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Summary

Existing studies characterizing gut microbiome variation in the United States suffer from 

population ascertainment biases, with individuals of American Indian ancestry being among the 
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most under-represented. Here, we describe the first gut microbiome diversity study of an 

American Indian community. We partnered with the Cheyenne & Arapaho (C&A), federally 

recognized American Indian Tribes in Oklahoma, and compared gut microbiome diversity and 

metabolic function of C&A participants to individuals of non-native ancestry in Oklahoma (NNI). 

While the C&A and NNI participants share microbiome features common to industrialized 

populations, the C&A participants had taxonomic profiles characterized by a reduced abundance 

of the anti-inflammatory bacterial genus Faecalibacterium, along with a fecal metabolite profile 

similar to dysbiotic states described for metabolic disorders. American Indians are known to be at 

elevated risk for metabolic disorders. While many aspects of this health disparity remain poorly 

understood, our results support the need to further study the microbiome as a contributing factor. 

As the field of microbiome research transitions to therapeutic interventions, it raises concerns that 

the continued exclusion and lack of participation of American Indian communities in these studies 

will further exacerbate health disparities. To increase momentum in fostering these much needed 

partnerships, it is essential that the scientific community actively engage in and recruit these 

vulnerable populations in basic research through a strategy that promotes mutual trust and 

understanding, as outlined in this study.

Graphical Abstract
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Introduction

It is now established that the study of human biological variation must include those 

microbial cells that are a part of the greater biotic system, the microbiome. Understanding 

human biodiversity requires population-based thinking, where complex interactions between 

the natural and sociocultural environment of populations shape biological variation. Yet, 

there are few population-based studies of the gut microbiome. With the exception of a study 

on a rural Hutterite community [1], gut microbiome studies in North America have focused 

almost exclusively on urban cohorts and/or clinical settings. Among these urban/clinical 

studies, there has only been one study to thoroughly consider ethnic background and its 

relationship to gut microbiome variation, a study specifically focused on cancer risks among 

African Americans [2]. The paucity of population-based studies of gut microbiome variation 

is problematic. Currently, our view of gut microbiome variation is largely shaped by 

observations in urban European- Americans [3], and such biased baselines may mislead the 

science. This is a particular concern for American Indians. Given that many gut 

microbiome-associated complex diseases are also well known health disparities among 

American Indians [3, 4], it is surprising that no gut microbiome study to date has focused on 

these vulnerable groups. To illustrate this point, we know more about the gut microbiome 

variation within ancient/archaeological American Indians [5, 6] than we do of extant 

American Indians who may potentially benefit from microbiome science.

Here we describe the first gut microbiome study of American Indian communities, members 

of the Cheyenne & Arapaho (C&A), who are federally recognized American Indian Tribes 

in Oklahoma. This research is the product of four years of collaboration and engagement 

work with C&A tribal members representing five different towns in western Oklahoma: 

Clinton, Concho, Geary, Hammon, and Kingfisher. As part of this collaboration, stool 

samples were collected from 38 C&A individuals (all adults), along with host metadata 

including age, sex, BMI, self-reported T2D (Table S1, Figure S1), and a diet survey through 

a three day food journal (Table S2). DNA was extracted from stool samples, and the 

microbial community was characterized using targeted amplification and sequencing of the 

16S ribosomal RNA gene (rRNA) V4 region (see Methods). For comparison, we included 

individuals with non-native ancestry (NNI) from Norman, Oklahoma, and two native South 

American populations, previously collected and processed in the same lab [7]. Additionally, 

for the C&A and NNI individuals, we characterized microbiome functional potential 

(shotgun metagenome sequencing), and fecal metabolite profiles (LC-MS/GC-MS, 

Metabolon).

Results

C&A Participant Diet

Dietary data was obtained through a food journal documenting meals consumed during the 

three days prior to sample collection. While the food journal contained meal descriptions, 

portion size/servings were not consistently reported, resulting in a semi-quantitative dietary 

table (Table S2). Overall, the diet of C&A participants is characterized by a high proportion 

of processed protein and carbohydrate-rich foods, and low levels of fruit consumption. 

