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Abstract

A general theoretical framework is developed to account for the effects of an external potential on 

the energetics of membrane proteins. The framework is based on the free energy relation between 

two (forward/backward) probability densities, which was recently generalized to non-equilibrium 

processes, culminating in the work-fluctuation theorem. Starting from the probability densities of 

the conformational states along the reaction coordinate of “voltage coupling”, we investigate 

several interconnected free energy relations between these two conformational states, considering 

voltage activation of ion channels. The free energy difference at zero membrane potential (i.e., 

between the two “non-equilibrium” conformational states) is shown to be equivalent to the free 

energy difference between the two “equilibrium” conformational states along the one-dimensional 

reaction coordinate of voltage coupling. Furthermore, the requirement that the application of linear 

response approximation to the free energy functions (free energies) of voltage coupling should 

satisfy the general free energy relations, yields a novel expression for the gating charge in terms of 

other experimentally measurable quantities. This connection is familiar in statistical mechanics, 

known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the 

movement of a unit charge within the membrane under the influence of an external potential, 

using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the 

electrolytes and the electrodes. The CG model yields Marcus–type voltage dependent free energy 

parabolas for the two conformational states, which allow for quantitative estimations of an 

equilibrium free energy difference, a free energy of barrier, and the voltage dependency of channel 

activation (Q-V curve) for the unit charge movement. In addition, our analysis offers a 

quantitative rationale for the correlation between the free energy landscapes (parabolas) and the Q-

V curve, upon site-directed mutagenesis or drug binding. Taken together, by introducing the 

voltage coupling as a reaction coordinate of energy gab, the present theory offers a firm physical 

foundation from the equilibrium theory of statistical mechanics for the thermodynamic models of 

voltage activation in voltage-sensitive membrane proteins. This formulation also provides a 

powerful bridge between the CG model and the conventional macroscopic treatments, offering an 

intuitive and quantitative framework for a better understating of the structure-function correlations 
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of voltage gating in ion channels as well as electrogenic phenomena in ion pumps and 

transporters.

1. Introduction

The advances in structural elucidation of voltage activated ion channels as well as in 

biophysical studies (e.g. Refs. [1–7]) have provided major clues about the relationship 

between the membrane voltage and the gating process. However, despite these great 

progress we still do not have a clear understanding of the corresponding structure-function 

correlation. Apparently, although there have been a significant progress in the 

computational/theoretical modeling of the energetics of ion channels (e.g. Refs. [8–22]) and 

the control of ion selectivity (e.g. Refs. [23–30]), the quantitative understanding of the 

voltage activation process is still somewhat limited. In addition to the obvious need for more 

structural information, the ability to obtain a microscopic description of the energetics of the 

conformational transition and the coupling to the external voltage is far from satisfactory. 

Similar problems occur with regards to the molecular understanding of the nature of the 

gating charge, where despite the enormous insight provided by macroscopic approaches [13, 

14, 31], it is hard to be fully comfortable with the corresponding physical picture, which 

does not include the electrolytes and the electrodes explicitly (see discussion in Refs. [20, 

32]).

A promising way for advancing our understanding of ion channels and related systems has 

been offered by the recent development of our coarse-grained (CG) model of voltage 

coupling [20, 21, 32, 33], which considers the entire membrane–protein, electrolytes and 

electrodes explicitly. The power and insight of this model have been illustrated in several 

works, but it seems that these advances have not been widely recognized, due in part to the 

use of descriptions that are very different than the familiar macroscopic formulation and the 

fact that the model does not use the straightforward fully microscopic treatment (that 

unfortunately does not offers yet converging free energy results [17, 34] nor a clear 

description of the nature of gating charge [35]). Thus we try to explore in the present work 

the relationship between our CG model of voltage coupling and the corresponding 

macroscopic continuum results.

Furthermore, more importantly, we introduce the general theoretical description of voltage 

coupling in membrane proteins, extending and generalizing the previous thermodynamic 

models of voltage activation in ion channels [1,19, 36–41]. This is done in the framework of 

equilibrium fluctuation relations, where linear response approximation to the free energy 

function of voltage coupling is introduced, resulting in the Marcus-Warshel (MW) type 

parabola, with the energy gap of voltage coupling as a reaction coordinate. A novel closed 

expression for the gating charge is then derived in the framework of the equilibrium 

fluctuation relations and linear response approximation and explored by using the CG model 

of voltage coupling. The corresponding results are validated against the macroscopic 

continuum results and applied to determining voltage dependent MW parabola for the 

movement of a unit charge within the membrane. We then use the MW type free energy 

parabolas in the framework of equilibrium fluctuation relations to formulate the quantitative 
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relationship between the free energy landscapes and the Q-V curves, thus providing a new 

insight on the molecular information content of these curves.

2. Theory and methods

2.1. Free energy relations

We will start by defining formal free energy relationships that will result in free energy 

functions of the energy gap reaction coordinate, introduced by Warshel [36] and used 

extensively in studies of reactions in condensed phase (e.g. [37–41]). This will be done 

while exploring several variants of free energy relations in the general framework of 

equilibrium fluctuation relation.

The equilibrium probability densities for the initial (0) and the final (1) states (pλ(u){λ = 

0,1}) are related to each other [42], given by:

(1)

where kBT=1 and ΔGconf is the free energy difference between, for example, two 

conformational states in the present study. This relationship is referred to “the equilibrium 

fluctuation relation”, in an analogy with its generalization to non-equilibrium processes, 

known as the work-fluctuation theorem [43, 44]).

The equilibrium fluctuation relation is easily derived (see SI for a detailed derivation) by 

considering the system as being perturbed from its initial to final states by ΔU, with the 

Hamiltonian of the form H1 = H0 +ΔU:

(2)

where pλ(u){λ = 0,1} are the probability densities of finding a particular value of u along a 

reaction coordinate ΔU(x), where x is a point in the 6N – dimensional phase space. In fact, 

this relation has been known to the community for some time ago as the theory of Bennett 

overlapping histogram (BOH) [41, 45], which is also here referred to the free energy relation 

of the first kind. In the following, the free energy difference between the two conformational 

states (ΔGconf,) is defined by two different ways, eventually leading to an equivalent 

relation.

