting using mouse MAb B6-8 (anti-E2A), rabbit polyclonal Ab H-300 (anti-KAP1), rabbit polyclonal Ab against KAP1 phosphorylated
at S824, and mouse MAb AC-15 (anti-�-actin) as a loading control. (D) H1299 cells were infected with wt virus (H5pg4100) and mutant viruses (H5pm4149,
H5pm4154) at a multiplicity of infection of 50 focus-forming units per cell. Cells were harvested at 24 h p.i., and total cell extracts were separated by SDS-PAGE
and subjected to immunoblotting using the Ab indicated in the legend to panel C and mouse MAb RSA3 (E4orf6). (E) H1299 cells were infected and harvested
as described in the legend to panel D. Cell extracts were fractionated into soluble and chromatin-bound proteins, separated by SDS-PAGE, and subjected to
immunoblotting using the Ab indicated in the legend to panel C plus rabbit MAb H3 (anti-histone 3) and mouse MAb 6C5 (anti-GAPDH).
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(glyceraldehyde-3-phosphate dehydrogenase) antibody (Ab; catalog
number sc-32233; Santa Cruz), H3 antibody (catalog number 1326-1;
Epitomics), Mre11 rabbit polyclonal antibody pNB 100-142 (Novus Bio-
logicals, Inc.), anti-Flag mouse MAb M2 (Sigma-Aldrich, Inc.), rabbit
polyclonal green fluorescent protein (GFP)/YFP antibody (catalog num-
ber ab290; Abcam), and �-actin mouse MAb AC-15 (Sigma-Aldrich,
Inc.). Secondary antibodies conjugated to horseradish peroxidase (HRP)
for detection of proteins by immunoblotting were anti-rabbit IgG, anti-
mouse IgG, and anti-rat IgG (Jackson/Dianova). Fluorescent secondary
antibodies were affinity-purified fluorescein isothiocyanate (FITC)-con-
jugated donkey anti-mouse IgG and Cy3-conjugated donkey anti-rat IgG
(Invitrogen). These were used at a 1:100 dilution in all immunofluores-
cence experiments.

All protein extracts were prepared in radioimmunoprecipitation assay
lysis buffer as published recently (41). For immunoprecipitation, Flag-

M2-coupled protein A-Sepharose beads (Sigma-Aldrich Inc.) were used
or protein A-Sepharose (3 mg/immunoprecipitation) was coupled with 1
�g of MAb for 1 h at 4°C. The Ab-coupled protein A-Sepharose was added
to pansorbin-Sepharose (50 �l/lysate; Calbiochem)-precleared extracts
and rotated for 2 h at 4°C. Proteins bound to the Ab-coupled protein
A-Sepharose were precipitated by centrifugation, washed three times,
boiled for 5 min at 95°C in 5� Laemmli buffer, and analyzed by immu-
noblotting. Cell fractionation was performed on the basis of a modified
protocol described by Leppard and Shenk (42), which we reported previ-
ously (43). Denaturing purification and analysis of SUMO conjugates
were performed as described recently (44). After denaturation, proteins
were separated by SDS-PAGE, transferred to polyvinylidene difluoride
(PVDF) membranes, and visualized by immunoblotting. Autoradio-
grams were scanned and cropped using Adobe Photoshop CS6 software,
and figures were prepared using Adobe Illustrator CS6 software.

A

CB

KAP1
empty 

ve
cto

r

β-actin

flag (KAP1)

L4-100K

E4orf6

E2A

E1B-55K

E1A

H5pg4100

    1     2   

0

25

50

75

100

125

150

E1A E1B E2A E4orf6 L4-100K

re
la

tiv
e 

pr
ot

ei
n 

le
ve

ls
 (%

)

empty vector
KAP1

vi
ru

s 
yi

el
d 

(%
)

0

25

50

75

100

125

150 empty vector
KAP1

48 h p.i.

0

25

50

75

100

125

150 empty vector
KAP1

vi
ru

s 
yi

el
d 

(%
)

24 h p.i.