Among protein rich meals, ~68% were fried or processed. Further, for ~15% of the 
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individuals, all protein rich foods consumed were fried or processed. Potatoes accounted for 

the majority of vegetables consumed (~49%), in addition to being the only vegetable 

consumed by subset of C&A individuals (~25%). Excluding potatoes, ~92% of all dietary 

starches were refined/processed, and ~15% were also fried or sweetened. Further, refined/

processed starch was the only source of starch for ~65% of the individuals. In addition to 

meals rich in processed proteins and carbohydrates, there was high consumption of 

sweetened and/or caffeinated drinks and high calorie sweet/savory snacks. All individuals 

consumed at least one sweetened beverage, and ~90% of individuals consumed at least one 

sweet or savory snack, with a further ~65% of individuals consuming five or more snacks 

during the three day period. In contrast, fruit consumption was low within the C&A with 

~63% of individuals reporting no dietary fruit intake during this three day period.

Microbiome Taxonomic Characterization

At the phylum level, the C&A gut microbiome is characterized by high relative abundances 

of the phylum Firmicutes (~87 ± 11%, mean ± sd), followed by Actinobacteria, 

Bacteroidetes, and Proteobacteria. These four phyla are consistently observed among all 

C&A individuals. Other phyla including Verrucomicrobia, Euryarchaeota, Fusobacteria, and 

Cyanobacteria show a more sporadic distribution (Figure 1a). At the genus level, the gut 

microbiome of C&A participants is predominantly composed of fifteen genera accounting 

for ~90±10% of total reads. Of these, twelve belong to the phylum Firmicutes primarily 

from the families Lachnospiraceae (5 genera), and Ruminococcaceae (4 genera). 

Specifically, C&A individuals are dominated by the genus Blautia, and an unknown genus, 

both belonging to the family Lachnospiraceae (Figure 1b).

Comparison of taxon relative abundances with collected metadata including town, sex, BMI, 

self-reported T2D, smoking, antibiotic use, and diet summaries, did not reveal any 

statistically significant differences (see Supplemental Methods). However, an unknown 

genus within the family Lachnospiraceae showed a negative correlation with age (rho=

−0.49, FDR adjusted P = 0.09). Beta-diversity analysis using PCoA transformed UniFrac [8] 

distances shows structuring with the first three PC axes accounting for ~27, ~19, and ~10% 

of the variation, respectively (Figure 1c). Comparisons of the first three PC axes with 

collected metadata showed correlations between smoking and PC axis1 (rho=−0.38, FDR 

adjusted P = 0.018), and antibiotic use and PC axis3 (rho=0.42, FDR adjusted P < 0.01).

When compared to gut microbiome community profiles previously generated from a study 

[7] on two native South American populations, and NNI from Oklahoma, the C&A 

microbiome shares features characteristic of an industrial agricultural lifestyle with the NNI 

population. Specifically, the C&A and NNI individuals cluster together in beta-diversity 

plots (Figure 2a), have reduced microbial richness compared to the two native South 

American populations (Figure 2b), and are characterized by high proportions of the bacterial 

phylum Firmicutes (Figure S2). Results from supervised classification [9] at the OTU level 

further demonstrates the differences in microbial communities between these populations 

with diverse subsistence strategies: Industrial agriculture (C&A, NNI), traditional hunter-

gatherer (Matses), and rural agricultural (Tunapuco) (Table 1). These patterns are consistent 

at higher taxonomic levels (Genus to Phylum), with any misclassification occurring 
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exclusively between the two Oklahoma populations, or the two native South American 

populations, respectively. Finally, while no distinguishing trends were observed between the 

C&A and NNI individuals at the phylum level, we identified several genera within the 

families Lachnospiraceae and Ruminococcaceae showing differences in relative abundance 

between these two populations (Table 2). Specifically, the C&A individuals were enriched 

for the family Lachnospiraceae, with a high abundance of Blautia, Coprococcus, Dorea and 

an unknown Lachnospiraceae genus, while the NNI population was enriched for members of 

the family Ruminococcaceae, with an increased abundance of the genus Faecalibacterium.

