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We surveyed the “dark” proteome-that is, regions of proteins never
observed by experimental structure determination and inaccessible
to homology modeling. For 546,000 Swiss-Prot proteins, we found
that 44-54% of the proteome in eukaryotes and viruses was dark,
compared with only ~14% in archaea and bacteria. Surprisingly,
most of the dark proteome could not be accounted for by conven-
tional explanations, such as intrinsic disorder or transmembrane re-
gions. Nearly half of the dark proteome comprised dark proteins, in
which the entire sequence lacked similarity to any known structure.
Dark proteins fulfill a wide variety of functions, but a subset showed
distinct and largely unexpected features, such as association with
secretion, specific tissues, the endoplasmic reticulum, disulfide bond-
ing, and proteolytic cleavage. Dark proteins also had short sequence
length, low evolutionary reuse, and few known interactions with
other proteins. These results suggest new research directions in
structural and computational biology.

structure prediction | protein disorder | transmembrane proteins |
secreted proteins | unknown unknowns

he Protein Data Bank (PDB) (1) of experimentally deter-

mined macromolecular structures recently surpassed 110,000
entries—a landmark in understanding the molecular machinery of
life. Structure determination lags far behind DNA sequencing, but
high-throughput computational modeling (2, 3) can leverage the
PDB to provide accurate structural predictions for a large fraction
of protein sequences. Thus, structural data now scale with se-
quencing, providing a wealth of detail about molecular functions.

Previous studies have surveyed all sequence and structure data
to characterize the “protein universe” [i.e., all proteins from all
organisms (4-8)]; from such surveys, we know much of the pro-
teome comprises evolutionarily conserved domains matching rel-
atively few 3D folds (4, 5). These surveys have focused on the
“known” and on extrapolating progress toward complete knowl-
edge of all folds in the protein universe. Such studies have guided
structural genomics initiatives aimed at determining at least one
PDB structure for each distinct fold (8-10).

Our work focuses on the structurally “unknown” (i.e., the
fraction of the proteome with no detectable similarity to any PDB
structure). We call this fraction the “dark proteome”; we believe
that studying the dark proteome will clarify future research di-
rections, as studies of dark matter have done in physics (11).

The analogy to dark matter has inspired surveys of other “un-
known” properties of proteins; for example, Levitt (6) examined
“orphan” protein sequences that do not match to known sequence
profiles, which he termed the “dark matter of the protein uni-
verse,” and Taylor et al. (12) investigated the “dark matter of
protein fold space” (i.e., theoretically plausible folds that have not
been observed in native proteins). The same analogy has been
used in studies of so-called “junk DNA” (13), which revealed a
“hidden layer” of noncoding RNAs (14). Could surveying the dark
proteome also reveal undiscovered biological systems?
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In fact, discoveries have already resulted from studying regions
of unknown structure, namely, intrinsically disordered regions.
Long known to confound structure determination (15)—thus
forming part of the dark proteome—disorder was largely ignored
until recently (16) and yet is now known to play key functional
roles, especially in eukaryotes (17). In addition, there is a second
type of region that often has unknown structure and is associated
with specific biological functions, namely, transmembrane seg-
ments (18). Thus, both disorder and transmembrane regions are
“known unknowns” (i.e., we know that they are often “dark”).
Could the dark proteome contain “unknown unknowns” (i.e., re-
gions with specific functions that confound structure determina-
tion and that we are unaware of)?

To address this question, we need to map the dark proteome
(i.e., determine all protein regions that cannot be modeled onto any
PDB structure). Most available modeling datasets—collected in the
Protein Model Portal (PMP) (2)—are not well suited because they
aim for breadth of coverage, typically providing only a few PDB
matches per protein. Mapping the dark proteome requires depth of
coverage, such as the survey of Khafizov et al. (8). (Unfortunately,
however, Khafizov et al. used only a few model organisms.) We
recently announced Aquaria (19), which provides a median of 35
sequence-to-structure alignments for each Swiss-Prot sequence, a
depth of structural data not available from other resources.