**
*

FIG 2 KAP1 overexpression reduces viral gene expression. H1299 cells were transfected with an empty vector control or a plasmid carrying KAP1 and
superinfected with wt virus (H5pg4100) at a multiplicity of infection of 20 focus-forming units per cell. (A) Viral particles were harvested at 24 and 48 h p.i., and
the virus yield was determined by quantitative immunofluorescence staining of E2A on HEK293 cells. The means and standard deviations from three indepen-
dent experiments are presented. Two-tailed t tests were applied to calculate significance (*, P 	 0.05; **, P 	 0.002). Values are shown as the level of progeny
production as a percentage of that for cells transfected with the empty vector. (B) Cells were harvested at 24 h p.i., and total cell extracts were separated by
SDS-PAGE and subjected to immunoblotting using mouse MAb M73 (anti-E1A), mouse MAb 2A6 (anti-E1B-55K), mouse MAb B6-8 (anti-E2A), mouse MAb
RSA3 (anti-E4orf6), rat MAb 6B10 (anti-L4-100K), mouse MAb M2 (anti-Flag), and MAb AC-15 (anti-�-actin) as a loading control. (C) Densitometric analysis
of the protein levels in the blot shown in panel B, quantified with ImageJ (version 1.45s) software, normalized to the respective �-actin levels, which were set equal
to 100. Values are shown as protein levels as a percentage of those for cells transfected with the empty vector.
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Indirect immunofluorescence. For indirect immunofluorescence, cells
were grown on glass coverslips as described recently (34). At the times indi-
cated below, cells were fixed in ice-cold methanol at 
20°C for 15 min. After
1 h of blocking in Tris-buffered saline–BSA–glycine buffer, they were treated
for 1 h with the primary antibody diluted in phosphate-buffered saline (PBS)
and washed three times in PBS, followed by 1 h of incubation with the corre-
sponding FITC- or Cy3-conjugated secondary antibodies (Invitrogen). Cov-
erslips were washed three times in PBS and mounted in Glow medium (En-
ergene), and digital images were acquired on a DMRB fluorescence
microscope (Leica) with a charge-coupled-device camera (Diagnostic Instru-
ments). Images were cropped using Adobe Photoshop CS6 software and as-
sembled with Adobe Illustrator CS6 software.

RESULTS
HAdV induces KAP1 phosphorylation in a virus concentration-
dependent manner. Emerging evidence suggests that KAP1 is sub-

jected to multiple posttranslational modifications (PTMs), including
serine/tyrosine phosphorylation, SUMOylation, and acetylation,
which coordinately regulate the KAP1 gene repressive function and
KAP1 protein abundance. Previous studies by Forrester et al. have
shown that HAdV activates DNA damage response (DDR) mecha-
nisms, inducing KAP1 phosphorylation (26). To ascertain whether
KAP1 protein levels are modulated, H1299 cells were infected with wt
HAdV and total cell lysate was analyzed at various time points. We
detected a significant reduction in unphosphorylated KAP1 accom-
panied by the upregulation of phosphorylated KAP1 (pKAP1) moi-
eties (Fig. 1A, lanes 7 to 9). Consistent with these results, KAP1 was
also phosphorylated in infected A549 cells, another independent cell
line that we tested (Fig. 1B, lanes 6 to 9). Moreover, infections with
different titers of an HAdV suspension revealed the virus concentra-
tion-dependent induction of KAP1 phosphorylation (Fig. 1C).
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FIG 3 KAP1 overexpression reduces viral gene expression. H1299 cells were transfected with an empty vector control, EYFP-tagged TIF1�, TIF1� (KAP1),
TIF1�, or a plasmid carrying Flag-tagged KAP1 (TIF1�). (A) Absolute cell numbers were determined at 1, 2, and 3 days posttransfection. The means and standard
deviations from three independent experiments are presented. The experimental setup for panels B and C is presented as a timeline below the graph. (B)
Transfected H1299 cells were superinfected with wt virus (H5pg4100) at a multiplicity of infection of 20 focus-forming units per cell. Cells were harvested at 24
h p.i., and total cell extracts were separated by SDS-PAGE and subjected to immunoblotting using mouse MAb M73 (anti-E1A), mouse MAb 2A6 (anti-E1B-
55K), mouse MAb B6-8 (anti-E2A), mouse MAb RSA3 (anti-E4orf6), rabbit polyclonal Ab GFP/YFP (catalog number ab290; Abcam), mouse MAb M2
(anti-Flag), and MAb AC-15 (anti-�-actin) as a loading control. (C) Transfected H1299 cells were superinfected as described in the legend to panel B, viral
particles were harvested at 24 and 48 h p.i., and virus yield was determined by quantitative immunofluorescence staining of E2A on HEK293 cells. The means and
standard deviations from three independent experiments are presented. Two-tailed t tests were applied to calculate significance (*, P 	 0.05). Values are shown
as the level of progeny production as a percentage of that for cells transfected with the empty vector.
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by quantitative immunofluorescence staining of E2A on HEK293 cells. The means and standard deviations from three independent experiments are presented.
Two-tailed t tests were applied to calculate the significance (n.s., not significant). Values are shown as the level of progeny production as a percentage of that for
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Since the majority of KAP1 is phosphorylated by ATM and
ATR, there might be a strong link with HAdV-induced DDR. Pre-
vious studies have shown that viral E4 proteins play an essential
role in opposing key DDR factors to support efficient virus
growth. Therefore, we next determined KAP1 protein concentra-
tions in wt virus (H5pg4100)-infected cells and cells infected with
mutant virus lacking either E1B-55K (H5pm4149) or E4orf6
(H5pm4154) (Fig. 1D). As anticipated, KAP1 was phosphorylated
in cells infected with the wt virus (H5pg4100) (Fig. 1D, lane 2). In
parallel, this modified cellular protein accumulated to high levels
in infected cells lacking E1B-55K (H5pm4149; Fig. 1D, lane 3).
However, in cells infected with the E4orf6-minus virus mutant
H5pm4154, KAP1 phosphorylation was similar to that in wt virus-
infected cells (Fig. 1C, lane 4).

