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Abstract

Speciation, the process by which new biological species arise, involves the evolution of 

reproductive barriers such as hybrid sterility or inviability between populations. However, 

identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular 

basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle 

regulation gene as the cause of male inviability in hybrids between Drosophila melanogaster and 

D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult 

viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, 

thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to 

accelerate the identification of hybrid incompatibility genes in other model and non-model 

systems.

Genetic crosses between Drosophila melanogaster females and males from its closest sister 

species, D. simulans produce only adult hybrid F1 females (1, 2). These unisexual broods 

are a result of hybrid F1 male inviability between these species, which manifests during 

larval stages of development. Despite decades of investigation, the genetic basis of this 

hybrid F1 male inviability remains incompletely resolved (3, 4). A series of X-ray 
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mutagenesis experiments previously revealed that a complex interaction between the D. 

melanogaster X-chromosome and dominant alleles from the D. simulans second and third 

chromosomes is necessary to kill hybrids (5, 6). The isolation of hybrid rescue strains that 

produce viable hybrid F1 males led to the identification of two causal elements of this 

hybrid incompatibility: Hybrid male rescue (Hmr) on the D. melanogaster X-chromosome 

(7, 8) and Lethal hybrid rescue (Lhr) on the D. simulans second chromosome (9, 10). The 

absence of either Lhrsim or Hmrmel results in viable hybrid males (Fig. S1). However, D. 

melanogaster males that carry transgenic copies of D. simulans Lhr are viable despite 

carrying both the Hmrmel and Lhrsim incompatible alleles (9). These results suggest that the 

presence of at least one additional unidentified hybrid incompatibility gene is necessary to 

cause hybrid male inviability.

Traditional genetic approaches have failed to identify this missing hybrid incompatibility 

gene for several reasons. First, hybrid sterility and inviability between D. melanogaster and 

D. simulans hinder recombination-based methods for gene identification. Second, genetic 

disruptions in D. melanogaster do not assist in identifying this gene because it is a 

dominantly acting D. simulans factor. Third, the lack of efficient balancer chromosomes in 

D. simulans prevents the construction and maintenance of mutation-accumulation lines that 

could help identify this missing incompatibility gene. Finally, all known naturally-occurring 

hybrid rescue alleles are mutations of either Hmr or Lhr; no new rescue alleles have been 

identified that may correspond to a third gene. Together, these roadblocks have prevented 

the identification of this missing hybrid incompatibility gene.

Because no null alleles for the missing D. simulans hybrid incompatibility gene have been 

isolated from natural populations, we speculated that – in contrast to Hmr and Lhr – this 

gene might be essential for viability. We reasoned that the complex epistatic interaction 

underlying hybrid F1 male inviability is analogous to a multicomponent toxin; reconstitution 

of this toxin requires the simultaneous presence of all components. Under this model, hybrid 

inviability does not occur when even one of the components or hybrid incompatibility genes 

is missing (e.g., loss of either Lhrsim or Hmrmel rescues hybrid males). Extending this 

analogy, we sought to find other genes whose ablation results in viable hybrid males using a 

simple genomics-based approach (Fig. 1a).

We mutagenized 55,000 D. simulans males by feeding adults with ethyl methane sulfonate 

(EMS) and crossed these males to D. melanogaster females. All resulting progeny inherit 

one mutagenized complement of the D. simulans genome and one intact complement from 

D. melanogaster. When D. simulans sperm carrying null mutations at any F1 hybrid 

incompatibility gene fertilize D. melanogaster eggs, the resulting hybrid male progeny are 

predicted to be viable. This strategy allows us to survey mutations in all D. simulans genes 

that may be involved in the F1 hybrid incompatibility, even those in essential genes; 

however, haploinsufficient genes (i.e., genes that require two copies for viability) would not 

be sampled.

We recovered 32 viable hybrid F1 males from these crosses (compared to over 300,000 

hybrid F1 females). Of these, 26 males were the result of a non-disjunction event that led to 

them inheriting a D. simulans X-chromosome (11); these males were viable, as shown 
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previously (2). Further tests confirmed that we had recovered six independently produced 

rescue hybrid F1 males, each of which is viable due to mutations at a locus different from 

Lhrsim (11).