Microbiome Functional Potential Characterization

Quality filtered shotgun metagenome sequences from C&A and NNI individuals were 

merged and de novo assembled using Ray Meta [10]. This merged assembly contained a 

total of 6,245,802 contigs (≥100bp), of which 676,970 had a minimum length of 500bp 

(long contigs). A total of 4,709,408 open reading frames (ORFs) were predicted from this 

dataset, of which 1,466,533 ORFs were identified within the long contigs. Overall 

~91±2.3% of reads from each individual mapped on to the assembled contigs, with ~75±5% 

of reads mapping on to the long contigs (Table S3). Annotation of predicted ORFs using the 

COG and KEGG databases resulted in function assignment for 2,313,293 (~49%) and 

1,380,005 (~29%) ORFs, respectively. Within individuals, the C&A had ~65±2% and 

~41±2% of contigs assigned to functional categories using the COG and KEGG databases 

respectively. Similarly, the NNI had ~63±2% and ~40±1.5% of contigs assigned to COG 

and KEGG functional categories. Summarizing at the highest COG hierarchy, both C&A 

and NNI have 17 categories with an average relative abundance >1%. Carbohydrate 

transport and metabolism has the highest relative abundance at ~7±1% for both population 

groups (Figure 3). Overall, no statistically significant differences were observed in 

functional potential between the C&A and NNI individuals, with comparisons performed at 

different functional hierarchies including individual COGs (e.g., COG4468), protein 

functions (e.g., Galactose-1-phosphate uridylyltransferase), and pathways (e.g., 

Carbohydrate transport and metabolism) respectively. Additionally, comparisons with 

metadata collected from C&A individuals showed associations primarily between age and 

protein functional potential.

Microbiome Gut Metabolite Characterization

A total of 535 fecal metabolites were characterized (Table S4), including 152 associated 

with Lipid metabolism, 111 with amino acid metabolism, 98 xenobiotics, and 85 peptides. 

Of these, 499 metabolites met our criteria for inclusion for comparison between the C&A 

and NNI individuals. A total of 55 metabolites showed statistically significant differences (P 

< 0.05) between the C&A and NNI individuals. Of these, 28 metabolites were found at 

higher levels among the NNI, while the remaining were 27 were higher among the C&A 

participants (Figure 4). In addition to these broader trends, we also identified a subset of 10 

metabolites showing association with self-reported T2D status among the C&A. Of these, 9 

metabolites including cadaverine, N-acetyl cadaverine, 2-aminoadipate, histamine, 

pipecolate, carboxymethyl-GABA, glucosamine, N-acetylneuraminate, and piperidinone, are 

higher among the C&A individuals self-reporting as T2D+ve. In contrast, the metabolite 

pyridoxate is reduced among T2D+ve individuals in the C&A. Finally, comparison of 
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metabolite profiles and collected metadata exclusively within C&A individuals showed 

correlation between N-acetyl proline and consumption of processed proteins (rho=−0.6, 

FDR adjusted P = 0.07), lithocholate (bile acid) and milk consumption (rho= −0.6, FDR 

adjusted P = 0.06), in addition to a few metabolites associated with caffeine and alcohol 

consumption (Table S5).

Microbiome Metabolite Correlations

Previous studies have shown that certain fecal metabolite concentrations correlate with gut 

microbiome community profiles [2]. To explore these associations within the C&A 

participants, we performed pairwise Spearman rank correlations between microbial taxa 

counts (genus level) and metabolite concentrations. Following multiple testing correction 

(FDR adjusted P < 0.1), significant interactions were observed between 32 microbial taxa 

and 302 metabolites. Further filtering to remove low frequency taxa (average relative 

abundance < 0.1 %) and singular node-edge pairs resulted in a final group of 200 

metabolites correlated with ten microbial genera (Table S6).

Discussion

Microbiome Variation

The gut microbiomes of C&A and NNI participants share common features such as reduced 

species richness and increased abundance of the phylum Firmicutes, which distinguish them 

from native South American hunter-gatherers and agriculturalists, a pattern likely 

attributable to the industrial agricultural lifestyle (extensive mechanization and fertilizer use) 

followed by both the C&A and NNI. Specifically, this pattern indicates that subsistence 

strategy rather than shared ancestry likely plays a greater role in shaping the gut microbiome 

among populations. This is a particularly important consideration for biomedical scientists 

who partner with native communities in which genetic information regarding ancestry is 

frequently considered sensitive.