KAP1 resides in distinct cellular compartments, including the
pericentric and centromeric heterochromatin, euchromatin, and
cytoplasm. Earlier observations also revealed that KAP1 phos-
phorylation regulates intracellular localization, maintaining the
protein functions. Therefore, we examined KAP1 protein levels in
H1299 cells infected with wt virus (H5pg4100) and viruses lacking
E1B-55K (H5pm4149) or E4orf6 (H5pm4154) and separated the
soluble fraction from the chromatin fraction. Again, we observed
virus-induced KAP1 phosphorylation and, more intriguingly,
that pKAP1 was mainly detected in the soluble fraction and was
detected less so in the chromatin fraction (Fig. 1E, left, lanes 2 to
4). Taken together, HAdV-mediated phosphorylation and subse-
quent relocalization from chromatin might impact KAP1 repres-
sive functions and multiple aspects of HAdV biology and its rep-
lication cycle.

KAP1 overexpression reduces viral gene expression. To as-
sess the effect of KAP1 on the production of adenoviral progeny,
the total virus yield upon KAP1 overexpression was determined
(Fig. 2A). KAP1 overexpression reduced progeny production in
H1299 cells 3-fold (24 h postinfection [p.i.]) to 2-fold (48 h p.i.)
compared to that in nontreated control cells (Fig. 2A, empty vec-
tor). These results suggest that KAP1 mediates repressive effects
during the HAdV infectious cycle and thus represents a novel host
restriction factor. To further test this idea, expression of viral early
and late proteins was monitored after infection (Fig. 2B). In agree-
ment with our results presented above, protein synthesis was par-
tially reduced in KAP1-overexpressing cells. In particular, E1B-
55K and E4orf6 expression levels were significantly reduced
compared to the levels in nontreated cells infected with wt virus
(Fig. 2B, lane 2, and C). To substantiate these results and show that
the KAP1-mediated repression of adenoviral gene expression is
specific, we overexpressed TIF1� and TIF1�, two other TIF1 fam-
ily members. After wt infection, we observed that only KAP1-
expressing cells (cells expressing Flag-KAP1 or TIF1�) were able
to repress E1B-55K and E4orf6 protein levels (Fig. 3B, lanes 2 and
4), as well as progeny production (Fig. 3C). However, overexpres-

sion of KAP1 did not affect cell proliferation within 48 h postin-
fection (Fig. 3A). To further exclude the possibility of nonspecific
effects of the overexpression studies, we stably knocked down
KAP1 expression using shRNA (Fig. 4) and validated efficient
KAP1 depletion by Western blotting (Fig. 4A) and immunofluo-
rescence analyses (data not shown). We also monitored cell
growth behavior and again observed no differences between
KAP1-depleted and parental cells (Fig. 4B). Virus growth was an-
alyzed by virus yield experiments (Fig. 4C). Intriguingly, our re-
sults showed no significant effect on virus growth in KAP1-de-
pleted cells compared to that in parental cells. Additionally, we
monitored the expression of early and late viral proteins and ob-
served no significant differences. Since PML-NBs were recently
found to repress HAdV infection, we monitored PML expression
in our KAP1-depleted cell line. As anticipated, PML protein con-
centrations were elevated in cells expressing KAP1 shRNA (Fig.
4D); thus, PML-NB-mediated repression of HAdV transcription
might efficiently eliminate any significant increase due to KAP1
depletion (Fig. 4C and D).

