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Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to
complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained
states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise
to memory and non-exponential distributions of waiting times and first-passage statistics. However,
existing methods for analyzing CTRWs on complex energy landscapes do not address these effects.
Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage
CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions.
Our approach can be applied to calculating higher moments (beyond the mean) of path length, time,
and action, as well as statistics of any conservative or non-conservative force along a path. For
homogeneous networks, we derive exact relations between length and time moments, quantifying
the validity of approximating a continuous-time process with its discrete-time projection. For more
general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration
techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in
PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model
of choice. We demonstrate the algorithm on a few representative examples which underscore the
importance of non-exponential distributions, memory, and coarse-graining in CTRWs. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4935968]

I. INTRODUCTION

We can model many dynamical systems in physics,
chemistry, and biology as random walks on discrete state
spaces or network structures. For example, random walks
can represent proteins folding on a coarse-grained network
of conformational states,1,2 particles diffusing in disordered,
fractal-like media,3,4 populations evolving in DNA or protein
sequence space,5,6 and cells differentiating across epigenetic
landscapes of regulatory states.7,8 One can also use random
walks to probe the structure of empirical complex networks,
such as protein-protein interaction networks or the World Wide
Web.9–11 The central problem in these models is characterizing
the statistical properties of paths taken by the system as it
evolves from one state to another, especially for systems
out of equilibrium. This entails understanding not only the
distribution of lengths and times for these paths but also their
distribution in the state space, which may reveal bottlenecks
and indicate the diversity of intermediate pathways.

There is extensive literature for random walks on
lattices,4,12,13 fractals,3,4 and random and scale-free net-
works9,11,14 in the absence of an energy landscape or other
objective function. Much of this work has focused especially
on the scaling behavior of first-passage times and the mean
square displacement, the latter being important to identifying
anomalous diffusion.3 More complex models, especially those
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with energy landscapes derived from empirical models or
experimental data, generally require numerical approaches.
One such approach is transition path theory,15 which relies on
numerical solutions of the backward equation. This technique
has been used to study Markov state models of molecular
kinetics such as protein folding.1,2

Standard transition path theory, however, is not applicable
to general continuous-time random walks13 (CTRWs) where
states may have non-exponential waiting time distributions,
nor does it address the complete distribution of first-passage
times beyond the mean. These problems are important in many
systems. For example, molecular Markov state models require
grouping large numbers of microscopic conformations of mole-
cules into a small number of effective states;16 the stochastic
dynamicsare thenanalyzedon this effectivemodel.1,2 However,
this coarse-graining is known to lead to qualitative differences
with the underlying microscopic dynamics.16 In particular,
the loss of information due to coarse-graining can lead to
the appearance of memory, manifested as non-exponential
waiting time distributions, in the coarse-grained states. Indeed,
there is evidence of non-exponential distributions of time in
protein conformation dynamics17,18 and enzyme kinetics.19,20

Non-exponential distributions can also arise from spatial
disorder, as in glassy systems.21,22 Other linear algebra-
based methods besides transition path theory have been
developed to treat general CTRWs,23–25 but such methods
are complicated and provide relatively little physical insight.

An alternative, more intuitive approach to CTRWs uses
the path representation: statistical properties of CTRWs are
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decomposed into averages over the ensemble of all possible
stochastic paths through state space. Some analytical results
with this approach for arbitrary energy landscapes and waiting
time distributions have been obtained, but only for 1D
lattices, due to the difficulty of enumerating paths.26–28 On
the other hand, path sampling methods29 are able to treat
arbitrary network topologies, but these methods have not been
developed for non-exponential waiting time distributions, and
in any case, sampling is likely to be inefficient for calculating
higher moments of path statistics, which are crucial when
non-exponential distributions are expected.

Here we develop a generalized formalism for the
path ensemble of a CTRW on a network of discrete
states, regardless of their connectivity, energy landscape, or
intermediate state waiting time distributions. In Sec. II we
use statistical mechanics of the nonequilibrium path ensemble
for a CTRW to obtain expressions for arbitrary moments
of path statistics including path length, time, action, and
any conservative or nonconservative force along a path. We
use this formalism to deduce general relationships among
the distributions of path length, time, and action, as well
as several exact relationships for the case of homogeneous
networks. In Sec. III we derive recursion relations, reminiscent
of transfer matrix and exact enumeration techniques, to
efficiently calculate various path statistics numerically,
including distributions of paths in the state space. We have
implemented our approach in a user-friendly Python script
called PathMAN (Path Matrix Algorithm for Networks), freely
available at https://github.com/michaelmanhart/pathman, that
users can apply to their own models.

In Sec. IV we demonstrate the numerical algorithm on
a few examples. After illustrating some basic concepts on
a simple 1D random walk, we apply our method to a 1D
comb to show how coarse-graining can lead to the appearance
of memory, in the form of non-exponential waiting time
distributions. We quantify the effect of the memory on the
distribution of total path times. We further demonstrate the
effect of coarse-graining in a 2D double-well potential, from
which we deduce some general properties of memory arising
from coarse-graining. Finally, we use our method to show how
spatial disorder can also lead to non-exponential distributions
of path statistics in the 2D random barrier model.