Despite sharing an industrial agricultural lifestyle, the C&A and NNI participants show 

differences in Social economic status (SES), food access, BMI profiles and rates of self-

reported T2D (Figure S1), all factors that could affect diet quality, the gut microbiome and 

health. Specifically, SES metrics compiled at the county level (http://factfinder.census.gov), 

show that Native American communities within the five C&A towns have lower median 

incomes (~$37,400±15,700), a lower percentage of individuals achieving a bachelor’s 

degree (between ~6%-24%, average ~15%), a higher percentage of families below the 

poverty level (between 5–46%, average ~22%), and a higher percentage of families 

receiving supplementary assistance (between ~8%–31%, average ~21%). In contrast, the 

general adult population in Norman has a median income of ~$52,700, with ~31% holding a 

bachelor’s degree. Additionally~7% of families live below the poverty level, and ~8% 

receive supplementary assistance. Among the various SES and health metrics, BMI profiles 

and self-reported T2D rates show statistically significant differences between the C&A and 

NNI participants, with ~93% of the C&A individuals being overweight or obese, and ~50% 

self-reporting a T2D diagnosis (Figure S1). Previous studies have reported trends including 

reduced species richness, and reduced abundance of the phylum Bacteroidetes among obese 
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individuals [11, 12]. However, our comparisons of the C&A and NNI participants lack these 

trends. Rather, individuals from both populations are characterized by high levels of 

Firmicutes, and differences between the C&A participants and NNI are only evident at the 

genus level (Table 2). Among these, the genus Faecalibacterium, which is found at low 

abundance among the C&A participants, has been previously associated with anti-

inflammatory properties, with reduced abundance among Crohn’s patients [13, 14]. 

Previously published studies on gut microbiome functional potential have shown significant 

differences between traditional (hunter-gatherers and subsistence farmers) and industrialized 

lifestyles, characterized by increased carbohydrate and amino acid metabolism among 

traditional peoples, and increased membrane transport functions in industrialized societies 

[7, 15]. Additionally, studies on mouse models reported gut microbiomes enriched for 

energy harvest associated with obesity [12]. However, despite differences in obesity levels, 

the C&A and NNI individuals share similar gut microbiome functional potential profiles. 

While bioinformatics methods for metagenome assembly and annotation, data complexity, 

and choice of reference databases can influence functional potential characterization, 

assembly and annotation statistics (Table S3) indicate that any such biases affect the C&A 

and NNI participants equally.

In contrast to predicted functional potential, comparison of fecal metabolite profiles reveals 

significant differences between the C&A and NNI, with the C&A participants being 

enriched for bile acid derivatives, phospholipids, cadaverine, and histamine, and the NNI 

being enriched for amino acids and medium/long-chain fatty acids. Among these, bile acid 

derivatives, which are generated through microbial degradation of primary bile acids, are 

known to play a role in intestinal uptake of dietary lipids and modulating intestinal 

permeability [16–20]. Specifically, increased levels of fecal secondary bile acids such as 

deoxycholate have been associated with high-fat diets [21], increased intestinal permeability 

[19, 20, 22], and inflammation [23]. Finally, increased levels of the fecal metabolite 

cadaverine has been previously associated with ulcerative colitis [24], while medium-chain 

fatty acids such as heptanoate have been associated with healthy gut function [25]. 

Collectively, these results indicate that the C&A participants have a gut metabolite profile 

with features similar to those observed in inflammatory bowel disorders.

While comparisons of metadata and taxa/metabolites within the C&A participants 

exclusively show little association, we do find significant associations between taxa 

abundances and gut metabolite levels (Table S6). Specifically, we find several metabolites 

showing an inverse relationship in their interactions with members of the family 

Lachnospiraceae and Ruminococcaceae. This is particularly interesting considering that 

genera (Table 2) within these two families show differential abundances between the C&A 

and NNI participants. Further, these specific metabolites are not directly implicated in 

dysbiosis, rather, they indicate that Lachnospiraceae and Ruminococcaceae, both common 

members of the gut microbiome have different impacts on gut metabolic function.