Significance

A key remaining frontier in our understanding of biological
systems is the “dark proteome”—that is, the regions of proteins
where molecular conformation is completely unknown. We
systematically surveyed these regions, finding that nearly half of
the proteome in eukaryotes is dark and that, surprisingly, most
of the darkness cannot be accounted for. We also found that the
dark proteome has unexpected features, including an associa-
tion with secretory tissues, disulfide bonding, low evolutionary
conservation, and very few known interactions with other pro-
teins. This work will help future research shed light on the
remaining dark proteome, thus revealing molecular processes of
life that are currently unknown.
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In this work, we used Aquaria to survey the dark proteome in
unprecedented depth. We found most of the dark proteome
cannot be readily accounted for and shows unexpected features.

Results and Discussion

Mapping the Dark Proteome. We based our survey on 546,000
Swiss-Prot sequences (20). Although smaller than other databases
[e.g., TTEMBL (21), which has >50 million sequences], Swiss-Prot
is meticulously curated; each entry has many annotations and a
high likelihood that it represents a native protein.

Fig. 14 shows how we mapped the dark proteome: for each
Swiss-Prot sequence, each residue was categorized as “not dark” if
it was aligned to a PDB entry in Aquaria (19) and as “dark”
otherwise (SI Methods). This definition partly underestimates the
dark proteome, because Aquaria includes very remote homologies
[found using HHblits (22)] and uses all PDB entries, including
low-quality structures from electron microscopy (EM) or NMR
spectroscopy. We deliberately chose this stringent definition of
“darkness,” so we can be confident that the dark proteome has
completely unknown structure.

Most dark residues occurred in contiguous “dark regions” (Fig.
1); on average, eukaryotic proteins contained eight dark regions,
many very short. In many cases, a single dark region covered the
entire sequence; we call these “dark proteins” (Fig. 1B). Most
nondark residues also occurred in continuous regions: some, called
“PDB regions,” exactly matched to a PDB entry—these residues
accounted for only 2-4% of all Swiss-Prot residues (Fig. 1B). The
remaining nondark residues occurred in “gray regions” (Fig. 1B),
where 3D structure could be predicted based on similarity to at
least one PDB entry.

We found that the dark proteome (i.e., the fraction of residues
in dark proteins or dark regions) for archaea and bacteria was
strikingly small (13-14%; Fig. 1B), implying that structural
knowledge for these organisms approaches a level of complete-
ness. In contrast, in eukaryotes and viruses, about half (44-54%)
of the proteome was dark (Fig. 1B). Of the total dark proteome,
nearly half (34-52%) comprised dark proteins.
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Fig. 1. Mapping the dark proteome. (A) For all proteins in Swiss-Prot, each
residue was classified into one of four categories: (i) PDB regions—residues
exactly matched to a PDB entry in Aquaria; (ii) gray regions—residues
aligned to at least one PDB entry in Aquaria but always with amino acid
substitutions (dark gray); (iii) dark regions—residues with no matching PDB
entry in Aquaria; and (iv) dark proteins, where a single dark region spans the
entire sequence. (B) We then calculated the total fraction of residues in each
of the above four categories for all proteins in eukaryotes, bacteria, archaea,
and viruses. The dark proteome (i.e., the fraction of residues in dark proteins
or dark regions) varies from 13% (bacteria) to 54% (viruses).
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We repeated the above analysis using an even more stringent
definition for darkness—combining PMP (2) and Aquaria (S
Methods)—but this had little effect (Fig. S1).

We also calculated a darkness score for each protein, defined as
the percentage of dark residues (Dataset S1). Thus, dark proteins
have 100% darkness, whereas proteins with 0% darkness are those
where the entire sequence is detectably similar to one or more
PDB entries. The distribution of darkness scores was strongly bi-
modal; most proteins had either low or 100% darkness (density
plots in Fig. 24 and Figs. S24 and S3). For brevity in this work, we
use the term “nondark proteins” to refer to those with <100%
darkness (noting that a small fraction had high darkness scores).