Notice that ΔGconf, is identified as the value (u*) of reaction coordinate ΔU where the two 

probability densities intersect [41, 46]:
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leading to

(3)

Rearranging Eq. (1) yields the free energy relation of the second kind:

(4)

or

(5)

where Δgλ(u) and Δfλ(u){λ = 0,1} are free energy functions or potentials of mean force 

(PMF) along the reaction coordinate of energy gap [36, 37, 41], which are related to each 

other by:

(6)

(7)

Here,  are defined as the maximum values of the probability densities, such 

that Δgλ{λ = 0,1} have their respective global minimum set to zero [41], i.e., Δgλ(uλ,min) = 

−ln[pλ(uλ,min)/pλ,max] = 0, which results in the free energy relation of third kind:

(8)

This expression states that the free energy difference between the two equilibrium 

conformational states along a one-dimensional reaction coordinate of energy gap, 

(Δf1(u1,min)−Δf0(u0,min), defined from the second free energy relation, is equal to the free 

energy difference, ΔGconf(= ΔU*)), determined using the equilibrium fluctuation relation or 

the first free energy relation. In other words, the free energy difference, ΔGconf (= ΔU*), 

defined in two different ways from Eqs. (3) and (4) or (5), leads to an equivalent relation of 

Eq. (8), which is thus termed as the conformational free energy along the one-dimensional 

reaction coordinate of energy gap. A closely related derivation to Eq. (8) along “positional” 

reaction coordinates is found in Ref. [41] and applied to the thermodynamics of ion binding 

in a K+ channel [28], supporting the earlier proposal of the multi-ion mechanism of ion 

selectivity in K+ channels [27].

The additive constant on the right hand side in Eq. (4) or (5) vanishes in the case where 

Δgλ{λ = 0,1} are functions with equal maximum values (curvatures) of the probability 
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densities at their respective minimum (i.e., ). In the present study, the constant 

will be dropped out without a loss of generality [38, 41] and the approximation introduced 

here will be discussed in conjunction with the linear response expression for free energy 

functions (see Section 2.3). The second free energy relation of Eq. (4) was first recognized 

by Warshel and others [37–39] in formulating microscopic treatment of electron transfer in 

condensed phases and relating it to the framework of the macroscopic Marcus theory [47, 

48]

Note that the free energy functions (Δfλ(u){λ = 0,1}), whose final state (λ=1) is shifted by 

the free energy (ΔGconf) from the reference free energy function (Δg1(u)), intersect at u=0 

along the energy gap coordinate [37–39], leading to:

(9)

or

(10)

The free energy relations examined so far is illustrated in Fig. 1 with ΔU= Qg.V, where Qg 

and V are, respectively, the gating charge and the externally applied potential. This will be 

further investigated in the following section, with the energy gap of “voltage coupling” in 

ion channels to derive the fundamental free energy relations (see e.g. Ref.[1]) used to 

describe the voltage dependency of channel activation in ion channels.

2.2 Free energy relations for voltage activation in ion channels

The general free energy relations investigated in the previous section can be applied to 

account for the kinetics/thermodynamics of voltage activation of ion channels by using the 

voltage dependent free energy functions. As a background for such considerations, we start 

by noting that the effect of an external potential on the activation of the voltage sensor 

domain (VSD) in ion channels is described by the voltage coupling to the gating charge Qg. 

This coupling reflects the response of the system to the application of an external potential 

but before the ions are allowed to pass through the channel [1]. The gating charge, Qg, is 

defined by determining the fraction of activated (up) and resting (down) channels as a 

function of the applied potential and asking what is the Boltzmann probability for the 

voltage induced structural change [1]. This assumption leads to the expression [1]:

(11)

where ΔGdown→up is the phenomenological free energy associated with conformational 

change between two “equilibrium” states (i.e., the conformational free energy of Eq. 8), 

which can be measured experimentally in Q-V measurements [1]. Basically this is 

equivalent to the assumption that the free energy needed to move the gating charge, Qg, in 

the membrane electric field is equal to the work of moving the protein charges between the 

two conformations (activated and resting), under the membrane electric field. Now, Eq. (11) 

is basically a reasonable formal definition of the gating charge that does not tell us what is 
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the relationship of this parameter to physical measured observables such as the integral of 

the current that flows to the electrodes, Qext, although many accept the identity of Qext with 

Qg. The structure-based evaluation of Qg is almost always done using reasonable but not 

necessarily microscopic assumptions. It is also not certain that in all cases that the actual 

electrode potential Vext is equal to the membrane potential, Vm. These issues will be 

addressed below but at this point we just note that one of the problem is that the assumption 

that leads to Eq. (11) implies that the potential is linear across the membrane. This is likely 

to be a reasonable approximation and it has been used in previous macroscopic studies [13, 

49]. Obviously, such a picture would be justified if the potential across the protein/

membrane system was obtained by converging microscopic simulations. However, in such 

cases, it is unlikely that we will have the same potential in different sites with the same z 

value that is normal to the membrane surface. Thus such a treatment does not really provide 

a microscopic description even if a few of the relevant quantities (e.g. the average 

displacements) are evaluated microscopically [17]. Other related problems are discusses in 

our previous work [32].

In view of the above discussion we can write

(12)

where Qg,m is the charge movement within the membrane and Vm is the change in the 

potential across the membrane. However, for simplicity we will assume below that c2 and 

c1 are approximately equal to one, while exploring this assumption by examining the 

correspondence between the energetics and charge movement, considering both only the 

membrane-protein system and the entire electrolyte/membrane-protein system. We start by 

considering only the membrane-protein system, whose Hamiltonian is given by [19]:

(13)

where the subscripts 0 and 1 represent initial (activated) and final (resting) states, 

respectively, of, for example, VSD. The gating charge (Qg,m) arises from the displacement 

of charged residues within membrane associated with conformational changes of VSD by 

Vm.

By taking an energy gap reaction coordinate of (ΔU= Qg.m Vm) (referred to as the “voltage 

coupling “), we obtain from Eq. (3):

(14)

where Vm,1/2 is a half voltage at which two conformational states have equal population. 