Community Partnership and Microbiome Research

Recent scholarship in science and technology studies has emphasized the ways in which 

science and society co-produce each other [26]. Applied in the context of genomic research 
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on American Indians, much of this work has focused on how these dynamics play out in the 

dominant society’s construction of native communities [27, 28]. American Indian 

communities are justly suspicious of work in this vein, and resistance to studies of this kind 

has led to important ethical and legal innovations, especially in terms of community 

engagement [29–31]. But recent years have also seen broad-based efforts to improve tribal 

control over both health care and research, and research on the ways in which these efforts 

have and can continue to shape both science and society is only beginning to emerge [32, 

33]. While no one should pretend that microbiomes hold the key to American Indian health 

disparities, and many would agree that predicted genomic transformations in health care 

have been slow to materialize [3], it is clear that these approaches, as well as broader trends 

in what has come to be called precision medicine, will be an important component of health 

care going forward, with important implications, as well, for American Indian communities.

The research we report here constituted a crucial first step in the development of an 

interdisciplinary campus-community partnership between the University of Oklahoma and 

the Cheyenne and Arapaho Tribes. This project was foundational in the development of our 

Center on American Indian and Alaska Native Genomic Research, which links faculty in the 

biological (LMAMR) and social sciences (CASR) with faculty in Native American Studies 

to partner with American Indian and Alaska Native communities to develop genomic 

research that more effectively addresses community concerns. Being the first gut 

microbiome study involving the C&A, in fact of any Native American tribe, part of our 

partnership involved working through sensitive issues and agreeing to maintain a focus on 

population level human biological diversity. While the most apparent differences in gut 

microbiome composition and fecal metabolites were observed in comparisons between the 

C&A and NNI participants, they possibly reflect a combination of complex environmental 

and biological factors including diet, obesity, T2D, and socioeconomic status. With the 

C&A participants fitting one demographic characterized by high rates of obesity and 

processed food consumption, and low fresh fruit and vegetable consumption, our ability to 

distinguish the contribution of individual environmental and biological factors is limited. 

However, this study is a necessary first step, and creates a bridge as we seek to further 

explore the specific impact of these variables on the gut microbiome and overall health of 

the C&A. Finally, the embedded ELSI and integrated biosocial approach to microbiome 

science we report here, point toward the possibilities for much more effective community 

engagement and broad-based microbiome research in future efforts.

Methods

Sample Collection and Processing

The C&A are federally recognized tribes in western Oklahoma. Although both Cheyennes 

and Arapahos descend from the Algonquian language family, the populations had distinct 

histories for at least 2,000 years and became politically united in the early 19th century. 

While current tribal members have ancestry from multiple Native nations as well as 

European ancestry [34], C&A tribal membership requires a minimum of one-quarter 

Cheyenne or Arapaho ancestry from rolls compiled in the late 19th century. We assembled 

an interdisciplinary team at the University of Oklahoma with expertise in the social sciences 
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(Center for Applied Social Research; PS, GT, LJ, DC), genomic research (Laboratories of 

Molecular Anthropology and Microbiome Research; CML, CW, KS, ATO, AJOT, RYT, 

JX), and Native American Studies (Health Promotion Sciences; LS) that partners with tribal 

and community-based organizations (C&A Health Board) to foster both discussion and 

collaboration in microbiome science. Our team partnered with the C&A to assess the role 

that microbiome knowledge can and should play in their health systems. The C&A tribal 

health board aided in the initial selection of a community representative from each of five 

towns within the tribal jurisdiction. Representatives were then responsible for participant 

recruitment for microbiome research related focus groups. Participants in these discussions 

had the option to provide samples for this microbiome human biodiversity project, and the 

resulting data would also be used to better inform the dialogue about ethical, legal and social 

implications of microbiome research. We refer this this as an “embedded” approach to 

Ethical, Legal, and Social Implications (ELSI) research, meaning conducting a study of 

ELSI, organically and in tandem, with an ongoing scientific study.

Following informed consent, C&A individuals interested in providing a fecal sample were 

provided with a sample collection kit containing the Commode Specimen Collection System 

(Fisher-Scientific), icepacks, and instructions. At the time of consent, phenotypic 

information including age, sex, height, weight, smoking patterns, and self-reported T2D 

status were collected. Collected height and weight measurements were used to calculate 

BMI following the standard CDC formula.