Dark Proteome Is Mostly Not Disordered. Intrinsically disordered
regions are believed to account for much of the dark proteome,
especially in eukaryotes (15). To explore this hypothesis, for each
protein we calculated the percentage of residues predicted to be
disordered [using IUPred (23); SI Methods]. Viewing these disor-
der and darkness scores on a 2D scatter plot, we see that darkness
was greater than disorder for almost all eukaryotic proteins (most
proteins above the diagonal in Fig. 2C), implying that many dark
residues were not disordered. In this 2D plot, dark proteins are
difficult to resolve because they cluster on a line at the top; thus, we
made density plots comparing the disorder distribution for dark vs.
nondark proteins (Fig. 2B). Surprisingly, most dark proteins had
low disorder (median, 10% disorder), not greatly different from
nondark proteins (median, 6% disorder); because both of these
medians were less than half of the median darkness score (28%;
Fig. 24), this finding implies that most of the dark proteome in
eukaryotes was not disordered.

In bacteria, archaea, and viruses, nondark proteins, surprisingly,
had higher median disorder than dark proteins (Fig. S3). However,
the median darkness was always higher still, implying that in these
organisms as well, much of the dark proteome was not disordered.

For eukaryotic proteins, the pattern seen in the 2D plot (Fig. 2C)
also implies that, as expected, most disordered residues were dark.
However, a fraction of proteins occur below the diagonal, implying
that many disordered residues were not dark. In the corresponding
plots for bacteria, archaea, and viruses, this fraction is even larger
(Fig. S3), implying that as much as half of all disordered residues
were not dark. Many of our colleagues found this last result con-
fusing, often because the distinction between disorder and darkness
was unclear. Thus, to clarify: disordered regions are those with
evidence of structural heterogeneity (23)—but some become well
structured in particular contexts (e.g., most of the 536 Swiss-Prot
proteins with 100% disorder and 0% darkness were ribosomal and
are presumably well structured within the ribosomal complex). To
clarify darkness: these are regions that do not match any PDB
entry—but some PDB entries are highly disordered [often these
are from EM or NMR (24)], and any sequence aligned to a PDB
entry was classified as “not dark” using our stringent definition,
because some structural information is known.

Dark Proteome Is Mostly Not Compositionally Biased. Compositional
bias is also known to confound structure determination (25). To
explore this idea, for each protein we calculated the percentage
of compositionally biased residues (SI Methods). Viewing these
compositional bias and darkness scores on 2D scatter plots, we
see that darkness was greater than compositional bias for almost
all proteins (Fig. 2E and Fig. S3), implying that, as expected,
most compositionally biased residues were dark. Together with
the density plots for compositional bias (Fig. 2D and Fig. S3), it is
clear that most dark residues were not compositionally biased
and that most dark proteins had very low compositional bias.

Dark Proteome Is Mostly Not Transmembrane. Transmembrane re-

gions are also known to confound structure determination (15,
18). To explore this concept, for each protein we calculated the
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Fig. 2. Darkness vs. disorder, compositional bias, and transmembrane fraction for 178,692 eukaryotic proteins. Overall, these three factors explain only a
small part of the dark proteome. Corresponding plots for bacteria, archaea, and viruses are in Fig. S3. In each 2D plot, dark proteins cluster on the line at
darkness = 100%. Density plots A, B, D, and F are shown in more detail in Fig. S2. (A) The distribution of darkness was bimodal: 50% of proteins had <28%
dark residues; 20% had 100% darkness. (B) The distribution of disorder was also bimodal: 50% of dark proteins had <10% disordered residues, whereas 4%
had 100% disorder; for nondark proteins, 50% had <6% disorder, whereas 1% had 100% disorder. Median disorder was much less than median darkness
(28%), implying that most of the dark proteome was not disordered. (C) Two-dimensional plot shows that darkness > disorder for most proteins (dotted line),
implying that most disordered residues were dark and many dark residues were not disordered. (D) Compositional bias was 0% in most proteins and slightly
more prevalent in dark proteins. (E) Two-dimensional plot shows that darkness > compositional bias for most proteins (dotted line), implying that most
compositionally biased residues were dark and many dark residues were not compositionally biased. (F) Most dark proteins had no transmembrane residues
(see Fig. S4 for details). (G) Two-dimensional plot shows that darkness > transmembrane fraction for many proteins (gray dotted line), implying that many
dark residues were not transmembrane. Most proteins occur in the region where darkness + transmembrane < 1 (orange dotted line), implying that dark and