This relation along with Eqs. (19) and (20) is basically the same as the phenomenological 

free energy of conformational change of Eq. (11).

The equilibrium fluctuation relation or the first free energy relation of Eq. (1) for voltage 

activation is therefore expressed as:
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(15)

In fact, this fundamental relation has been known to the ion channel community to describe 

the kinetics/thermodynamics of voltage activation, e.g., as empirically derived in Hille’s 

book [1], which goes back to Hodgkin and Huxley for their formulation to quantify 

membrane currents and thus action potentials (spikes) in a nerve cell [50].

Using Eqs. (14) and (15), the second free energy relation of Eq. (4) or (5) leads to:

(16)

or

(17)

In addition, the free energy functions (Δfλ(V){λ = 0,1}) of Eq. (16) intersect at V=0 along 

the reaction coordinate of voltage coupling, leading to the expression:

(18)

or from Eq. (17)

(19)

The expression (Eq. (16) or Eqs. (17)) are the fundamental free energy relation (equivalent 

to Eq. (15)), used to describe the voltage dependency of channel activation (Q-V curve) in 

voltage gated ion channels [19, 51]. The free energy difference between the two 

conformational states at zero membrane potential, (Δg0(0)−Δg1(0)), (i.e., between the two 

non-equilibrium states) is commonly known as the “chemical” component of the total free 

energy in ion channels under the external potential [19], which is represented by ΔGc below. 

Combining Eq. (19) and Eq. (14) yields

(20)

Thus we showed here the chemical component of the voltage dependent total free energy, 

ΔGc(≡ Δg0(0)−Δg1(0)), is equal to the conformational free energy of ΔGconf along a one-

dimensional reaction coordinate of voltage coupling.

Finally, Eq. (20) combined with the third free energy relation of Eq. (8) implies that

(21)
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which is an explicit expression of the free energy difference between the two conformational 

states at zero membrane potential, ΔGc ≡ Δg0(0)−Δg1(0), (i.e., between the two non-

equilibrium states) in terms of the free energy difference between the two “equilibrium” 

conformational states (Δf1(V1,min)−Δf0(V0,min)) along the one-dimensional reaction 

coordinate of voltage coupling, via the conformational free energy of ΔGconf, determined 

using the equilibrium fluctuation relation or the first free energy relation.

The free energy relations, investigated so far, are illustrated in Fig. 1, using the actual 

simulation data for the model system in section 3.

2.3 Linear response approximation satisfies the free energy relations (or the equilibrium 
fluctuation relation)

If we consider the effect of the overall electrode potential, i.e., an externally applied voltage, 

Vext, on the energetics of the entire electrolyte/membrane-protein system, instead of just the 

membrane potential on the energetics of the membrane-protein system, the Hamiltonian in 

Eq. 12 may be rewritten formally as:

(22)

where Qext is the charge that flows through the electrodes and assumed to be equal to gating 

charge (see Eq. 12 and Fig. 2), which will be reviewed shortly below.

The state-dependent free energy of the voltage activation can be expressed by modifying the 

treatment of [52–54] and writing:

(23)

where Δfλ(0) is related to the chemical component of free energy of Eq. (18) or (19).

Here the second term is the continuum expression for Qλ,g,mVext (assuming that Vext =Vm) 

and the last term is the interaction of the external potential with electrolytes, where Cλ′ is the 

capacitance of the electrolyte/membrane-protein system.

The function ϕλ,mp(xj), which represents a fraction of membrane potential that falls on the j 

the charged amino acid [52, 53, 55], can be obtained by solving a modified Poisson-

Boltzmann equation (PB-V) [54]. For a linearized membrane potential, it leads to the simple 

expression

(24)

which is often termed as the dielectric distance (see [33] and references therein). The 

expression is a generalization of a simple geometric distance (zj/L) along the axis normal to 

the membrane surface, where εL and εj are, respectively, the dielectric constant of the 

membrane and the (frequently ill defined ) local dielectric constant in the region of the jth 
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charged amino acid. Here L is the width of membrane and zj is a coordinate normal to the 

membrane.

Using Eqs. 23 and 24, in the case of linear change of the potential across the membrane, the 

state dependent gating charge becomes

(25)

Finally, using the Hamiltonian of Eq. 22 and differentiating Δfλ(V) with respect to the 

external potential gives (see the SI):

(26)

We also have from Eq. 23

(27)

This proves that Qλ,g,m=<Qext>λ,Vext=0 but it should be noticed that the equality reflects the 

assumption that Qg,m is equal to Qext, each of which corresponds to charge coupling to the 

membrane potential and the external potential in their respective Hamiltonians (see Eqs. (13) 

and (22)).

In fact, the quadratic free energy expression in Eq. (23), which is familiar in the Marcus 

theory of electron transfer [37], is thought of as a realization of linear response 

approximation (LRA) [56–58] that is likely to be satisfied by many dimensional systems in 

their response to charging processes (e.g. by the responses to an external potential in the 

present study). Here, the LRA expression for the free energy functions (Δfλ(V){λ=0,1}) is 

shown to satisfy the second free energy relation (Eq. 16), or equivalently, the equilibrium 

fluctuation relation (Eq. 15), leading to a novel expression for gating charge in terms of 

other experimentally measurable quantities.

The Hamiltonian used in the present study may also be expresses as follows:

(28)

where the subscript of V (“ext”) was dropped. The free energy functions of voltage 

activation (Δfλ(V){λ=0,1}) can be expanded around their respective minima up-to a second 

order (i.e., using the equilibrium fluctuation-response relation) and expressed as (see SI for a 

detailed derivation):
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(29)

where δQext = Qext −〈Qext〉 Similarly, for the up state (state (1)) we have,

(30)

Notice that these two expressions could be obtained by a direct application of linear 

response approximation, i.e., differentiation of the free energy function with respect to the 

external potential gives:

(31)

An explicit application of linear response approximation [58] yields:

(32)

Integration gives the same result as Eq. (29).