HAdV E1B-55K interacts with KAP1. Since we observed en-
hanced KAP1 phosphorylation in cells infected with HAdV lack-
ing E1B-55K, we next tested whether E1B-55K interacts with the
endogenous KAP1 protein in infected cells. As anticipated, in wt
virus-infected cells, E1B-55K coimmunoprecipitated with KAP1-
specific Ab, revealing an interaction between these factors (Fig.
5A, lane 2). No E1B-55K signal was observed in the corresponding
negative controls (Fig. 5A, lane 1). Consistent with the data ob-
tained with infected cells, we also detected KAP1 binding to E1B-
55K in the absence of other viral proteins (Fig. 5B, lane 2). The
next question was whether E1B-55K interferes with the intracel-
lular localization of KAP1 and vice versa. Immunofluorescence
analysis of infected human cells revealed that both proteins show
diffuse localization in the host cell nucleus (Fig. 5C, panel h).

To narrow down the binding domain required for the E1B-55K
interaction, we performed coprecipitation experiments with
KAP1 truncation mutants (Fig. 6A). KAP1-depleted H1299 cells
were cotransfected with plasmids carrying wt E1B-55K and KAP1,
the HP1 binding mutant M2, the deletion mutant �RBCC or �PB,
or the double deletion mutant �(RBCC�PB) and harvested at 48
h after transfection. These experiments revealed that the deletion
mutant lacking the PHD/bromo domain as well as the double
mutant additionally lacking the RBCC domain exhibited im-
paired E1B-55K binding (Fig. 6B, lanes 6 and 7).

SUMO2 moieties of KAP1 are reduced during HAdV infec-
tion. Li and coworkers demonstrated that dephosphorylation re-
sults in increased SUMOylation of KAP1 and vice versa (14). Since
the SUMOylation of KAP1 is known to result in the recruitment of
repressive components, followed by transcriptional repression
(14, 18), we investigated the SUMOylation of KAP1 upon HAdV
infection. Cells stably expressing His-SUMO1 or His-SUMO2

the cells transfected with scrambled shRNA. (D) H1299 cells transfected with scrambled shRNA and shRNA against KAP1 were infected with wt virus (H5pg4100)
at a multiplicity of infection of 20 focus-forming units per cell. Viral particles were harvested at 24, 48, and 72 h p.i., and virus yield was determined by quantitative
immunofluorescence staining of E2A on HEK293 cells. The means and standard deviations from three independent experiments are presented. Two-tailed t tests
were applied to calculate the significance (n.s., not significant). Values are shown as the level of progeny production as a percentage of that for the cells transfected
with scrambled shRNA. (D) H1299 cells transfected with scrambled shRNA and shRNA against KAP1 were infected with wt virus (H5pg4100) at a multiplicity
of infection of 50 focus-forming units per cell and harvested after the indicated time points postinfection. Total cell extracts were prepared, separated by
SDS-PAGE, and subjected to immunoblotting using rabbit polyclonal Ab H-300 (anti-KAP1), rabbit Ab NB 100-59787 (anti-PML), mouse MAb M73 (anti-
E1A), mouse MAb 2A6 (anti-E1B-55K), mouse MAb B6-8 (anti-E2A), rabbit antiserum L133 specific for the HAdV5 capsid, and mouse MAb AC-15 (anti-�-
actin) as a loading control.
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were transfected with a Flag-tagged KAP1 expression vector and
then superinfected with HAdV (Fig. 7A). Immunoblotting of Ni-
nitrilotriacetic acid (NTA)-purified His-SUMO1 and His-
SUMO2 conjugates (Fig. 7A, left, lane 6) and input crude lysates
(Fig. 7A, right, lane 6) revealed that the KAP1 SUMO2 modifica-
tion is significantly reduced during HAdV infection. However,
SUMO1 conjugation on KAP1 could not be detected in this assay
(Fig. 7A, left, lanes 3 and 4).