transmembrane regions were mostly disjoint.

percentage of transmembrane residues (SI Methods). Viewing
these transmembrane and darkness scores on 2D scatter plots, we
see that a surprisingly large fraction of transmembrane residues
were not dark (Fig. 2G and Fig. S3). From the transmembrane
density plots (Fig. 2F and Fig. S3), we also see that most dark
proteins had no transmembrane residues; zooming into these plots
shows (as expected) that dark proteins were strongly over-
represented among integral transmembrane proteins in bacteria
and archaea but (unexpectedly) not so in eukaryotes and viruses
(Fig. S4). Also unexpected was that the transmembrane fraction
tended to decrease with increasing darkness in eukaryotes and,
across all organisms, was unexpectedly low in proteins with 75% <
darkness < 100% (Fig. S5). These results suggest that knowledge of
eukaryotic transmembrane protein structures may be more com-
plete than commonly believed, thanks to an ongoing focus on
membrane protein structures (26). Alternatively, these results may
suggest that the methods used to predict transmembrane regions in
this work progressively fail with increasing darkness [i.e., there may
be transmembrane regions that are currently undetectable via
PROF (27), PROFTMB (28), and other similar methods].

Dark Proteins Are Mostly Unknown Unknowns. To determine the
fraction of dark proteins that could be accounted for by a combi-
nation of disorder, transmembrane regions, or compositional bias,
we categorized each protein as having either a “high” (>25%) or
“low” (<25%) value for each score (Fig. 3). Most of the known
unknown (colored fraction) is accounted for by disorder in eu-
karyotes and viruses and by transmembrane regions in bacteria and
archaea (consistent with Figs. S4 and S5). However, a surprisingly
large fraction of dark proteins (45-70%) were unknown unknowns
(gray fraction) in that they cannot be easily accounted for by these
conventional explanations (Fig. 3). This fraction was largest for
viral dark proteins, possibly because of their rapid mutation rates
(29), which would tend to increase darkness by undermining the
sequence-based structure prediction used in this work (2, 19).
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To further characterize unknown dark proteins, we next com-
pared them to nondark proteins that were also ordered, globular,
and had low compositional bias (i.e., Fig. S6, gray fraction). We
found highly significant differences in amino acid composition
across all organisms (Fig. S7), suggesting that these dark proteins
have distinct functional roles or subcellular locations (30, 31). The
largest difference seen was a ~25% increase in cysteine in dark
proteins, consistent with greater prevalence of disulfide bonds
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Ordered, globular, low comp. bias
l 1

|

B Bacteria

C Archaea

D . Comp. bias Transmembrane
Viruses

|

Ordered, globular, low comp. bias
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Fig. 3. Known vs. unknown dark proteins. Each linear diagram (38) shows
known dark proteins [i.e., those with >25% of residues disordered (magenta),
compositionally biased (blue), transmembrane (green), or both disordered and
compositionally biased (stripes)]. The remaining fraction (gray) are unknown
unknowns (i.e., dark proteins predominately ordered, globular, and low in
compositional bias). (A) In eukaryotes, high disorder accounted for most of the
known dark proteins. Most dark proteins with high compositional bias were
also highly disordered. (B and C) In bacteria and archaea, highly trans-
membrane proteins accounted for most of the known dark proteins (consistent
with Figs. S4 and S5). (D) Viruses had the largest unknown unknown fraction