Subtracting Eq. (30) from Eq. (29) yields

(33)

where  is the capacitance of the channel-

membrane system and ΔVmin = V1,min −V0,min. The equality in the first line comes directly 

from Eq. (18) that the free energy functions intersect at V=0. The approximation of equal 

curvature for the quadratic free energy functions was used in the second line, leading to 

 In fact, this approximation is the same level of 

approximation ( ) used to drop a constant for the second free energy relation of 

Eq. (16), when it moves from Eq. (5).
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A comparison of Eq. (33) with Eq. (16) (i.e., the requirement that the LRA expression for 

free energy functions satisfy the second free energy relation) yields a novel expression for 

gating charge of the form:

(34)

This gating charge expression is the key relation of our paper, where a measure of voltage 

sensitivity (gating charge) is expressed in terms of the basic properties of channels, as 

probably conceived by Hodgkins and Huxley [50]. This relation may offer a simple rationale 

for the differences in gating charges among members of the voltage gated ion channels [59]. 

In addition, the LRA expressions of Eqs. (29) and (30) should satisfy the equilibrium 

fluctuation relation of Eq. (15) with the probability densities of finding the λ state at V, i.e., 

:

(35)

The approximation in the second line comes directly from Eq. (33). A comparison with the 

equilibrium fluctuation relation of Eq. (15) yields the same gating charge expression as Eq. 

(34).

Last, the state dependent gating charge (Qg,λ) can be defined from Eqs. (33) and (34) as:

(36)

The above expression may be rewritten as

(37)

This relation is nothing but the fluctuation-response relation in voltage gated ion channels, 

where the response of the gating charge to the external potential (Qλ,g = 〈Qext〉λ as in the 

equivalence of Eq. (26) with Eq. (27)) is related to its fluctuation, by noticing the equivalent 

relation:

(38)

as implicated in Eq. (29) or (30) (see SI for a detailed derivation).
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Considering the observation that we have quadratic Marcus-type free energies of equal 

curvature (which is reflected in the capacitance), we find out that the reorganization energy 

(Λ) for voltage coupling in membrane proteins is given by [60]:

(39)

which yields the free energy of (deactivation) barrier (from λ=0 to λ=1), given by:

(40)

Notice that the gating charge has a negative sign as we have consider the conformational 

transition from the activated (λ=0) to resting (λ=1) states.

2.4 Key Features of the Coarse-Graining (CG) Model

The energetics of our CG model is different than most other models as it focuses on reliable 

treatment of the electrostatic energy (ΔGelec), considering the self-energy of ionizable 

residues and the charge–charge interaction with a realistic dielectric as well as the 

electrostatic energetics of protein-membrane system [20, 32]. The model also considers the 

hydrophobic contribution (ΔGhydro) to the CG model that has been constantly refined over 

past years. Most importantly, the influence of an applied voltage was recently incorporated 

into the CG model (ΔGlyte-voltage(V ext)) − CG (semi-microscopic) model of voltage 

coupling in membrane proteins, referred to as the Kim-Dryga-Warshel (KDW) model – as a 

part of electrostatic contribution (ΔGelec) [61]. The KDW model was successfully applied to 

evaluating the CG energetics of voltage coupling, as well as the gating currents in ion 

channels (Kv1.2) [21], and gating charge and voltage changes in Bacterial Reaction Center 

[33].

The energetics of the CG model is given by:

(41)

where the total free energy is taken relative to the free energy of the unfolded system in 

water at zero applied potential. The main chain energy is given by backbone and hydrogen 

bonds contributions with weights (w) optimized to yield the observed absolute folding free 

energies:

while the side chain contribution is decomposed into four terms:

(42)
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Finally, in the case of the presence of electrodes and electrolytes,  is 

added to the total free energy (Eq. 41), resulting in

(43)

where the  is the CG representation of the effect of the external potential 

(KDW model), and the nature of this term will be elaborated below.

In the following, we consider the electrostatic contributions to the folding energy as a state 

dependent function of the form, given by:

(44)

The first term represents the (voltage independent) electrostatic free energy of the 

“ionizable” residues, which is the sum of two contributions: a local-environment and 

membrane-depth dependent Born-type self-energy and charge-charge interaction energy 

with a distant dependent dielectric that approaches ~ 40 in an infinite distance:

(45)

where we use a distant dependent effective dielectric function, 

. The ΔGlyte–voltage,λ(Vext) term represents voltage-dependent 

energetics of membrane proteins coupled to the externally applied potential, which includes 

the effects of electrolytes on the electrostatic energetics [33]:

(46)

where the units are kcal/mol rather than the esu units in the above macroscopic expression 

and distant dependent effective dielectric constants of 40 and 60 were used, respectively, for 

the electrolyte response to the charging of protein residues ( ) and external potentials 

( ). The first and second terms represents the contribution that arises from the 

polarization of electrolyte effective charges (qg) by the external potential and all the other 

charge of the system. The third term represents voltage coupling to protein charges (qp) and 

the last term represents the interaction between protein charges and electrolytes that arises 

when protein ionizable residues are charged.

More specifically, the electrolyte charges in this expression ( ) are represented by a grid 

with a charge distribution of the form:

Kim and Warshel Page 13

Biochim Biophys Acta. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(47)

where ( ) is determined by solving iteratively with the interactions between all 

the charges in the system, considering the local potential on each grid point [20, 32]:

(48)

where , is evaluated using the macroscopic formula [20, 32]:

(49)

where Z0 is the Z coordinate at the left electrode. Alternatively we can consider the potential 

from the electrode charges and using periodic boundary conditions.

The KDW model evaluates the gating charge in a direct manner by computing the 

cumulative electrolyte charges near the electrode that arises in response to charge 

movements within the membrane, using an integration through the relation:

(50)

where ΔΔqgrid(Z,V) is the difference in the accumulated sum of Δqgrid of the initial and final 

state, and Z′ is the point to the left of the membrane where the electrolyte charge distribution 

changes sign. At this point, the integrated charge reaches a plateau and then starts to 

decrease. The formal integral in the second term of Eq. 50 corresponds to the explicit 

summation on the grid points (in the third term), where j and k run on all the grid [points in 

the X and Y directions, whereas i runs from points neat the electrode to Z′.