II. DISTRIBUTIONS IN THE PATH ENSEMBLE

A. Continuous-time random walks and memory

Consider a stochastic process on a finite set S of N
states: the process makes discrete jumps between states with
continuous-time waiting at each state in between jumps. Such
a process is known as a CTRW,13 and it can describe many
physical or biological systems, such as a protein traversing
a coarse-grained network of conformations toward its folded
state1,2 or a particle traveling through a disordered material.3,4

The time the system waits in a state σ before making a jump to
σ′ is distributed according to ψ(t |σ → σ′). In many models,
this distribution depends only on the current state σ and not
on the destination σ′, so that ψ(t |σ → σ′) = ψ(t |σ); such
waiting time distributions are known as “separable.”30 We will

mostly assume separable distributions throughout this paper.
However, since non-separable distributions arise crucially in
coarse-grained models, we will also briefly discuss how to
extend our results to the non-separable case. Let the raw
moments of the waiting time distributions be denoted as

θ(n)(σ) =
 ∞

0
dt ψ(t |σ) tn. (1)

We assume every state σ has at least one finite moment for
n > 0; the zeroth moment is always θ(0)(σ) = 1 by normali-
zation. In the special case of a discrete time process, ψ(t |σ)
= δ(t − θ(1)(σ)) and the moments are θ(n)(σ) = (θ(1)(σ))n.

Given the system has finished waiting in σ and makes
a jump out, the probability of jumping to σ′ is given by
the matrix element ⟨σ′|Q|σ⟩, where Q is an N × N matrix
and |σ⟩ denotes an N-dimensional vector with 1 at the
position corresponding to the state σ and 0 everywhere else.
The jump probabilities out of each state σ are therefore
normalized according to


σ′⟨σ′|Q|σ⟩ = 1, with ⟨σ |Q|σ⟩ = 0

by definition (since a jump must leave the current state). The
matrix Q imposes a network structure over the states in S,
with edges directed and weighted by the entries in Q. We can
think of the jump process alone as a discrete-time projection
of the model, since it describes the system’s dynamics if we
integrate out the continuous waiting times.

An ordinary Markov process is a special case of the above
CTRW construction. A continuous-time Markov process is
typically defined by a rate matrix W such that in a small
time interval ∆t, the probability of making a jump σ → σ′ is
⟨σ′|W|σ⟩∆t. Therefore, the probability of making the jump
σ → σ′, given that the system makes any jump out of σ
during ∆t, is

⟨σ′|W|σ⟩∆t
σ′′⟨σ′′|W|σ⟩∆t

=
⟨σ′|W|σ⟩
σ′′⟨σ′′|W|σ⟩ = ⟨σ′|Q|σ⟩, (2)

which defines the relation between the Markov rate matrix W
and the jump matrix Q. The probability per unit ∆t of waiting
time t = M∆t in σ and then making a jump out is given by

1
∆t

*
,


σ′

⟨σ′|W|σ⟩∆t+
-
*
,
1 −


σ′

⟨σ′|W|σ⟩∆t+
-

M

. (3)

The waiting time distribution ψ(t |σ) is then the continuous
limit of Eq. (3),

ψ(t |σ) = lim
∆t→0

*
,


σ′

⟨σ′|W|σ⟩+
-
*
,
1 −


σ′

⟨σ′|W|σ⟩∆t+
-

t/∆t

=
1

θ(1)(σ) e−t/θ
(1)(σ), (4)

where

θ(1)(σ) = *
,


σ′

⟨σ′|W|σ⟩+
-

−1

(5)

is the mean waiting time in σ. Hence, waiting times in a
Markov process always have an exponential distribution. The
higher moments of exponential waiting times are completely
determined by the mean: θ(n)(σ) = n!(θ(1)(σ))n.

In general, processes with exponential distributions of
times p(t) are important because they are memoryless in the
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following sense: the probability of taking at least time t, given
the process has already taken at least time t0, is the same as
taking at least t in the first place. That is, the system “forgets”
the time it has already taken. Mathematically, this means
that

P(t + t0)
P(t0) = P(t), (6)

where P(t) =  ∞
t dt ′ p(t ′) is the complementary cumulative

distribution function. The only function satisfying Eq. (6)
is a simple exponential P(t) = e−t/τ, from which it follows
that p(t) = τ−1e−t/τ. For waiting time distributions ψ(t |σ),
non-exponential functions are therefore indicative of memory
within a state: how much longer the system tends to wait
in that state depends on how long it has already waited. In
contrast to ordinary Markov models where ψ(t |σ) is always
exponential, models where ψ(t |σ) may be non-exponential
are sometimes known as semi-Markov processes.