To investigate whether the reduction of high-molecular-mass
forms of SUMO2-modified KAP1 depends on the interaction with
the viral early protein E1B-55K, we cotransfected SUMO2-ex-
pressing cells with plasmids carrying KAP1 and E1B-55K. Intrigu-
ingly, we observed a decrease in KAP1 SUMOylation upon
cotransfection with a plasmid carrying E1B-55K, although this
viral protein has been reported to maintain SUMO ligase-like
functions (Fig. 7B). When we cotransfected an E1B-55K variant
containing a mutation in the SUMO conjugation motif (SCM) at

Lys104 (E1B-55K-K104R), the decreased KAP1 SUMOylation
was completely abolished (Fig. 7C, left, lane 3).

To substantiate our novel finding that SUMOylated E1B-55K
plays a role in reducing the KAP1 SUMO2 modification, we per-
formed infection assays. HeLa cells expressing His-SUMO2 were
transfected with the KAP1 wt and superinfected with wt virus
(H5pg4100) or the E1B-55K-K104R mutant virus (H5pm4102)
(Fig. 7D). As anticipated, immunoblotting of Ni-NTA-purified
His-SUMO conjugates and crude lysates revealed that the reduc-
tion of high-molecular-mass forms of SUMO2-modified KAP1
depends on the SUMOylation of E1B-55K at Lys104 during HAdV
infection (Fig. 7D, left, lanes 5 and 6). Taken together, these results
show that the efficient SUMOylation of E1B-55K significantly re-
duces KAP1-associated SUMO moieties.

KAP1 promotes E1B-55K SUMOylation, while E1B-55K–
SUMO conjugation reduces KAP1-associated SUMO moieties.
To further explore the cross talk between SUMO, KAP1, and E1B-
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55K, we performed additional Ni-NTA assays in transiently trans-
fected human cells. When expressing KAP1 alone, we detected
SUMOylated forms of KAP1, the levels of which were significantly
reduced after coexpression of E1B-55K (Fig. 8B, left, lanes 1 and
3). As anticipated, this was not detected when we coexpressed
E1B-55K with a nonfunctional SCM (E1B-55K-SCM) (Fig. 8C,
left, lanes 1 and 3). These findings provide evidence that the ca-
pacity of E1B-55K and SUMO to interact represents a prerequisite
for efficient KAP1-SUMO deconjugation.

Several studies have revealed that the majority of KAP1
SUMOylation is balanced by the phosphorylation status of KAP1
and that the SUMOylation of KAP1 is required for its repressive

function (14). Within or adjacent to the PB domain of KAP1, six
Lys residues have been validated to be SUMOylation sites (45). To
investigate the effect of KAP1 SUMOylation on KAP1-mediated
E1B-55K SUMOylation, we generated KAP1-SUMO mutants
with mutations at Lys676, Lys554, Lys779, and Lys804 (Fig. 8A).
We also created the double mutants K554/676A and K779/804A as
well as one null mutant, the K554/676/779/804A mutant.

When HeLa cells expressing His-SUMO2 were cotrans-
fected with plasmids carrying E1B-55K and the KAP1 wt or
KAP1 SUMOylation-deficient mutants (Fig. 8A and B), the
mutations resulted in decreased levels of SUMO2-modified
proteins (Fig. 8B, left; compare lane 1 with lanes 4 to 6). How-
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ever, all cells expressing KAP1 mutants showed similar E1B-
55K SUMOylation patterns (Fig. 8B, left, lanes 4 to 6), indicat-
ing that KAP1 SUMOylation per se does not influence its ability
to affect SUMOylation of the viral protein, although the level of
SUMO2-modified E1B-55K was the highest in cells cotrans-
fected with the KAP1 mutant harboring all four Lys changes
(Fig. 8B, left, lane 6).

Since the viral SUMO mutant E1B-55K–SCM (E1B-55K-K104R)
did not reduce the level of SUMO2-modified KAP1, we performed
cotransfection experiments with E1B-55K–SCM and the KAP1 wt or
the KAP1 SUMOylation mutants (Fig. 8C). As before, cotransfection
with the E1B-55K–SCM mutant did not reduce the level of SUMO2-
modified KAP1 (Fig. 8C, left [compare lane 3 to lane 1], and E), again
pointing to cross talk between KAP1 deSUMOylation and E1B-55K
SUMOylation (Fig. 8D and E).