The KDW model was recently applied to estimating gating charge in voltage gated K+ ion 

channel (Kv1.2) [21] and voltage changes in response to proton/electron transfer in bacterial 

reaction center [33].

With the above formulation we can try to look for the analogy to the macroscopic continuum 

treatment. The most obvious analogy come with the capacitor model where we note that the 

first two terms in Eq. (46) correspond to the free energy of charging (the membrane) 

between two electrolytes by an electric field in the macroscopic continuum approach. Here 

we can try to look for correspondence between the CG and continuum models and note that 

in the absence of the protein charge we have:
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(51)

This correspondence states that the free energy stored in the membrane capacitor is equal to 

the free energy of polarizing electrolyte solutions. The validity of this relationship will be 

explored in Section 3.1 (see also Fig. 4B).

Now we investigate the relationship between the gating charge obtained by the macroscopic 

continuum and the KDW model, by formally rewriting the state dependent total CG energy 

as the free energy function, introduced before:

(52)

While the CG model of voltage coupling was used to evaluate gating charge in a direct 

manner by computing the cumulative electrolyte charges on the electrode generated in 

response to charge movements within the membrane, we can look for the trend in a state 

dependent gating charge, Qg,λ, using the differentiation of Eq. 52, in an analogy with Eq. 27, 

which can be expressed as:

(53)

This expression can clearly be explored by numerical differentiation. Furthermore, an 

inspection of our CG energetics (i.e. the third term in Eq. 46) against Eq. (23) yields the 

gating charge, through:

(54)

This expression should have the same trend as the (linearized) macroscopic expression as 

Eq. 25. Both Eqs. 53 and 54 will be applied in Section 3 to estimate the gating charge.

3. Results

3.1 Gating charge

We start by illustrating the application of the free energy relations derived above to the 

analysis of the thermodynamics of voltage activation in ion channels. This is done by using 

our CG model to determine the energetics of moving a unit charge between the two sides of 

a membrane, in the presence of an external (see Fig. 2). The area (A) and width (L) of 

membrane are 80x80Å2 and 60Å respectively, where the electrolyte concentration is taken as 

250mM. The unit charge is initially positioned near the membrane on the left side (i.e., state 

0). An application of a positive external potential drives the unit charge to the right side (i.e., 

state 1) of the membrane. Such a “non-equilibrium” movement of the charge within the 

membrane leads to accumulation of electrolyte charges near the membrane, where opposite 
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electrolyte charges are accumulated near the electrode (see bottom in Fig. 2). The difference 

in electrolyte charges near the electrode before and after the charge movement is the actual 

gating charge measured in experiments. The charge movement can also generates voltage 

change (unless we keep the voltage constant), and be expressed as a change in the electrode 

potential.

Such a direct evaluation of the gating charge has been possible through the development of 

our CG model of membrane proteins that include membrane, electrolytes, and electrodes 

[20, 32], which is now called the KDW model in the present study. This model focuses on 

the actual measured quantity, namely the displacement current (e.g. [35]), rather than on its 

interpretation. Thus, the gating charge is evaluated by considering the fact that the gating 

current is due to the motion and accumulation of the electrolyte charges.

Figure 3A shows the gating charge determined by such a direct procedure, while using Eq. 

50, yielding the gating charge of ~0.73e. It turns out that Δqg(Z,V) is independent of the 

external potential [33], where the accumulated charge (gating charge) was produced at zero 

potential (also see inset of Fig 3A that shows the gating charge at an external potential of 

100 mV).

The second approach, referred to here as the first “indirect method”, uses the free energy of 

voltage coupling to the protein charges, whose expression is obtained by treating the 

energetics of voltage activation from our KDW model (Eq. 53) in analogy to Eq. 27. The 

numerical differentiation of the CG free energies at zero membrane potential yields a gating 

charge of ~0.74e. In addition, we can use the second indirect approach (Eq. 54), which is an 

analogous expression to the corresponding macroscopic continuum expression (Eq. 25). 

This approach yields a gating charge of ~0. 75e, where the linear component of capacitance 

charge is subtracted, as shown in Fig. 3B.

The third approach uses a new expression of gating charge derived in the present study (Eq. 

34, i.e., Qg = −C′ ΔVmin), using a minimum voltage difference between two states and a 

capacitance of the system. The voltage difference, where the two states have their respective 

minimum, was obtained from the voltage dependent free energies using our CG model (Fig. 

4A), yielding a value of 300mV (V1,min−V0,min). The capacitance of the model system, i.e., 

fluctuation of an external charge flowing through a complete circuit, can be estimated as a 

second derivative of the voltage dependent free energies with respect to an external 

potential, yielding the capacitance of ~ 2.52e/V, which is close to the membrane-only 

(between two electrolytes) capacitance of ~2.33e/V (0.58uF/cm2), determined by using the 

(linearized) macroscopic continuum approach [62]:

(55)

where 1/k Debye length, L(=60) is the width of membrane, εm (=4) and εw (=80) are 

dielectric constants of membrane and water respectively, and Cm is the capacitance of the 

pure membrane:
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(56)

Notice that our CG energetics of voltage coupling (the KDW model) also yields the free 

energy parabola that yields a membrane capacitance of ~2.34e/V, which is excellent 

agreement with the prediction of the macroscopic capacitor formula of ~2.33e/V (Fig. 4B), 

as predicted by the correspondence between our CG model of energetics of voltage coupling 

and the macroscopic continuum model (Eq. 51). At any rate, the newly developed 

expression for gating charge (Eq. 34, i.e., Qg = −C′ ΔVmin) yields a similar gating charge 

(Qg ~0.77e with C′=2.58 e/V and ΔVmin=300mV) to the charges obtained by the other 

approaches (0.73e from the direct approach and 0.74e/0.76e from the indirect approach). 

Last, for this particular simple system, assuming a linear membrane potential across the 

membrane, the simple dielectric distant formula with a uniform dielectric constant (Eq. 24 or 

25) yields a value of 40/60e ~ 0.67e. The fact that we obtained similar results with different 

approaches is a comforting confirmation of the validity of our CG formulation that can be 

used in more challenging cases where the macroscopic approximation can be questionable.