B. The ensemble of first-passage paths

We approach CTRWs using the ensemble of first-passage
paths26–29,31–33 that first reach a particular final state or a set of
final states from some initial conditions. We are interested in
statistical properties of this ensemble such as its distributions
in length, time, and space. In addition to situations where first-
passage properties themselves are of interest, first-passage
paths constitute fundamental building blocks of a stochastic
process since the full propagator and steady state can in
principle be derived from them.4

Let Sfinal be the set of final states, which we will treat
as absorbing (⟨σ′|Q|σ⟩ = 0 for all σ ∈ Sfinal and σ′ ∈ S) so
that the first-passage condition is satisfied. Define a path
ϕ of length ℓ to be an ordered sequence of ℓ + 1 states:
ϕ = {σ0,σ1, . . . ,σℓ}. Denote the probability distribution over
initial states as π0(σ). Then the probability density of starting
in a state σ0 and completing the path ϕ at exactly time t is
given by

P[ϕ, t] = π0(σ0) *
,

ℓ−1
i=0

⟨σi+1|Q|σi⟩+
-

×
 ∞

0
dt0 ψ(t0|σ0)

 ∞

0
dt1 ψ(t1|σ1) · · ·

 ∞

0
dtℓ−1 ψ(tℓ−1|σℓ−1) δ *

,
t −

ℓ−1
i=0

ti+
-


, (7)

where t0, t1, . . . , tℓ−1 are the intermediate waiting times and δ
is the Dirac delta function. The probability of completing the
path ϕ irrespective of how much time it takes is then

P[ϕ] =
 ∞

0
dt P[ϕ, t] = π0(σ0)

ℓ−1
i=0

⟨σi+1|Q|σi⟩. (8)

The time-independent path probabilityP[ϕ] is convenient
because we can express many path statistics of interest
as averages over this distribution, analogous to averages
over the Boltzmann distribution in ordinary statistical
mechanics.29,32,33 For example, let F [ϕ] be a functional

that measures some property of the path ϕ. We use angular
brackets to denote the average of this quantity over the path
ensemble:

⟨F ⟩ =

ϕ

P[ϕ]F [ϕ], (9)

where the sum is over all first-passage paths ϕ of any length
ending at states in Sfinal. Note that the partition function of the
first-passage path ensemble,


ϕ P[ϕ], always equals 1, since

the process must reach one of the final states eventually. In
this manner we can calculate nonequilibrium (first-passage)
properties of the system as equilibrium properties of the path
ensemble, which is time-independent by construction.

C. Distribution of path lengths

The simplest path property is its length L[ϕ], i.e., the
discrete number of jumps along the path. The mean path
length is then

⟨L⟩ =

ϕ

P[ϕ]L[ϕ]. (10)

Functionals for the higher moments of path length are simply
powers of the length functional,

⟨Ln⟩ =

ϕ

P[ϕ](L[ϕ])n, (11)

and the path length probability distribution is

ρ(ℓ) = 

δℓ,L

�
, (12)

where δ is the Kronecker delta. Note that the distribution of
path lengths depends only on the jump matrix Q and not on the
waiting time distributions ψ(t |σ), and hence it characterizes
the discrete-time projection of the underlying continuous-
time stochastic process. In Appendix A, we show that the
distribution of path lengths ρ(ℓ) is typically exponential
asymptotically,

ρ(ℓ) ∼ e−αℓ/ℓ̄, (13)

where α is a constant of order 1 with respect to system size
and ℓ̄ = ⟨L⟩ is the mean path length.

D. Distribution of path times

In contrast to the discrete length of a path, there is also
the continuous time of the path that accounts for the variable
waiting times at the intermediate states. The distribution of
total path times (first-passage time distribution) is

f (t) =

ϕ

P[ϕ, t]. (14)

Unlike the path length distribution, the path time distribution
depends on both the jump matrix Q and the waiting time
distributions ψ(t |σ). We cannot evaluate f (t) for arbitrary
waiting time distributions ψ(t |σ); however, we can express its
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moments as simple averages over the time-independent path
ensemble using path functionals (cf. Eq. (9)). That is, using
Eqs. (7) and (14), we obtain ∞

0
dt f (t) tn =

 ∞

0
dt tn


ϕ

P[ϕ, t]

=

ϕ

P[ϕ]T (n)[ϕ]

=

T (n) , (15)

where the functional for the nth moment of path time is

T (n)[ϕ] =
 ∞

0
dt0 ψ(t0|σ0)

 ∞

0
dt1 ψ(t1|σ1) · · ·

 ∞

0
dtℓ−1 ψ(tℓ−1|σℓ−1) *

,

ℓ−1
i=0

ti+
-

n

=


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)

× θ( j0)(σ0)θ( j1)(σ1) · · · θ( jℓ−1)(σℓ−1). (16)

Each summation in the multinomial expansion is from 0 to n
subject to the constraint j0 + j1 + · · · + jℓ−1 = n. For example,
the first few moments are

T (1)[ϕ] =
ℓ−1
i=0

θ(1)(σi),

T (2)[ϕ] =
ℓ−1
i=0

θ(2)(σi) + 2

i< j

θ(1)(σi)θ(1)(σ j),

T (3)[ϕ] =
ℓ−1
i=0

θ(3)(σi)

+ 3

i< j

(
θ(1)(σi)θ(2)(σ j) + θ(2)(σi)θ(1)(σ j)

)
+ 6


i< j<k

θ(1)(σi)θ(1)(σ j)θ(1)(σk).