Fecal samples were transported on ice to the Laboratories of Molecular Anthropology and 

Microbiome Research (LMAMR) at the University of Oklahoma in Norman, Oklahoma, 

where they were stored at −80°C until further processing. Non-native individuals were 

originally recruited from the Norman area through campus flyers or word of mouth [7]. In 

total, twenty three NNI (20 adults, 3 children) were consented and their phenotypic 

information was collected at LMAMR. All comparative analyses were performed with adult 

participants (>18 years of age) unless noted otherwise.

Samples (0.25g of fecal material) were mixed with 0.1g Zirconia/Silica beads (1.0mm) and 

500µl of MoBio lysis buffer and vortexed for 15 minutes. DNA from a total of 250µl of this 

fecal slurry was extracted using the PowerMicrobiome RNA Isolation Kit, with the 

exclusion of the DNase I step. The DNA extracts were quantified, diluted to 5 ng/µl and 

used for subsequent taxonomic characterization. Briefly, PCR was performed using 

barcoded primers targeting the V4 hypervariable region of the 16S rRNA gene [35] using 

the high fidelity AccuPrime Taq DNA polymerase. Resulting amplicons were pooled, and 

sequenced on an Illumina MiSeq instrument (2*150bp). Shotgun libraries were built from 

the undiluted DNA extract using the TrueSeq Library kit (Illumina) and sequenced on a 

Illumina HiSeq platform (2*100bp) at the Oklahoma Medical Research Foundation. Finally, 

frozen aliquots of fecal samples were sent to Metabolon, Inc. for high throughput metabolite 

screening.

16S rRNA gene amplicon data

Paired-end reads from the MiSeq run were trimmed (q<30) and merged to reconstruct the 

complete V4 region using PEAR [36]. Reads with uncalled bases were removed prior to 
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analysis. The trimmed and merged datasets were demultiplexed in QIIME (v1.7) [37, 38], 

followed by chimera identification and removal. Both de novo and reference-based chimera 

detection was performed using the usearch (v6.1) algorithm [39] implemented in QIIME. 

This same protocol was used to process previously generated 16S rRNA data for the NNI 

population [7]. Chimera filtered sequences from the C&A and NNI datasets were clustered 

into Operational Taxonomic Units (OTUs) using a closed reference OTU picking protocol 

with uclust [40] as the clustering algorithm and default parameters (97% similarity, 

max_accepts=20, max_rejects=500). A custom reference database was generated by 

trimming the V4 region from 16S rRNA gene sequences in the Greengenes database (release 

13_08) [41], followed by de novo clustering of the trimmed sequences using a 97% 

similarity threshold in uclust [40]. This custom database was used as a reference for chimera 

detection and subsequent closed-reference OTU assignment. The resulting OTU table was 

rarefied to a depth of 10,000 reads per sample, and the rarefaction was replicated 100 times. 

Median OTU counts obtained over 100 rarefactions were used to generate the final OTU 

table. This final OTU table was used for downstream statistical analyses. Sample metadata 

and read statistics are summarized in Table S1. Finally, for comparative analyses involving 

the two South American populations [7], all datasets were quality filtered and trimmed to the 

first 100 bp of the 16S rRNA V4 region, followed by closed reference OTU assignment in 

QIIME.

Alpha diversity metrics as defined by richness (observed species), and phylogenetic 

diversity (Faith’s PD) were calculated in QIIME [37, 38]. Pairwise non-parametric 

Wilcoxon tests were used to compare alpha diversity metrics between sample groups, with a 

Bonferroni adjusted P value < 0.05 indicating a significant difference. Non-parametric 

Kruskal-Wallis tests were used to compare differences in OTU abundances between sample 

groups, with a P value <0.05 and a 10% False Discovery Rate (FDR) indicating a significant 

difference. Boxplots were generated for taxa showing significant differences in order to 

identify and eliminate those with outlier effects. Beta diversity analyses were performed 

using the weighted UniFrac [8] metric as implemented in QIIME. The resulting distance 

matrix was transformed using Principal Coordinates Analysis (PCoA) and visualized. 

Spearman rank correlation was used to identify associations between PC axes and sample 

metadata.