3.2 Voltage dependent free energies and voltage dependency of activation (Q-V curve)

Figure 4A shows the voltage dependent CG (the KDW model) free energy functions (fλ(V) 

{λ=0,1}) for moving the unit charge within the membrane as a result of the external 

potential. These type of free energy parabolas are familiar in the Marcus theory of electron 

transfer except that they are obtained here along the voltage coupling coordinate and 

evaluate microscopically. The parabolic dependence is a realization of linear response 

approximation, which should be satisfied approximately by any system that involves free 

energies of charging (by an external potential in the present study) along chosen reaction 

coordinates. The free energy difference between two equilibrium conformational states, i.e., 

f1(V1.min)−f0(V0,min), is about ~0.3 kcal/mol (Figs. 4A and 1B), yielding approximately the 

same result as the “chemical” component of free energy (~ 0.2 kcal/mol) obtained using the 

gating charge and half voltage (V1/2) (see below and Eq. 20). Notice that fλ(V) {λ=0,1} 

interest at V=0 along the reaction coordinate of voltage coupling, which is a natural 

consequence of equilibrium fluctuation relation (or the first free energy relation) that any 

system of two states described by the reaction coordinate of energy gap (voltage coupling in 

the present study) should satisfy. Last, the free energy of (deactivation) barrier (see Eq. (40)) 

yields of a value of ~ 0.7 kcal/mol (Figs. 4A and 1B).

The determination of voltage dependent free energies using our CG model of voltage 

coupling (the KDW model) allows for a direct evaluation of Q-V curve. That is, starting 

with the relation

(57)

By normalization (or by an application of Bayes’ theorem with a uniform prior [63]), we 

obtain:

Kim and Warshel Page 17

Biochim Biophys Acta. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(58)

where pλ(V){λ = 0,1} are the probability densities of finding state λ of voltage sensor 

domain (VSD) at a given voltage V. Notice that the 0th state is treated as the activated one 

(see Eq. (13)). Application of equilibrium fluctuation relation (Eq. 15) to Eq. 58 leads to the 

familiar Fermi-Dirac logistic function, given by

(59)

This analytic form of Q-V curve is commonly used in the field of ion channels to fit the 

observed open (activated) probability of voltage activation [19] to extract the 

thermodynamic information of voltage coupling such as a half voltage (where the initial (0) 

and final (1) states have equal probability), gating charge (notice, however, Qg is equal to 

 only for the two state model) and thus chemical component of free energy of ΔGc. 

Figure 5 shows the numerical Q-V curve for the unit charge movement using the voltage 

dependent CG free energies (Eqs. 57 and 58). The lease square fit [64] of the voltage 

dependent 0th (activated) CG probability density (Eq. 58) to the analytic form of Q-V curve 

(Eq. 59) yields the half voltage (V1/2) of ~−9.2mV and gating charge of ~−0.78e, thereby 

resulting in the chemical component of free energy of ~0.2 kcal/mol using 

ΔGc≡g0(0)−g1(0))=QgV1/2. As expected from Eq. 20, the chemical component of free 

energy (ΔGc) is approximately equal to the conformational free energy (ΔGconf) (~0.2 kcal/

mol), obtained from the CG voltage dependent free energies using the equilibrium free 

energy difference (f1(V1.min)−f0(V0,min)) along the reaction coordinate of voltage coupling.

3.3 Free energy functions (parabolas) along voltage coupling offers a new insight into the 
mechanisms of voltage activation in ion channels

Our understanding of voltage activation and gating processes benefits largely from the site-

directed mutagenesis studies of selected residues that are critical for channel functions. The 

effects of such site-directed mutations on the functions of channels that contains voltage 

sensors modules have been commonly examined through electrophysiological 

measurements of macroscopic currents and gating currents. In particular, the resulting Q-V 

curve (and also shifts in the Q-V curve upon site-directed mutations) offers important 

thermodynamic information of voltage activation of ion channels. For example, specific 

mutations of key arginine or lysine residues of the S4 helix in the VSD of Shaker channel, 

which is due to the stabilization of the open-activated (up) state, causes a left shift in the Q-

V curve (toward hyperpolarization) [65]. Also a specific set of mutations in the S3b helix of 

VSD in the same channel causes a right shift in the Q-V by destabilizing the open-activated 

(up) state of the channel [66]. However, quantitative interpretation of the Q-V curve in terms 

of the free energy landscapes of channel activation has been hampered due to several 

reasons; these include the lack of quantitative criteria exists about which conformational 

state is stabilized or destabilized to account for the observed shifts in the Q-V curve. It also 

reflects the lack of a quantitative relation between the free energy of stabilization or 
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destabilization and the observed shifts in the Q-V curve exists (partly due to the absence of a 

reaction coordinate to describe thermodynamics of voltage activation).

To progress in analyzing the above mutation effects we can exploit the findings of the 

previous subsection, where we show that the Marcus-type free energy parabolas along the 

reaction coordinate of voltage coupling allows one to obtain quantitative predictions of the 

Q-V curve. For example, Figure 6 show such a correlation between the free energies of 

voltage activation and the Q-V curve. Here, the “hypothetical” Marcus-type free energy 

parabolas of the 0 and 1 states are related each other by equilibrium fluctuation relation, 

intersecting each other at V=0 along the reaction coordinate of voltage coupling and yielding 

the conformational free energy of QgV1/2. This figure shows that the hypothetical Q-V curve 

(Fig. 6C) could be shifted toward the left (toward hyperpolarization) in either way by the 

stabilization of the open activated (0) state (red dagger in Fig. 6A) or the destabilization of 

closed resting (1) state (red dagger in Fig. 6B). In addition, there exists a simple quantitative 

relation between the free energy of stabilization or destabilization and shift in the Q-V 

curve, given by QgΔV1/2 ≈ ΔΔGconf from Eq. (20), which can be explored by the CG model 

of voltage coupling. Thus, the proposed theory and the CG energetics of voltage coupling 

(the KDW model) offers a clear graphical and quantitative analysis on the correlation 

between the stabilization/destabilization in the free energies of voltage activation and shifts 

in Q-V curve by integrating equilibrium fluctuation relations and Marcus type parabolas 

using the reaction coordinate of voltage coupling. The accurate determination of equilibrium 

free energy changes of conformational states and corresponding shifts in activation free 

energy, upon site-directed mutations, have strong implications in designing pharmacophore 

in drug discovery targeting voltage sensing domains.