(17)

Note that Eq. (16) implies that if any accessible intermediate
state has a divergent waiting time moment of order n, then all
path time moments of order n and higher must be divergent
as well.

E. Path action and a general class of path functionals

For many systems, it is important to determine whether
their dynamics are highly predictable or highly stochastic;
that is, whether the system is likely to take one of a few
high-probability paths every time or whether there is a large
number of distinct paths with similar probabilities. One way
to quantify this notion uses the path action, defined as

S[ϕ] = −
ℓ−1
i=0

log⟨σi+1|Q|σi⟩, (18)

so that path probability is P[ϕ] = π0(σ0)e−S[ϕ]. As in
classical and quantum mechanics, paths with minimum action

dominate, while paths of large action are suppressed. Note
that like path lengths, action depends only on the jump
probabilities and not on the waiting time distributions.

The mean path action is the Shannon entropy of the
path distribution34 (we ignore the path-independent log π0(σ0)
contribution from the initial condition),

⟨S⟩ = −

ϕ

P[ϕ] logP[ϕ]. (19)

This is consistent with the idea that the path action distribution
tells us about the diversity of paths in the ensemble: low
entropy (small mean action) means that a few paths with large
probability dominate the process, while large entropy (large
mean action) means that a diverse collection of low-probability
paths contribute. The distribution of actions around this mean
may be non-trivial, however. For instance, even if the mean
action is large, the variance around it could either be small
(the system must traverse one of the low-probability paths)
or large (the system may traverse paths with a wide range of
probabilities). We can characterize the action distribution by
considering its higher moments. The functional for the nth
moment of path action is

(S[ϕ])n = *
,
−
ℓ−1
i=0

log⟨σi+1|Q|σi⟩+
-

n

=


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)

×
ℓ−1
i=0

(− log⟨σi+1|Q|σi⟩) ji, (20)

so the total moments of the path action distribution are

⟨Sn⟩ =

ϕ

P[ϕ](S[ϕ])n. (21)

The action functionals (Eq. (20)) share a similar
multinomial form with the time functionals (Eq. (16)). This
leads us to consider a more general class of path functionals
with this form. Consider a path functionalU that sums some
property over jumps in a path (or edges in the network), so
that for a path ϕ of length ℓ,

U [ϕ] =
ℓ−1
i=0

U(σi+1,σi). (22)

In the case of action, U(σi+1,σi) = − log⟨σi+1|Q|σi⟩.
Equation (22) is a discretized line integral along the path
ϕ, which suggests thinking of U as representing a force acting
on the random walker as it traverses a path. The statistics
of such forces over paths are especially interesting when
the force is nonconservative, i.e., the line integral U [ϕ]
depends on the whole path ϕ and not just on the end
points. Non-transitive landscapes or non-gradient forces with
this property have been considered in evolutionary theory35

and biochemical networks.36 However, even for conservative
forces, the distribution of the line integral U [ϕ] may be
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non-trivial over the path ensemble if there are multiple initial
and final states. The moment functionals for any such quantity
are again of the multinomial form,

(U [ϕ])n =


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

) ℓ−1
i=0

(U(σi+1,σi)) ji.

(23)

This suggests that methods for calculating time or action
moments can be applied to any path property in this general
class.

F. Path statistics on a homogeneous network

We now consider these statistics of path length, time, and
action in the simple case of a network with homogeneous
properties. We first assume that the waiting time distributions
ψ(t |σ) = ψ(t) are identical for all states, with raw moments
θ(n) and cumulant moments θ(n)c . We do not assume anything
about the jump matrix Q (i.e., the network connectivity). In
Appendix B, we derive an exact relation between path length
and time moments for arbitrary ψ(t):


T (n) = n

k=1



Lk

�
Bn,k

(
θ
(1)
c , θ

(2)
c , . . . , θ

(n−k+1)
c

)
, (24)

where Bn,k are the partial Bell polynomials.37 For example,
the first few moments are

T (1)= θ(1)c ⟨L⟩ ,
T (2)= (

θ
(1)
c

)2 

L2� + θ(2)c ⟨L⟩ ,

T (3)= (
θ
(1)
c

)3 

L3� + 3θ(1)c θ

(2)
c



L2� + θ(3)c ⟨L⟩ .

(25)

Note that the nth time moment depends on all length moments
up to n. Equation (24) holds for the cumulants



T (n)�

c and
⟨Ln⟩c as well (Appendix B). In Appendix C, we present an
alternative argument for the first two moments of Eq. (25)
using the central limit theorem, and in Appendix D we study
the special case when ψ(t) is exponential.