and, like eukaryotes, had a large fraction of highly disordered dark proteins.
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Length, interactions, and evolutionary reuse for dark vs. nondark eukaryotic proteins. In each case, dark proteins had significantly lower values overall

compared with nondark proteins (signed Kolmogorov-Smirnov test, P < 10~%). Corresponding plots for bacteria, archaea, and viruses are in Fig. S8. (A) Dark
proteins had shorter sequence length (median of 140 fewer amino acids, or 37% shorter). (B) Dark proteins had fewer interactions with other proteins. Note
that the small peaks at ~110 interactions arise from ribosomal proteins. (C) Dark proteins had lower evolutionary reuse. In A and C, note that to interpret the
y axes values as true density scores, x values must be transformed using log base 10 (i.e., 100 becomes 2, etc.).

(Functions of Dark Proteins). The next largest differences were
increases in both phenylalanine and tryptophan; these amino acids
have also been reported to be most increased in transmembrane
vs. nontransmembrane proteins (30). This result is consistent
with greater prevalence of dark proteins in the range ~10% <
transmembrane < 25% (especially in bacteria and archaea; Fig. S4)
but, partly surprising, because most dark proteins have no
transmembrane residues (Fig. 2F and Fig. S3); a possible ex-
planation could be undetected transmembrane regions (Dark
Proteome Is Mostly Not Transmembrane).

Shorter Sequence Length. Very short or long sequence length
sometimes confounds structure determination (32). We found
that dark proteins had 26-50% shorter median length (Fig. 44
and Fig. S8) and 16% had a length of <50 aa or a length of >700
aa, compared with 11% of nondark proteins. So, extreme length
may explain some dark proteins but not most.

Because dark proteins are shorter, their abundance is under-
estimated in Fig. 1, which is based on the fraction of dark resi-
dues. The fractions for dark proteins were 20% for eukaryotes,
7% for bacteria, 8% for archaea, 44% for viruses, and 13% for
all Swiss-Prot proteins.

Fewer Known Protein-Protein Interactions. For each protein, we
used STRING (33) to count how many other proteins it interacts
with. We found that dark proteins had surprisingly few known
interactions (Fig. 4B and Fig. S8). Although this observation may
arise because dark proteins are not as well studied, the finding is,
nonetheless, somewhat surprising because STRING aggregates
multiple types of evidence, including high-throughput “omics”
experiments and inference via homology.

Lower Evolutionary Reuse. For each protein, we calculated how
frequently any part of its sequence has been reused across all other
known proteins (S Methods). Dark proteins were reused much less
frequently than nondark proteins (Fig. 4C and Fig. S8), suggesting
that dark proteins may be newly evolved proteins or rare proteins
adapted to specific functional niches. This result was partly
expected, given how darkness was defined and given the progress of
structural genomics in targeting large protein families with unknown
structure (8). Low evolutionary reuse also partly explains why dark
proteins have few known interactions (Fig. 4B and Fig. S8), because
many interactions are inferred by homology (33).

Subcellular Location of Dark Proteins. For each protein, we used
UniProt annotations to determine its subcellular location; these
data were missing for 44% of eukaryotic dark proteins compared
with 29% of nondark proteins, consistent with lower evolutionary
reuse (because location is often inferred via homology). These
location data were used in an enrichment analysis (SI Methods)
finding that, unexpectedly, eukaryotic dark proteins were most
strongly overrepresented in the extracellular space, followed by the
endoplasmic reticulum (Fig. 5). This observation partly explains

Perdigéo et al.

why dark proteins had few interactions (Fig. 4C and Fig. SS8);
compared with intracellular proteins, secreted proteins are often
“autonomous,” fulfilling their functions via fewer interactions with
other proteins. Interestingly, the only subcellular location where
dark proteins were underrepresented was the cytoplasm (Fig. 5),
and the only tissue where they were underrepresented was red
blood cells (Fig. 6), which are mostly cytoplasm,; this finding sug-
gests that knowledge of cytoplasmic protein structures approaches
a level of completeness—similar to bacterial and archaeal proteins
(Fig. 1), most of which are also cytoplasmic.