4. Discussion

Starting from the equilibrium fluctuation relation that makes a connection between the 

conformational free energy between the two (forward/backward) probability densities, along 

the one-dimensional reaction of “voltage coupling”, we have offer a rigorous physical 

foundation for the fundamental free energy relations in the voltage gated ion channels, used 

to quantify kinetics/thermodynamics of voltage activation [1,19, 36–41]. We have shown 

that the chemical component of the voltage dependent free energy, namely, the free energy 

difference between two non-equilibrium conformational states at zero membrane potential 

(QgV1/2), is equivalent to the free energy difference between two “equilibrium” 

conformational states in a one-dimensional space of voltage coupling.

Application of linear response approximation (LRA) to the free energies of voltage 

activation in the framework of equilibrium fluctuation relations yields a remarkable relation 

between gating charge and its fluctuation, i.e., in terms of the basic properties of channels. 

This relationship, which is known as the fluctuation-response relation in statistical 

mechanics, is reminiscent of the Nyquist relation for current fluctuation (as a realization of 

the fluctuation-dissipation theorem in an electric circuit) [67, 68], which was employed to 

estimate the number of channels and thus the gating charge per channel (see Ref. [69] and 

references therein). The gating charge expression developed in the present study could thus 

be considered a time independent version of Nyquist relation (as a realization of fluctuation-
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response relation in an analogous neuro-electric circuit). A recent realization of the non-

equilibrium (and non-linear) extension of the relation in a quantum coherent conductor [70, 

71] may further implicate the roles played by the Nyquist relation in ion channels in the 

framework of the non-equilibrium fluctuation theorem [72].

The accuracy of our CG model of the energetics of voltage coupling (the KDW model) in 

membrane proteins, simulated by using semi-”microscopic” grid-based electrolytes and 

implicit electrodes, was examined considering a well-defined test case (i.e., the membrane 

between two electrolytes) where we have clear results from macroscopic continuum model 

[62]. It was found that the free energy of charging (and also capacitance) obtained by using 

the KDW model, yields an excellent agreement with the macroscopic continuum prediction. 

Thus, our model offers a new explicit microscopic insight into the nature of the voltage 

coupling in membrane proteins.

The KDW model for a unit charge movement displaced by an external potential was also 

applied to simulate gating charge using three different approaches, including the new 

formula, yielding approximately equal result to each other. The KDW model was then used 

to illustrate the free energy relations for voltage activation in the simple model of the unit 

charge movement. The KDW model yields Marcus type parabolas along the reaction 

coordinate of voltage coupling, as predicted by linear response approximation, allowing for 

a direct prediction of voltage activation profiles, e.g., gating charge vs. voltage curve (Q-V 

curve). These free energy parabolas along the one-dimension reaction coordinate of voltage 

activation have allowed for a clear understanding of the correlation between the changes in 

the free energies of voltage activation and the shifts in Q-V curve, upon site-directed 

mutagenesis or drug binding.

Overall, the presented theory and the CG simulation of voltage couplings offers new 

quantitative tools for understanding the molecular basis of the action of mechanisms of 

voltage gating in voltage gated ion channels. This was be done in the framework of the 

equilibrium fluctuation relation and LRA, thus laying a firm quantitative foundation for a 

more unified understanding of voltage effects in ion channels, ion pumps, and transporters in 

general. Application of the framework developed in the present study to (real) membrane 

proteins is under way, considering the voltage sensor domain from a voltage sensitive 

phosphatase [73]. Note that, however, while we expect LRA to be very effective in 

approximating the energetics of the conformational changes, as it has been in our studies of 

processes in condensed phases and in proteins (e.g. [74]), the validity is not essential for the 

new derivation of the gating charge and for the CG treatment of the gating charge/current. 

That is, we emphasize the CG model of gating charge/charges follows LRA and gives very 

reasonable capacitor-like results because the electrolytes grid follows nicely LRA. This 

means that regardless of whether the protein free energy landscapes and conformational 

transitions follow LRA or not, we do have a reliable description of the gating charges when 

the structures of the open activated and closed resting state are known. This is indeed the 

case in our studies of Kv1.2, where we reproduced the observed gating charge/current [21].

In addition, the direct approach of the KDW model provides an effective way for 

determining the gating charge and the resulting changes in electrode potentials (voltage 
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generation), that has been used to estimate electrogenicity in membrane proteins (e.g.[75]). 

This important feature has been illustrated in studies of the electrogenicity in the charge 

separation in bacterial RC [33], should offer a new insight into the mechanisms of proton/

electron transfer in Cytochrome c Oxidase. The work in this direction is also in progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of fundamental free energy relations found in the present study with the CG 

model system of Fig. 2. The calculations were done by moving the positive charge in a 

straight line between the left and right points (say from the activated to the resting) thus 

changing both f0 and f1. (A) The probability densities (pλ(V){λ = 0,1) of finding the 

conformational states λ at an external potential of V (≡Vext is assumed to be equal to the 

membrane potential of Vm), for the movement of a unit charge displaced by the external 

potential, where the subscripts 0 and 1 represent initial (activated) and final (resting) states. 

These probability densities are obtained from the voltage dependent CG free energy 

functions (parabolas) Δfλ(V){λ = 0,1} with pλ(V) ∝ exp(−Δfλ(V)) (see Fig. 4A). ΔGconf, is 

identified as the value (QgV*) of the reaction coordinate of voltage coupling (QgV) where 

two probability densities intersect (i.e., have equal probability), leading to QgV1/2=ΔGconf.. 