As these results show, we can think of path time as
a convolution between path length and the intermediate
waiting times: the variation in total path times arises from
both variation in path lengths and variation in the waiting
times. If ψ(t) is a delta function (discrete-time process), then
θ
(n)
c = 0 for n > 1 (no variation in waiting times), and



T (n)�

= (θ(1))n ⟨Ln⟩ exactly: path lengths and times are identical up
to an overall scale. This is consistent with our previous
notion that the path length distribution fully describes
the discrete-time projection of the process. However, even
with continuous-time distributions ψ(t), the approximation

T (n)� ≈ (θ(1))n ⟨Ln⟩, and therefore the approximate equiva-

lence of the discrete- and continuous-time processes, may still
hold if the waiting times are not too broadly dispersed (so the
higher moments of ψ(t) are not too large). We can make this
observation more quantitative by expanding Eq. (24) as


T (n) = (

θ
(1)
c

)n ⟨Ln⟩

×

1 +



Ln−1�

⟨Ln⟩
Bn,n−1

(
θ
(1)
c , θ

(2)
c

)
(
θ
(1)
c

)n + · · ·


=
(
θ
(1)
c

)n ⟨Ln⟩ ×

1 +

( n
2

) (
θ(cv))2



Ln−1�

⟨Ln⟩ + · · ·

,

(26)

where

θ(cv) =


θ
(2)
c

θ(1)
(27)

is the waiting time coefficient of variation (CV), i.e., the
standard deviation divided by the mean. The CV measures
the relative dispersion of a distribution; it always equals 1
for exponential distributions. Equation (26) holds for the
cumulants ⟨Ln⟩c and



T (n)�

c as well.
Equation (26) implies that path length and time moments

will be approximately proportional, and hence the whole
distributions should be similar, if

(
θ(cv))2



Ln−1�

⟨Ln⟩ ≪ 1. (28)

The quantity


Ln−1� / ⟨Ln⟩ is typically of the order of the

inverse mean path length ⟨L⟩ = ℓ̄; in particular, this is true
when path lengths have an exponential distribution, which is
generally the case asymptotically (Appendix A). An impor-
tant exception to this rule is if lengths have a Poisson distri-
bution, so that



Ln−1�

c/⟨Ln⟩c = 1 in the cumulant version
of Eq. (26). Apart from this special case, the condition of
Eq. (28) is equivalent to(

θ(cv))2
≪ ℓ̄, (29)

that is, the waiting time distribution must be sufficiently
narrow compared to the mean path length. In many cases we
expect this to hold, since θ(cv) ∼ 1 for exponential-like waiting
time distributions and the mean path length ℓ̄ is usually very
large. We will investigate the validity of this condition in later
examples.

We also consider path action on a homogeneous network.
Path action depends only on the jump matrix Q and not on
the waiting time distributions ψ(t |σ), so as a simple example,
we take all states in S to have the same number γ of outgoing
jumps (nearest neighbors on the network) and all such jumps
to have equal probability γ−1. Therefore, the probability of
a path is P[ϕ] = γ−L[ϕ] and the action is S[ϕ] = L[ϕ] log γ.
This means that the distribution of path actions is exactly
equivalent to that of path lengths (rescaled by a factor of
log γ), and the moments are

⟨Sn⟩ = ⟨Ln⟩ lognγ. (30)

Since path lengths typically have an exponential distribution
asymptotically (Eq. (13), Appendix A), path action will
therefore also be asymptotically exponential as well, with
mean ℓ̄ log γ.
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III. MATRIX FORMULATION AND NUMERICAL
ALGORITHM

Besides gaining general insights into the relationships
among distributions of path lengths, times, and actions,
the path ensemble formalism is convenient because we
can efficiently calculate many ensemble averages using
recursion relations that implicitly sum over all paths. We
now derive these relations and show how to implement them
numerically.

A. Recursion relations

We reformulate the problem in terms of matrices to
express the sums over paths more explicitly. Let T(n)

ℓ be an
N × N matrix (N is the number of states in S) such that
the matrix element ⟨σ′|T(n)

ℓ |σ⟩ is the nth time moment of
all paths of exactly length ℓ from σ to σ′. In particular, the
zeroth-order matrix T(0)

ℓ gives the total probability of all paths
going from σ to σ′ in exactly ℓ jumps. The initial condition
is

T(n)
0 = δn,01, (31)

where 1 is an N × N identity matrix. If our path ensemble is
the set of first-passage paths to final states Sfinal with an initial
distribution vector |π0⟩ = 

σ π0(σ)|σ⟩, then
σ∈Sfinal

⟨σ |T(n)
ℓ |π0⟩ =


ϕ

P[ϕ]T (n)[ϕ]δℓ,L[ϕ] (32)

is the nth time moment for all paths of exactly length ℓ,
and

∞
ℓ=0


σ∈Sfinal

⟨σ |T(n)
ℓ |π0⟩ =


T (n) (33)

is the moment averaged over paths of all lengths. This
expression illustrates how to express the previous path
ensemble averages in the matrix formulation.