Because rescue hybrid F1 males isolated from these crosses are sterile, they cannot be used 

in genetic crosses to map the causal gene. Instead, we performed high-throughput 

sequencing to obtain whole-genome sequences of each of the six independently derived 

rescue hybrid males, and both parental strains. We then compared the D. simulans-derived 

component of the genomes of rescue hybrid F1 males to the unmutagenized D. simulans 

parental strain. This allowed us to identify all new mutations in each of the rescue males 

(11)(Table S1, Fig. S2). As expected, most of the EMS-induced mutations were point 

substitutions (Fig. 1b). However, we identified two large partially overlapping deletions, 

which mapped to the D. simulans-derived chromosomal arm 3R (Fig. 1b, Fig. S3). Each of 

the six rescue males carried between 600–1200 new mutations as expected on the basis of 

the random mutagenesis strategy. Only one D. simulans gene, however, was disrupted 

across all six rescue hybrid males (Fig. 1c). This gene was Suppressor of Killer-of-prune 

(Su(Kpn))/Glutathione-S-Transferase containing FLYWCH zinc-finger protein (gfzf) (we 

refer to this as gfzf) (12, 13).

gfzf encodes two alternative transcripts. The longer transcript encodes a polypeptide with 

four FLYWCH zinc finger domains and one Glutathione-S-Transferase (GST) domain 

whereas the shorter transcript encodes a polypeptide with only the GST domain. The D. 

simulans allele of gfzf (i.e., gfzfsim) incurred unique mutations (two non-sense, one 

frameshift, two deletions and one missense mutation in a highly conserved residue) in each 

of the six rescue hybrid F1 males (Fig. 1d, Table S2). Four of these mutations only disrupt 

the longer of the two alternate transcripts encoded by gfzf (Fig. 1d, Table S2). These results 

suggest that the longer gfzfsim transcript is involved in hybrid incompatibility. None of the 

rescue hybrid F1 males we collected had mutations in the Lhr gene suggesting that our 

genetic screen did not achieve saturation. We attribute this to the fact that the coding 

sequence of Lhrsim (1188 bp) is smaller and may present a less likely mutagenesis target 

than gfzfsim (3117 bp).

Consistent with our predictions (6), gfzfsim resides on the D. simulans third chromosome and 

is essential for viability (13). To circumvent the difficulty of testing the contribution of an 

essential gene in hybrid inviability, we knocked down the expression of the gfzfsim longer 

transcript in F1 hybrids using RNA interference knockdown constructs (pValium20- gfzfsim) 

that target only gfzfsim, but not gfzfmel (11) (Fig. S4, Fig. S5). We produced transgenic D. 

melanogaster strains that carry these constructs under the control of the inducible promoter 

Upstream Activating Sequence (UAS), inserted on the D. melanogaster X-chromosome 

(Fig. S6).

We crossed these transgenic flies to a heterozygous D. melanogaster strain carrying a CyO 

balancer and a ubiquitously expressing GAL4 driver P[Actin5C-GAL4] on the second 

chromosome. This cross produces two types of daughters. The first set inherits the CyO 

balancer chromosome but not the Actin5C-GAL4 driver and, therefore, does not express the 

knockdown construct. When these D. melanogaster females are crossed to D. simulans 
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males, the resulting hybrid F1 males are inviable, as expected because they do not express 

the knockdown construct (‘RNAi off’, Fig. 2a). The second set of daughters inherits one 

copy each of the Actin5C-GAL4 driver and the RNAi construct. In crosses between these D. 

melanogaster females and D. simulans males, one out of four hybrid F1 sons inherit both the 

RNAi construct and the Actin5C-GAL4 driver and therefore robustly express the RNAi 

construct. We found that these hybrid F1 males are viable (‘RNAi on’, Fig. 2a, Figs. S7–S9). 

Thus, knocking down the expression of only the long transcript of gfzfsim in hybrid F1 males 

is sufficient to reverse hybrid inviability. These results confirm that gfzfsim is the missing 

hybrid incompatibility gene.