KAP1 bears a SUMO ligase-like capacity toward E1B-55K.
Recent studies have shown that KAP1 recruits the SUMO-conju-
gating enzyme Ubc9 to act as a SUMO E3 ligase either to auto-
SUMOylate its own bromodomain and generate a repressive form
or to SUMOylate other cellular substrates, such as interferon reg-
ulatory factor 7 (IRF7) or Vps34 (18, 19, 46). To investigate
whether KAP1 is able to directly modulate E1B-55K SUMOyla-
tion, cells expressing His-SUMO2 were cotransfected with plas-
mids carrying E1B-55K and increasing amounts of KAP1 (Fig.
9A). After purification of His-SUMO2 conjugates (Ni-NTA), im-
munoblotting revealed that KAP1 overexpression promotes E1B-
55K SUMOylation (Fig. 9A, left, lanes 1 to 3).

To substantiate our findings that KAP1 specifically induces the
SUMO2 modification of E1B-55K, we tested the capacity of KAP1 to
SUMOylate the cellular tumor suppressor p53, which is reported to
be a host SUMO target. HeLa cells expressing His-SUMO2 were
transfected with increasing amounts of the KAP1 wt and human p53
(Fig. 9B). However, it is worth mentioning that HeLa cells express E6
of human papillomavirus 18, and it is not known whether this viral
factor influences KAP1/p53 cross talk. Here, KAP1 overexpression
did not detectably affect p53 SUMOylation (Fig. 9B, left, lanes 1 to 3).
Taken together, KAP1 overexpression had no effect on the SUMO
modification of p53, suggesting that the upregulation of viral E1B-
55K protein SUMOylation by the cellular KAP1 protein is specific.

DISCUSSION

Here, we illustrate that the SPOC1-interacting factor KAP1 plays
the role of a cellular restriction factor during the course of pro-
ductive HAdV infection. We discovered that KAP1 binds to the
HAdV E1B-55K protein, promoting SUMO modification of this
viral factor. Conversely, KAP1 posttranslational modification is
dramatically altered by an HAdV-mediated decrease in KAP1
SUMO moieties. Our findings point to the possibility that KAP1
deSUMOylation minimizes epigenetic gene silencing. However,
KAP1 might also specifically affect the gene regulatory functions
of E1B-55K and thus regulate certain E1B-55K-mediated tran-
scriptional events and a subset of adenoviral proteins.

Within the capsids, HAdV genomes are highly condensed by
viral core proteins (47–49). Like the herpes simplex virus 1 ge-
nome, the HAdV genome was shown to associate with H3.3 (50,
51), suggesting that HAdV DNA is chromatinized. The core/DNA
complex enters the nucleus and is decondensed prior to the onset
of early viral gene transcription (52). In this context, we recently
identified the cellular chromatin remodeling complex Daxx/
ATRX to be a negative regulator of HAdV infection. This Daxx/
ATRX chromatin remodeling complex recruits HDACs to
deacetylate histone tails, resulting in chromatin compaction and
transcriptional repression (53). We demonstrated that this com-
plex associates with the HAdV genome, thereby repressing active
viral gene transcription (5, 6). Moreover, we recently identified
SPOC1 to be a negative regulator of HAdV infection (54). SPOC1
is also involved in regulating the chromatin structure and DDR by
modulating the chromatin association of DNA compaction fac-
tors (10). SPOC1 was shown to form a chromatin remodeling
complex with KAP1, resulting in the recruitment of repressive
components, such as HMT and NuRD (10).

Here we show that KAP1 overexpression negatively regulates
HAdV progeny production. However, this negative effect is atten-
uated later during infection, suggesting that HAdV counteracts
the KAP1 negative function to ensure proper virus replication.
Additionally, we observed reduced levels of HAdV proteins upon
KAP1 overexpression. Since chromatin immunoprecipitation
analysis recently revealed an interaction of SPOC1 with HAdV5
promoters in transfected cells (54), KAP1-mediated repression
might be facilitated via its recruitment to adenoviral promoters by
the SPOC1 protein.