The key advantage of the T(n)
ℓ matrices is that they obey

the following recursion relation (Appendix E):

T(n)
ℓ = Q

n
j=0

(
n
j

)
Θ( j)T(n− j)

ℓ−1 , (34)

where Θ(n) is an N × N matrix with waiting time moments
for each state along the diagonal:

⟨σ′|Θ(n)|σ⟩ = δσ′,σθ(n)(σ). (35)

Appendix E also shows how this recursion relation for
the path time moments generalizes to the case of non-
separable waiting time distributions ψ(t |σ → σ′). For the
total probability (n = 0), the recursion relation of Eq. (34)
is simply multiplication by the jump matrix: T(0)

ℓ = QT(0)
ℓ−1,

since the total probability of going from one state to another
in exactly ℓ jumps must be given by the product of the jump
matrices T(0)

ℓ = Qℓ.
Owing to the similar multinomial form of their path

functionals (compare Eqs. (16) and (20)), the path action

moments obey a similar recursion relation. Define ⟨σ′|S(n)
ℓ |σ⟩

to be the nth action moment of all paths of length ℓ from σ to
σ′, so that

∞
ℓ=0


σ∈Sfinal

⟨σ |S(n)
ℓ |π0⟩ = ⟨Sn⟩ . (36)

In Appendix E, we show that these matrices obey the recursion
relation

S(n)
ℓ =

n
j=0

(
n
j

)
Q̃( j)S(n− j)

ℓ−1 , (37)

where the matrix Q̃( j) is defined so that

⟨σ′|Q̃( j)|σ⟩ = ⟨σ′|Q|σ⟩(− log⟨σ′|Q|σ⟩) j . (38)

In fact, if U(n)
ℓ is the matrix such that

∞
ℓ=0


σ∈Sfinal

⟨σ |U(n)
ℓ |π0⟩ = ⟨U n⟩ (39)

for any path functional U in Eq. (22), it obeys the recursion
relation

U(n)
ℓ =

n
j=0

(
n
j

)
Ω( j)U(n− j)

ℓ−1 , (40)

where ⟨σ′|Ω( j)|σ⟩ = ⟨σ′|Q|σ⟩(U(σ′,σ)) j (Appendix E).
Therefore, recursion relations of this form extend to a wide
class of path statistics.

B. Transfer matrices

To calculate the nth moment of time or action, we
must carry out the recursion relation of Eq. (34) or (37)
for all moments up to n. We can unify all these steps into
a single transfer matrix operation convenient for numerical
use. Let nmax be the maximum moment of interest. Define
the N(nmax + 1)-dimensional column vector |τ(ℓ)⟩ as a
concatenation of T(n)

ℓ |π0⟩ for all n ∈ {0,1, . . . ,nmax}:

|τ(ℓ)⟩ =



T(0)
ℓ |π0⟩

T(1)
ℓ |π0⟩
...

T(nmax)
ℓ |π0⟩



. (41)

Define the basis vectors |σ,n⟩ for σ ∈ S and n ∈
{0,1, . . . ,nmax} so that the (σ,n) entry of |τ(ℓ)⟩ is the nth time
moment at state σ at the ℓth jump: ⟨σ,n|τ(ℓ)⟩ = ⟨σ |T(n)

ℓ |π0⟩.
We similarly define the action vector

|η(ℓ)⟩ =



S(0)
ℓ |π0⟩

S(1)
ℓ |π0⟩
...

S(nmax)
ℓ |π0⟩



. (42)

Now define the N(nmax + 1) × N(nmax + 1) matrices:
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K =



(
0
0

)
QΘ(0) 0 0 · · · 0(

1
1

)
QΘ(1)

(
1
0

)
QΘ(0) 0 · · · 0(

2
2

)
QΘ(2)

(
2
1

)
QΘ(1)

(
2
0

)
QΘ(0) · · · 0

...
...

...
. . .

...(
nmax

nmax

)
QΘ(nmax)

(
nmax

nmax − 1

)
QΘ(nmax−1)

(
nmax

nmax − 2

)
QΘ(nmax−2) · · ·

( nmax

0

)
QΘ(0)



,

G =



(
0
0

)
Q̃(0) 0 0 · · · 0(

1
1

)
Q̃(1)

(
1
0

)
Q̃(0) 0 · · · 0(

2
2

)
Q̃(2)

(
2
1

)
Q̃(1)

(
2
0

)
Q̃(0) · · · 0

...
...

...
. . .

...(
nmax

nmax

)
Q̃(nmax)

(
nmax

nmax − 1

)
Q̃(nmax−1)

(
nmax

nmax − 2

)
Q̃(nmax−2) · · ·

( nmax

0

)
Q̃(0)



,

(43)

where each 0 is an N × N zero matrix. We can express
the recursion relations of Eqs. (34) and (37) for all
n ∈ {0,1, . . . ,nmax} as

|τ(ℓ)⟩ = K|τ(ℓ − 1)⟩, |η(ℓ)⟩ = G|η(ℓ − 1)⟩. (44)

These recursion relations have the solutions
|τ(ℓ)⟩ = Kℓ|τ(0)⟩, |η(ℓ)⟩ = Gℓ|η(0)⟩, (45)

where the initial conditions are

|τ(0)⟩ = |η(0)⟩ =



|π0⟩
0
...