Functions of Dark Proteins. For each protein, we extracted func-
tional descriptions from the UniProt “CC” annotation; the median
length of text in this field was 47% shorter for dark proteins, in-
dicating that less is known about them (again, consistent with lower
evolutionary reuse). The resulting set of 242,064 distinct functional
annotation terms was used in an enrichment analysis (S Methods),
finding that only 2,098 were underrepresented in dark proteins,
whereas 3,566 were overrepresented (Dataset S2). This finding
implies that, overall, dark proteins fulfill a wide variety of functions,
but, nevertheless, a subset have distinct biological functions.
Eukaryotic dark proteins were overrepresented in specific
secretory tissues and exterior environments (Fig. 6), consistent
with the result that many were secreted (Fig. 5). Eukaryotic dark
proteins were also overrepresented in disulfide-rich domains and
in disulfide bonds (Fig. 6 and Dataset S2), consistent with in-
creased cysteine (Fig. S7). Additionally, eukaryotic dark proteins
were overrepresented in cleavage and other posttranslational
modifications known to prepare proteins for harsh environments
and to confound experimental structure determination (Fig. 6).
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Fig. 5. Cellular locations over- and underrepresented in dark proteins.
Pooling annotations for all eukaryotic proteins, we determined which sub-
cellular compartments were enriched in dark proteins; these proteins were
most strongly overrepresented in the extracellular space, followed by the
endoplasmic reticulum and then the plasma membrane. Dark proteins were
underrepresented among cytoplasmic proteins.
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Fig. 6. Functional annotations over- or underrepresented in dark proteins. Pooling annotations for all eukaryotic proteins, we used enrichment analysis to
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find biological functions associated with dark proteins (Dataset S2). The tree map shows all over- and underrepresented annotations (dark gray and blue,
respectively) in eight functional categories; cell area indicates annotation significance [scaled to —logo(P), using the adjusted P value from Fisher’s exact
test]. Dark proteins were overrepresented in many specific secretory tissues and underrepresented only in three “tissue” annotations: “Red blood cells,”
"Ubiquitous,” and “Widely expressed” (text not shown). Dark proteins were also overrepresented in cysteine-rich domains and disulfide bonds (of all dark
proteins with annotated posttranslational modifications, 16% had disulfide bonds compared with 6.4% for nondark proteins). Dark proteins were under-
represented in many “Catalytic site” and “Pathway” annotations, where inference often requires similarity to a PDB structure.

Coding Potential. The unexpected features of dark proteins may
raise the following question: Are they really proteins? Indeed,
some overrepresented Swiss-Prot annotations suggest that a frac-
tion of dark proteins are noncoding (Dataset S2); to examine this,
we calculated a coding potential score for each human protein
[using CPC (34); SI Methods]. We found that, of the 4,403 human
dark proteins, 2 were likely noncoding and 48 were weakly non-
coding; thus, noncoding accounted for only ~1% of dark proteins.
By comparison, of the 15,806 human nondark proteins, ~0.14%
were noncoding or weak noncoding. Thus, as expected, only a very
small fraction of Swiss-Prot entries are likely noncoding; although
this fraction was enhanced in human dark proteins, it seems likely
that most dark proteins really are proteins.