In contrast to our results with gfzfsim knockdown, we found that disrupting gfzfmel does not 

rescue the viability of F1 hybrid males (Table S3). Thus, allelic differences between gfzfmel 

and gfzfsim are important for hybrid inviability similar to both Hmr and Lhr, with the 

limitation of comparing results between gfzfsim knockdown and gfzfmel disruption. Since 

positive selection likely resulted in the functional properties of Hmr and Lhr orthologs (9, 

14), we tested whether gfzf had also been subject to positive selection. We obtained gfzf 

sequences from nine D. melanogaster and thirteen D. simulans strains (Table S4). Using a 

McDonald-Kreitman test, and an outgroup species D. yakuba, we found that an excess of 

fixed non-synonymous changes had occurred leading up to the hybrid inviability-associated 

gfzfsim, especially in the FLYWCH zinc fingers domains (Fig. S10). In contrast, we found no 

evidence for positive selection along the D. melanogaster lineage.

While our results demonstrate the role of gfzfsim in hybrid male inviability between D. 

melanogaster and D. simulans, previous studies have found that gfzfmel also affects 

dominant genetic incompatibility between strains of D. melanogaster (13). Indeed, gfzfmel 

plays an essential role in potentiating inviability seen in crosses between D. melanogaster 

females homozygous for the eye color mutation prune (pn), and D. melanogaster males 

carrying Killer-of-prune (Kpn) (13)(hence the name Su(Kpn), or Suppressor of Killer of 

prune). The essential, dominant role of gfzf in lethal incompatibilities within and between 

species suggest that there may be limited genetic paths to the evolution of dominant lethal 

incompatibilities.

The ability of gfzf in mediating dominant lethal incompatibilities may stem from its role in 

the DNA damage induced G2/M cell cycle checkpoint mechanism, where it can potentiate 

the dE2F2/RBF pathway to block cell proliferation (15, 16). In contrast, gfzf has also shown 

to be required for cell proliferation by transcriptionally regulating the RAS/MAPK pathway 

(17). Despite its essential role in both cell cycle arrest and regulation of cell proliferation, 

the precise molecular function of gfzf is still uncharacterized. Moreover, the biological 

consequence of gfzfsim activity on hybrid male viability is unknown. Nevertheless, the 

developmental timing and consequences of either gfzf deficiency or gfzf-mediated dominant 

lethality are suggestive of a common mechanism that manifests in the larval-pupal 

transition. Larval tissues in Drosophila mostly consist of polyploid cells whereas the larval 

nervous system and imaginal discs are comprised of diploid cells. During pupation, the 

polyploid tissues are degraded, and the diploid imaginal discs proliferate to produce the 

adult body form. Individuals that lack proper imaginal discs can survive and continue to 

grow as larvae, but die during the larval-pupal transition. Interestingly, homozygous gfzfmel 
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null mutants, gfzfmel-pn-Kpn males, and gfzfsim-expressing hybrid males, all lack imaginal 

discs and die as larvae (13, 18, 19). This phenotype of lethality during the larval-pupal 

transition along with an absence of imaginal discs is diagnostic of dysfunction in cell-cycle 

regulation mechanisms (20).

We hypothesized that the gfzfsim-associated hybrid male lethality was due to cell 

proliferation defects in hybrid larvae. We therefore drove the expression of our gfzfsim 

knockdown construct in hybrid F1 males with a T80-GAL4 driver, which is expressed 

ubiquitously in early embryonic stages but specifically in the nervous system and imaginal 

discs in late larval stages (21). We found that T80-GAL4 mediated gfzfsim knockdown 

robustly rescued the viability of hybrid F1 males to adulthood (Fig. 2b, Fig. S11). This result 

suggests that the primary defect in hybrid F1 males produced in D. melanogaster-D. 

simulans crosses may be in diploid tissue proliferation. Indeed, previous studies on larval 

brains have shown both cell cycle arrest as well as profound mitotic defects in hybrid F1 

male larvae. These larvae also display diminutive imaginal discs and reduced larval brain 

sizes due to cell cycle arrest (22, 23). Using EdU (5-ethynyl-2′-deoxyuridine) to track DNA 

synthesis in proliferating cells, we found that cell proliferation is restored in larval brains 

from hybrid F1 males upon gfzfsim knockdown, indicating a relief from cell cycle arrest (Fig. 

2c, Fig. S12). Thus, gfzfsim knockdown relieves both cell cycle arrest and hybrid F1 male 

inviability. Together, these results support that gfzf is a cell cycle regulator of diploid tissues 

in larvae. Furthermore, they implicate the arrest of cell proliferation as the cause of hybrid 

F1 male inviability at this late-larval stage of Drosophila development.