0



. (46)

Here each 0 represents a zero column vector of length
N . We can think of K and G as transfer matrices that
iteratively generate sums over the path ensemble to calculate
moments. This is analogous to transfer matrices in spin
systems that generate the sums over spin configurations to
calculate the partition function.38 The zeroth-order version of
this formalism, which simply calculates powers of the jump
matrix Q, is equivalent to the exact enumeration method for
discrete-time random walks.3,39

We can obtain most path statistics of interest by various
matrix and inner products on these vectors. Define the
cumulative moment vectors:

|τ⟩ =
∞
ℓ=0

|τ(ℓ)⟩, |η⟩ =
∞
ℓ=0

|η(ℓ)⟩. (47)

Elements of these vectors are (using Eqs. (41) and (42))

⟨σ,n|τ⟩=
∞
ℓ=0

⟨σ |T(n)
ℓ |π0⟩,

⟨σ,n|η⟩=
∞
ℓ=0

⟨σ |S(n)
ℓ |π0⟩.

(48)

These represent the total nth moments of time and action for
all paths through each state σ, but weighted by the number
of visits to that state since the sum over ℓ counts a path’s
contribution each time it visits σ. In the case of n = 0,

⟨σ,0|τ⟩ = ⟨σ,0|η⟩ =
∞
ℓ=0

⟨σ |Qℓ|π0⟩, (49)

since T(0)
ℓ = S(0)

ℓ = Qℓ (Eqs. (34) and (37)). This is actually
the average number of visits v(σ) to a state σ, since the
probability of a path is counted each time it visits σ. For an
intermediate state σ, multiplying the mean number of visits
v(σ) by the mean waiting time θ(1)(σ) gives the average time
spent in σ. When σ is a final state in Sfinal, the random walk
can only visit it once (if it absorbs at that final state) or
zero times (if it absorbs at a different final state), and thus
the average number of visits v(σ) equals the probability of
reaching that final state σ (commitment probability).

If there are multiple final states in Sfinal, we often
wish to sum path statistics over all of them. Define the
N-dimensional row vector ⟨final| = 

σ∈Sfinal⟨σ | (with 1 at the
position for each final state and 0 everywhere else) and the
(nmax + 1) × N(nmax + 1) matrix

F =



⟨final| 0 · · · 0
0 ⟨final| · · · 0
...

...
. . .

...

0 0 · · · ⟨final|



, (50)

where each 0 is a zero row vector of length N . Multiplying
this matrix on a corresponding vector will sum over all final
states for each moment, leaving an (nmax + 1)-dimensional



214106-8 Manhart, Kion-Crosby, and Morozov J. Chem. Phys. 143, 214106 (2015)

vector with the total moments. For example,

F|τ(ℓ)⟩ =



⟨final|T(0)
ℓ |π0⟩

⟨final|T(1)
ℓ |π0⟩
...

⟨final|T(nmax)
ℓ |π0⟩



=



t̄(0)(ℓ)
t̄(1)(ℓ)
...

t̄(nmax)(ℓ)


= |t̄(ℓ)⟩, (51)

where we use the shorthand t̄(n)(ℓ) for the total nth time
moment absorbed at the ℓth jump. Note that t̄(0)(ℓ) = ρ(ℓ) is
the probability of reaching any of the final states in exactly
ℓ jumps. Thus this method automatically calculates the entire
path length distribution. On the cumulative time vector |τ⟩, F
returns the total time moments,

F|τ⟩ =



∞

ℓ=0
⟨final|T(0)

ℓ |π0⟩∞

ℓ=0
⟨final|T(1)

ℓ |π0⟩
...∞

ℓ=0
⟨final|T(nmax)

ℓ |π0⟩



=



t̄(0)

t̄(1)
...

t̄(nmax)



, (52)

where t̄(n) =
∞
ℓ=0 t̄(n)(ℓ) = 


T (n)� is the total time moment
over all paths. The matrix F similarly acts on the action
vectors |η(ℓ)⟩ and |η⟩,

F|η(ℓ)⟩=



s̄(0)(ℓ)
s̄(1)(ℓ)
...

s̄(nmax)(ℓ)



= | s̄(ℓ)⟩,

F|η⟩=



s̄(0)

s̄(1)
...

s̄(nmax)



,

(53)

where s̄(n)(ℓ) is the nth action moment absorbed in all final
states at the ℓth jump and s̄(n) is the total nth action moment.

Finally, for any function of state B(σ), we can calculate
the average value of that function at the ℓth intermediate
jump. Define two N(nmax + 1)-dimensional row vectors, one
for intermediate states and one for final states:

⟨Bint| =
(

σ<Sfinal
B(σ)⟨σ |

)
0 · · · 0


,

⟨Bfinal| =
(

σ∈Sfinal
B(σ)⟨σ |

)
0 · · · 0


,

(54)

where each vector has nmax zero row vectors 0 of length
N . Acting with the row vector ⟨Bint| on |τ(ℓ)⟩ and
⟨Bfinal| on

ℓ
ℓ′=0 |τ(ℓ′)⟩ returns the value of B(σ) averaged

over the probability distribution across all states at the ℓth
jump:

B̄(ℓ) = ⟨Bint|τ(ℓ)⟩ +
ℓ

ℓ′=0

⟨Bfinal|τ(ℓ′)⟩
=


σ<Sfinal

B(σ)⟨σ |T(0)
ℓ |π0⟩

+

ℓ
ℓ′=0


σ∈Sfinal

B(σ)⟨σ |T(0)
ℓ′ |π0⟩. (55)

For the final states we must sum over path lengths up to ℓ
to account for the total probability absorbed at final states
thus far. For example, if B(σ) = θ(1)(σ), B̄(ℓ) tells us the
unconditional mean time spent at the ℓth intermediate jump.
If B(σ) is set to a position in space corresponding to state
σ (for systems that allow embedding of states into physical
space), B̄(ℓ) is the average position at the ℓth intermediate
jump, which over all ℓ traces the average path of the system.