Extensive but so far unsuccessful approaches were conducted
during this work to generate KAP1-depleted cell lines. Since KAP1
is involved in cell cycle progression and apoptosis, it is not sur-
prising that KAP1 depletion has several downstream effects. Li
and coworkers observed that KAP1 depletion increases apoptosis
and has severe negative effects on cell proliferation rates (16). Addi-
tionally, Kepkay and coworkers observed an increase in PML-NBs
upon KAP1 depletion (55). Although our KAP1-knockdown cells
showed proliferation rates comparable to those of control cell lines, in
agreement with the findings of Kepkay et al. (55), we observed in-
creased PML protein levels upon KAP1 depletion. Since PML is
known to play a role in the host cellular antiviral defense (3, 56), its
upregulation probably compensates for the loss of KAP1, resulting in
unaffected levels of HAdV progeny production. To further clarify the
role of KAP1 depletion in HAdV productive infection, how KAP1
correlates with an altered PML-NB composition needs to be fully
understood.

SUMOylation of a substrate is known to alter its inter- and/or
intramolecular interactions, thereby modulating its stability, lo-
calization, or activity. In this context, it is suggested that SUMO
modification of a target protein is associated with the recruitment
of SUMO-interacting motif-containing effector proteins (57, 58).
KAP1 represents a cellular SUMO E3 ligase that not only regulates

in the legend to panel A using mouse MAbs Flag-M2 [flag(KAP1)], 6His, 2A6 (E1B-55K), and AC-15 (�-actin) as a loading control. (C) HeLa cells stably
expressing 6His-SUMO2 were transfected with plasmids carrying KAP1 and E1B-55K or the SUMO mutant E1B-55K-K104R. At 48 h posttransfection, total cell
lysates were prepared and analyzed as described in the legend to panel B. (D) Parental HeLa cells and HeLa cells stably expressing 6His-SUMO2 were transfected
with a plasmid carrying KAP1 and superinfected with wt virus (H5pg4100) or the E1B-55K-K104R mutant (H5pm4102) at a multiplicity of infection of 50
focus-forming units per cell. At 48 h p.i., total cell lysates were prepared and analyzed as described in the legend to panel B. Molecular masses are indicated on the
left, while the relevant proteins are labeled on the right.
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its own SUMOylation status but also is able to promote SUMO
conjugation on other cellular proteins, such as the cellular factor
IRF7, hence reducing its transcriptional activity and ultimately
resulting in a suppressed interferon-based antiviral response (46).

KAP1’s corepressive capacity is flexibly regulated by Ser824 phos-
phorylation and SUMO modification. KAP1 phosphorylation results
in chromatin decondensation, whereas KAP1 SUMOylation in-
creased its repressive function through the recruitment of HMTs and
NuRD (16, 59). Here we show that HAdV infection limits the levels of
SUMO-KAP1. We speculate that SUMO-depleted KAP1 dissociates
from SPOC1 to release the repressive HMTs and HDACs, facilitating
H3K9 acetylation and demethylation, which lead to chromatin relax-
ation, transcriptional activation, and enhanced gene expression. We
show that HAdV-mediated KAP1 deSUMOylation depends on the
E1B-55K protein, known to contain an SCM and be the substrate for
the host cell SUMO modification system (60, 61).

E1B-55K was also reported to interact with the cellular SUMO
E2 enzyme Ubc9 (62). Studies from Pennella and coworkers sug-
gest that E1B-55K is also a p53-SUMO1 E3 ligase (63). In line with
this, we recently showed that E1B-55K SUMOylation and, hence,
PML-NB localization are prerequisites for the SUMO ligase activ-
ity of the viral protein (31). However, the detailed mechanism of
how E1B-55K mediates the SUMOylation of other proteins is still
not fully understood.

For the first time, we have shown here that SUMO modification of
E1B-55K is a prerequisite for efficient KAP1 deSUMOylation upon
HAdV5 infection. Since the loss of SUMO-KAP1 did not occur in
cells expressing the SUMOylation-deficient E1B-55K-K104R mu-
tant, it is tempting to speculate that E1B-55K directly drives KAP1
deSUMOylation through the capture of KAP1-associated SUMO
moieties for E1B-55K SUMOylation. Conversely, we also observed
that KAP1 induces the SUMO2 modification of E1B-55K in a con-
centration-dependent manner. However, p53 showed no increase in
SUMO modification, eliminating the notion that KAP1 mediates the
unspecific SUMOylation of SCM-containing proteins. However, we
observed that KAP1 SUMOylation itself is not a prerequisite for this
process.