Implications. Mapping the dark proteome has revealed many un-
expected features; however, more analyses remain to be done—
for example, examining physiochemical properties also known to
confound structure determination [e.g., isoelectric point, hydro-
phobicity, or irregular secondary structure (32)]. Thus, we provide
our data for use by others (Dataset S1). In this work, we focused
primarily on dark proteins, which account for ~42% of the dark
proteome (Fig. 1); dark regions account for the remaining 58%.
Several insights can be gained from the dark protein features
revealed in this work. (i) The observation that most dark proteins
had low disorder (and many highly disordered proteins are not
dark) helps clarify the distinction between darkness and disorder;
this clarification in turn will help further studies into protein in-
trinsic disorder. (ii) The observation that transmembrane regions
were rare among proteins with 75% < darkness < 100% (es-
pecially in eukaryotes) may indicate the existence of trans-
membrane regions undetected by current prediction methods.
(#ii) The observation that many dark proteins are secreted and
posttranslationally modified may help focus development of

15902 | www.pnas.org/cgi/doi/10.1073/pnas.1508380112

experimental and bioinformatics methods to better manage such
cases. (iv) The combination of low evolutionary reuse (Fig. 4B
and Fig. S8) with high occurrence of disulfide bonds is a signa-
ture, suggesting that many dark proteins are newly evolved folds
(35) exploring the dark matter of protein folding space (12).

Mostly, however, dark proteins are a mystery; in addition to
unknown structure, many have unknown location, unknown
function, and no known interactions with other proteins. This is
partly accounted for by low evolutionary reuse and by expression
in specific tissues and developmental stages. Ultimately, many
dark proteins are simply not as well studied as nondark proteins;
this work will contribute by highlighting them for subsequent
experimental and bioinformatics studies, which may reveal fur-
ther unknown unknowns.

Future Perspectives. The dark proteome is a moving target, chang-
ing as the PDB grows. However, as sequence databases grow
at much faster rates, will the dark proteome expand or con-
tract? The current work cannot answer this directly, but earlier
surveys have concluded that the number of folds is <10,000 (36),
suggesting that the dark proteome will eventually contract if
improvements in detection methods [e.g., HHblits (22)] keep
pace with the rate of new sequence families. However, those
surveys used databases (PDB, Swiss-Prot, etc.) with historical bias
toward model organisms; newer experimental approaches are
reducing this bias [e.g., structural genomics (8), DNA sequencing
of environmental samples (37)]. A recent survey of 8 million
protein sequences by Levitt (6) concluded that, eventually, the
number of folds may increase linearly with sequences. However,
uncertainty in this conclusion arose because ~22% of the proteins
surveyed were “uncharacterized” (i.e., orphans not matching
any known sequence family); many of these uncharacterized
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proteins may arise from errors in predicting genes from whole
genomes.

In the current survey of half a million carefully curated Swiss-
Prot sequences, we found that ~13% are dark proteins; although
some of these dark proteins were not orphans (just hard to de-
termine folds), most were, as evidenced by low evolutionary re-
use scores. Although we used a very different approach from
Levitt (6) (a focus on structure versus sequence and very dif-
ferent methods, thresholds, and cutoff values), both of our
studies are in broad agreement. Thus, our results suggest that
many of the uncharacterized orphan sequences reported by Levitt
(or the dark matter of the protein universe) are indeed real
proteins; this possibility strengthens the suggestion that folds will
eventually increase linearly with sequences (6) and implies that
dark proteins may remain a sizeable and irreducible feature of the
protein universe.

Conclusions

The dark proteome is a key remaining frontier in the under-
standing of biological systems. This work will help focus future
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structural genomics and computational biology efforts to shed
light on the remaining dark proteome, thus revealing currently
unknown molecular processes of life.

Methods

In each subsection of Results and Discussion, we briefly outline the bio-
informatics methods used to derive the presented results. S/ Methods gives
further details on how we derived the scores used in the work (darkness,
disorder, coding potential, etc.), the statistics used to analyze the scores,
and the density plots, 2D plots, linear diagrams, cell map, and tree maps
used to visualize the scores. This work is accompanied by an online resource
(darkproteins.org) that provides periodically updated versions of Datasets S1
and S2, and provides facilities to interactively explore these data.
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