A reference free energy function (g1(V)), whose minimum is zero, is shifted by the 

conformational free energy of QgV1/2=ΔGconf,, resulting in f1(V). (B) The corresponding 

Marcus free energy parabolas along the reaction coordinate of voltage coupling. The 

parabolas are reconstructed from (A) using the Eqs. (6) and (7) with u=QgV. Λ represents 

reorganization energy, given by the form of Λ=−1/2QgΔVmin in voltage gated ion channel, 

leading to the free energy of barrier, given by the form of ΔG╪ = Λ/4(1+ ΔGconf/Λ)2 (see 

Eq. (40) for details). The chemical component of free energy (g0(0)−g1(0)), the free energy 

difference between two non-equilibrium conformational states (i.e., at zero membrane 

potential), is shown to be equal to the free energy difference between two “equilibrium” 

conformational states along the reaction coordinate of voltage coupling (f1(V1.min)

−f0(V0,min)), via the conformational free energy (QgV1/2=ΔGconf), determined using the 

equilibrium fluctuation relation of Eq. (15). Free energy function f1(V) is shifted by the 

reference free energy from g1(V) (, whose global minimum set to zero) (dashed line), 

resulting in the intersection with f0(V) at V=0, i.e., f0(0)=f1(0), leading to g0(0)−g1(0)= 

QgV1/2. Free energy functions (for 0 and 1 states) are related to each other by the second free 

energy relation f0(V)−f1(V)=−QgV or g0(V)−g1(V)= QgV1/2 − QgV, which is equivalent to 

the equilibrium fluctuation relation for voltage activation (i.e., the equilibrium fluctuation 

relation or the first free energy relation of p0(V)/p1(V)= exp(QgV−QgV1/2).
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Figure 2. 
Description of the model system (i.e., a unit charge embedded in the membrane between 

electrolytes that incorporates electrodes), used to illustrate the theoretical framework and the 

CG model of voltage coupling. The electrode potential (as in the Gouy-Chapman model), 

provided by a virtual battery, is determined by Eqs. (47), (48) and (49) with the appropriate 

boundary condition (i.e., the denominator in Eq. 47). Ig (defined as the gating current in the 

macroscopic continuum approach, of which time integration yields Qg (see Eqs. (13), (23), 

and (27)) is shown to be equal to the current that flows through the electrode (defined as Iext, 

of which time integration yields Qext; see Eqs. (22), (26), and (36)). The actual gating 

current measured in experiment corresponds to Ic in the external circuit. The area (A) and 

width (L) of membrane is 80×80Å2 and 40Å width, respectively, and an electrolyte 

concentration of 250mM was used. (Top) The unit positive charge is initially positioned 

near the membrane surface on the left (i.e., state 0). An application of a positive external 

potential drives the unit charge to the right side (i.e., state 1) of the membrane. (Bottom) Net 

electrolyte charge distributions [e/Å3] before (left) and after (right) the unit charge 

movement at 100mV; the integration of charge distribution along the axis normal to the 

membrane surface (multiplied by membrane area) yields state dependent gating charge 

shown in Fig. 3.
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Figure 3. 
Evaluations of the gating charge by several different approaches: (A) The gating charge 

obtained using the direct CG approach of Eq. (50) at zero potential (and at 100mV in inset). 

The difference in cumulative electrolyte charges near the electrode that arises in response to 

charge movements within the membrane gives a gating charge of ~ 0.73e. (B) The gating 

charge obtained by the second indirect approach (i.e., using Eq. (54)). In this case a linear 

least square fits of data points from several different potentials gives approximately zero 

slope (zero dependence on the external potential) for both the 0 and 1 states, yielding a 

gating charge of ~0.76e estimated from the gap between the two parallel lines. This implies 

that the (total) gating charge is independent of external potentials without the consideration 

of voltage dependent population of each state.
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Figure 4. 
The voltage dependent Marcus-Warshel parabolas, obtained using the CG model of voltage 

coupling (the KDW model). (A) The free energy of a unit charge movement as a function of 

external potentials using the CG energetics of voltage coupling, which is approximately 

quadratic, as predicted by linear response approximation applied to the voltage coupling of 

charge displacement. Notice that fλ(V) {λ=0,1} interest at V=0 along the reaction coordinate 

of voltage coupling, which is a natural consequence of the equilibrium fluctuation relation of 

Eq. (15) that any system of two equilibrium states described by a reaction coordinate of 

energy gap (voltage coupling in the present study) should satisfy. g1(V) (dashed light blue) 

is obtained by shifting f1(V) (blue) by the conformational free energy of −ΔGconf. (B) The 

free energy of charging the membrane between two electrolytes (i.e., the model system of 

(A) but in the absence of any charge within the membrane). The free energy parabola 

obtained by our KDW model shows an excellent agreement with the capacitor formula (Eq. 

(55)) obtained from the macroscopic continuum approach by solving a modified Poisson-

Boltzmann equation (PB-V), yielding a capacitance of ~2.34e/V (in comparison with 

2.33e/V from the capacitor formula of Eq. (55)).
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Figure 5. 
The voltage dependent open (activated) probability (Q-V curve) obtained using the CG 

model of voltage coupling (see Fig. 4A) with pλ(V) ∝ exp(−Δfλ(V)). The lease square fit of 

the voltage dependent open (final state) probability density of Eq. (58) to the analytic form 

of Q-V curve of Eq. (59) yields the half voltage (V1/2) of ~ −9.2mV and gating charge of ~− 

0.78e, resulting in the chemical component of free energy of ~0.2 kcal/mol using 

ΔGc≡g0(0)− g1(0))=QgV1/2. As expected from Eq. (21), ΔGc is approximately equal to the 

free energy difference (~0.2 kcal/mol) between the two equilibrium conformational states 

along a reaction coordinate of voltage activation, i.e., Δf1(V1,min)−Δf1(V0,min).
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Figure 6. 
Schematic illustrations of the quantitative correlation between free energy landscapes 

(parabolas) and a Q-V curve. (A) The stabilization of an open activated state, for example, 

upon mutations and dug binding, leads to a left shift (toward hyperpolarization) in the Q-V 

curve (C). (B) The destabilization of a closed resting state also results in the same shift in 

the Q-V curve. The shift in the Q-V curve in terms of V1/2 is correlated with the stabilization 

or destabilization of the conformational states, with a quantitative relation of the form, 

QgΔV1/2≈ΔΔGconf (see Eq. 20).
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