While Hmr and Lhr physically interact with each other (9), there is no evidence of a direct 

physical interaction between gfzf and either Hmr or Lhr. Both Hmr and Lhr proteins localize 

to centromeres and pericentric heterochromatin, where they play a role in mitotic 

chromosome segregation (24) and the suppression of transposable elements (25). These 

findings have led to a model in which incompatibility between Lhrsim and Hmrmel and their 

expression levels may cause dysfunction at centromeres or pericentric heterochromatin (24). 

Although the molecular nature of this dysfunction is still unclear, we speculate that the 

direct engagement of gfzfsim arrests the proliferation of dysfunctional diploid imaginal discs, 

leading to hybrid inviability. Under this scenario, ablation of Lhrsim or Hmrmel removes the 

primary dysfunction, whereas ablation of gfzfsim removes the cell cycle arrest. Alternatively, 

gfzfsim may act indirectly by contributing to the sensitization of the hybrid genetic 

background, making it susceptible to the defects caused by the incompatibility between 

Lhrsim and Hmrmel leading to hybrid inviability. In both scenarios, removal of any one of 

these three genes would restore hybrid viability. Thus, the same checkpoints that normally 

ensure the correction of mitotic errors may be also responsible for the inviability of hybrid 

males in the D. melanogaster-D. simulans interspecies cross.

The discovery of hybrid rescue genes, with mutations that reverse hybrid sterility or 

inviability, has significantly advanced our understanding of the genetic mechanisms that 

underlie the evolution of reproductive isolation during or following speciation. The 

identification of gfzf, in particular, emphasizes the role of cell cycle regulation mechanisms 

in the evolution of hybrid incompatibilities (22, 23) and the complex epistatic interactions 

which underlie dominant hybrid incompatibilities in F1 hybrids. Our genomics-based 
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approach may also allow mapping of genes that underlie hybrid incompatibilities and other 

phenotypes even when they lie within chromosomal inversions, which impedes their precise 

genetic identification. Although this method requires that there be a single incompatibility 

separating two species, recently diverged species are likely to meet this criterion (26). Our 

approach may help accelerate the discovery of genes and genetic mechanisms underlying 

hybrid dysfunction in multiple taxa, shedding light on how reproductive isolation evolves.
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Figure 1. A genomics screen identifies gfzfsim as a hybrid inviability gene
a) We mutagenized D. simulans males (new mutations shown in blue) and crossed them to 

D. melanogaster females. When a D. simulans sperm carrying a mutation at a hybrid 

incompatibility gene fertilizes a D. melanogaster egg, a viable ‘rescue’ hybrid F1 male is 

produced. Sequencing the genomes of multiple ‘rescue’ hybrid males identify the causative 

restorer mutated across these rescue males (shown in red and outlined). b) Single fly 

genome sequencing of all ‘rescue’ hybrid males allow assignment of new mutations 

(including large deletions in two of the males) to the D. simulans-derived component of 

hybrid genomes. c) A single gene, gfzfsim is mutated across all six ‘rescue’ hybrid F1 males. 

The X-axis represents the number of genes mutated across all six males, any five males, and 

so on. The Y-axis represents the number of genes mutated across these males. d) gfzf 

encodes two alternative transcripts. The larger transcript encodes FLYWCH zinc finger 

domains along with a GST domain, whereas the shorter transcript encodes only the GST 

domain.
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Figure 2. Knockdown of gfzfsim rescues cell proliferation defects and restores hybrid male 
viability
a) No hybrid males are recovered in crosses where the pValium20- gfzfsim RNAi construct is 

not expressed (no GAL4 driver, “RNAi OFF”). In crosses between D. simulans males and 

D. melanogaster females carrying one copy each of pValium20- gfzfsim and a ubiquitously 

expressing Actin5C-GAL4 driver, one out of four possible hybrid male progeny inherit both 

pValium20- gfzfsim and the Actin5C-GAL4 driver (“RNAi ON”) and produce viable F1 

hybrid male progeny. P values were calculated using Fisher’s exact test. b) RNAi 

knockdown of gfzfsim by a T80-GAL4 driver, more specific to larval neuroblasts and 

imaginal discs, successfully restores the viability of F1 male hybrids. c) EdU staining shows 

the diminutive larval brains and cell proliferation defects in ‘inviable’ hybrid males 

compared to viable F1 hybrid female larvae. These cell proliferation defects are also 

partially rescued in hybrid males upon gfzfsim knockdown.
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