Since high KAP1 expression levels have been linked to various
cancer types, including prometastatic cervical cancer, colorectal
cancer, gastric cancer, and thyroid carcinoma (64–68), KAP1 has
been proposed to be a target for anticancer therapy (69, 70). How-
ever, the role of KAP1 in tumorigenesis is still inconclusive and
seems to be tissue specific, since KAP1 showed tumor-suppressive
functions in early-stage lung cancer by inactivating oncogenic
transcription factors (71–73). Furthermore, KAP1 was shown to
play a role in the MDM2/p53/HDAC1 complex, thereby promot-
ing deacetylation and MDM2-mediated degradation of p53 (70).
This is promoted by the presence of melanoma antigen (MAGE)
family proteins (74).

HAdV early oncoproteins are able to transform primary rodent
cells (75–80). For efficient transformation, E1A supports cell cycle
progression and induces the immortalization of primary rodent cells
by modulating key regulators controlling cell cycle progression in the
course of an abortive infection (81, 82). E1B contributes to a com-
pletely transformed phenotype (83–90). The tumorigenic functions
of E1B-55K are mainly mediated by the functional inhibition of the
tumor suppressor p53 (60, 61, 91–95). Here, SUMOylation of the

6His-SUMO conjugates, and analyzed via SDS-PAGE and immunoblotting. Input levels of total cell lysates and Ni-NTA-purified proteins were detected using
mouse MAb 2A6 (anti-E1B-55K), mouse MAb M2 (anti-flag), mouse MAb 6His (anti-His), and mouse MAb AC-15 (anti-�-actin) as a loading control. (D)
Densitometric analysis of KAP1 SUMOylation levels in panels B and C (lanes 1 and 3), quantified with ImageJ (version 1.45s) software, normalized to the
respective steady-state KAP1 levels. Values are shown as the level as a percentage of that for cells transfected with the empty vector. (E) Schematic representation
of the cross talk between KAP1 deSUMOylation and the increase in E1B-55K SUMOylation in HAdV5-infected cells.
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oncoprotein E1B-55K is required for PML-IV/V interaction and p53/
Daxx inhibition (5, 31, 62). Since we observed that E1B-55K
SUMOylation is a prerequisite for its ability to limit KAP1 SUMO
moieties, it is tempting to ask whether the SUMO status of KAP1
plays an important role during transformation of primary rodent
cells.

KSHV was recently shown to exploit the KAP1 chromatin remod-
eling function via phosphorylation of KAP1 S824 by the viral protein
kinase, leading to the activation of its lytic genes and subsequent lytic
KSHV replication (96). Furthermore, KAP1 phosphorylation is
thought to support the chronic inflammatory environment of Kapo-
si’s sarcoma by activating STAT3 (97). Additionally, the latency-as-
sociated nuclear antigen (LANA) was shown to functionally interact
with KAP1 to repress lytic gene expression during the early stage of
KSHV infection, which may help establish KSHV latency after pri-
mary infections (25).

HAdV is also thought to establish long-term low-level persistent
or even latent infections in nonpermissive cells (98–100). It is pro-
posed that the viral genome is maintained in the cell in an uninte-
grated episomal state. This model might explain the high prevalence
of HAdV infections in immunocompromised individuals. Whether
KAP1 contributes to HAdV latency remains unclear. However, KAP1
is involved in regulating episomal gene expression through KRAB/
KAP1-mediated histone modifications (101).

Alternatively, KAP1 might be involved in maintaining an
HAdV latent state by repressing adenoviral episomal gene ex-
pression from specific viral promoters, viral protein stability,
or viral splicing processes. Since KAP1 is phosphorylated upon
DNA DSBs, in chemotherapy-treated patients, irradiation-me-
diated KAP1 phosphorylation could result in activation of
HAdV lytic gene expression. Hence, KAP1 could play an im-

portant role in HAdV reactivation in immunocompromised
patients, underlining the importance of considering this factor
in cancer therapy.

In summary, our results reveal that adenovirus mediates the
complex regulation of KAP1 corepressor and chromatin remod-
eler functions (Fig. 10). Based on our results, we suggest a model
in which early in infection HAdV5 exploits KAP1 phosphoryla-
tion to generate a positive environment for virus replication and
circumvent host cellular proapoptotic pathways. Consequently,
HAdV-induced KAP1 phosphorylation and the loss of SUMO
moieties promote decondensation of the cellular and viral ge-
nome, resulting in transcriptional activation and enhanced cellu-
lar and viral gene expression.
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