Shotgun metagenomic data

Adapter and primer fragments were removed from paired-end HiSeq reads using cutadapt 

[42]. Reads were then trimmed (q<30, l<25) using Sickle [43]. Reads with uncalled bases 

were removed from subsequent analyses. Trimmed shotgun reads from all samples were 

pooled and assembled into contigs using Ray Meta [10] implemented on the OU 

Supercomputing Center for Education & Research (OSCER) platform at the University of 

Oklahoma (OU). FragGeneScan [44] was used to identify open reading frames (ORFs) in 

the contigs. Trimmed shotgun reads were mapped onto assembled contigs using Bowtie2 

[45], and the relative abundance of ORFs within each contig was calculated using samtools 

(1.19.0) [46] and custom R scripts. Predicted ORFs were annotated using protein BLAST 

[47] against the COG database [48], and through the KEGG Automatic Annotation Server 

(KAAS) [49]. Additionally, ORFs lacking annotation were clustered using CD-HIT [50]. 
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Read, assembly, and annotation statistics are summarized in Table S3. Abundance tables 

were generated for gene and protein family datasets using custom perl scripts. The resulting 

tables were rarefied to a depth of 1,000,000 counts per sample. Non-parametric Kruskal-

Wallis tests were used to compare abundance profiles between sample groups, with a P 

value <0.05 and a 10% FDR indicating a significant difference.

Metabolome data

Quantitative abundance profiles for a total of 535 fecal metabolites were obtained from 

Metabolon, Inc. Metabolites with missing values in >80% of the samples within either the 

C&A or NNI populations were removed prior to statistical analysis. A total of 499 

metabolites matched this criterion (Table S4). Non-parametric Kruskal-Wallis tests were 

used to compare abundance profiles of metabolites between the sample groups, with a P 

value <0.05 indicating a significant difference. Boxplots were used to visualize significantly 

different metabolites and to remove those showing outlier effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gut microbiome diversity among the C&A
(A) Phylum level taxonomic summaries. Each column represents an individual. Individuals 

are grouped by town. Shaded bars below the graph indicate metadata values for individuals. 

Dark and light shades correspond to self-reported T2D (positive/negative), Antibiotic use 

(positive/negative), and Sex (Female/Male) respectively. BMI status is shaded light to dark, 

corresponding to normal, overweight, and obese categories respectively. See also Table S1, 

S2 and Figure S1. (B) Relative abundance distribution of the top 15 genera commonly 

observed among the C&A. Error bars indicate 95% confidence intervals (C) and (D) PCoA 
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plots generated from weighted UniFrac distance matrix. Individuals are color-coded by 

smoking status (C), and antibiotic use (D), with blue depicting presence, and red depicting 

absence. All analyses were performed on OTU tables rarefied to 10,000 reads per individual.

Sankaranarayanan et al. Page 15

Curr Biol. Author manuscript; available in PMC 2016 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Microbiome diversity comparisons between C&A, and previously published data from 
NNI and native South American populations (Matses, Tunapuco)
[7]. All analyses were performed on OTU tables rarefied to 10,000 reads per individual. All 

analyses were limited to adults (>18 years of age). Individuals are color coded by 

population. (A) PCoA plot generated from weighted UniFrac distance matrix. The C&A and 

NNI individuals cluster separately from the Matses and Tunapuco. (B) Microbial richness as 

measured by phylogenetic diversity. The C&A and NNI have reduced microbial richness 

compared to the Matses and Tunapuco populations. Error bars indicate 95% confidence 

intervals. Phylum level taxonomic summaries are provided in Figure S2.
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Figure 3. Summary of gut microbiome functional potential generated from COG annotation of 
assembled contigs
Within the C&A and NNI, individuals are hierarchically clustered. Analyses were performed 

on COG tables rarefied to a total contig abundance of 1,000,000 per individual. Assembly 

and annotation statistics are provided in Table S3.
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Figure 4. Heatmap depicting metabolites showing significant differences between the C&A and 
NNI populations
Metabolites are color-coded by functional pathway. Raw metabolite data is provided in 

Table S4. Diet –metabolite and Taxa-metabolite correlations within the C&A are 

summarized in tables S5, and S6 respectively.
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