C. Convergence and asymptotic behavior
of path sums

To numerically calculate the foregoing matrix quantities,
we must truncate the sums over path lengths ℓ at some suitable
cutoff Λ. If there are no loops in the network, then the jump
matrix Q is nilpotent, meaning there is a maximum possible
path length Λ such that Qℓ = 0 for all ℓ > Λ. In this case, all
sums converge exactly afterΛ jumps. If the network has loops,
paths of arbitrarily long length have nonzero probability. We
must then choose a desired precision ϵ ≪ 1 and truncate the
sums at ℓ = Λ when

1 −
Λ
ℓ=0

ρ(ℓ) < ϵ and
t̄(nmax)(Λ)Λ
ℓ=0 t̄(nmax)(ℓ) < ϵ. (56)

The first condition guarantees that the total probability has
converged: all remaining paths have total probability less than
ϵ . The second condition indicates that the Λth contribution to
the maximum moment nmax is sufficiently small relative to the
total moment calculated so far.

A potential problem with the second convergence
condition arises when the state space is periodic, so the
final states can only be reached in a number of jumps ℓ that
is an integer multiple of the periodicity (plus a constant).
For instance, square lattices have a periodicity of 2. In that
case, t̄(nmax)(ℓ) will alternate between zero and nonzero values
as ℓ alternates between even and odd values. To prevent
these zero values of t̄(nmax)(ℓ) from trivially satisfying the
second condition in Eq. (56), we also require that t̄(nmax)(Λ)
be nonzero. A more subtle problem can arise if there are
very low probability paths with very large contributions to the
higher time moments. For example, one can construct a model
where there are extremely long paths with probabilities much
smaller than ϵ but which make arbitrarily large contributions
to the total time moments due to the waiting time moments
at those states. The algorithm will satisfy the convergence
criteria before these paths are summed and therefore miss their
contributions. This is an extreme example, but in general one
may need to reconsider the convergence test depending on the
properties of the model at hand.

How does the cutoff Λ depend on the maximum moment
nmax? To address this, we must determine the asymptotic
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behavior of t̄(n)(ℓ) for different n. As long as the network
has loops, the path length probability distribution ρ(ℓ) is
asymptotically exponential (Eq. (13); see Appendix A).
To estimate the asymptotic dependence of the higher time
moments on path length, we consider the special case of
identical waiting time distributions as in Sec. II F. Since

t̄(n)(ℓ) =

ϕ

P[ϕ]T (n)[ϕ]δℓ,L[ϕ], (57)

we can use the approximation T (n)[ϕ] ≈ (θ(1))n(L[ϕ])n from
Eq. (26) (valid when the waiting time distributions are not too
dispersed) to obtain

t̄(n)(ℓ) ≈ (
θ(1)

)n 
ϕ

P[ϕ](L[ϕ])nδℓ,L[ϕ]

=
(
θ(1)ℓ

)n
ρ(ℓ)

∼
(
θ(1)ℓ

)n
e−αℓ/ℓ̄. (58)

Since ℓne−αℓ/ℓ̄ = e−αℓ/ℓ̄+n log ℓ, the higher moments decay
nearly exponentially (up to a logarithmic correction) with
the same rate as the probability, set by the mean path length ℓ̄.
We expect this asymptotic behavior to remain valid even when
the waiting time distributions are not all the same, as long as
the length and time moments are approximately proportional;
we will empirically verify this expectation in later examples.

Although all t̄(n)(ℓ) asymptotically decay with exponential
dependence on ℓ, the logarithmic correction in the exponent
shifts the exponential regime toward larger ℓ for higher
moments; this is why we must test convergence on the
maximum moment nmax in Eq. (56). Indeed, t̄(n)(ℓ) in Eq. (58)
is maximized at ℓmax = nℓ̄/α, after which exponential decay
sets in. Thus, we expect scaling for the cutoff to be Λ ∼ nmaxℓ̄
to leading order.

The approximate exponential dependence of the moments
also enables a convergence scheme more sophisticated than
Eq. (56). We can simply calculate the moments for path
lengths until all t̄(n)(ℓ) have reached their exponential tails,
fit exponential functions, and then extrapolate to infer the
contributions of the longer paths. Conceptually, this means
that all long path behavior is contained in the statistics of
shorter paths, since long paths are simply short paths with
many loops.31,32 In practice, this procedure can help to avoid
calculating extremely long paths unnecessarily.

D. Numerical implementation in PathMAN

We have implemented the aforementioned matrix
formulation in a Python script called PathMAN (Path
Matrix Algorithm for Networks), available at https://github.
com/michaelmanhart/pathman with additional scripts for
generating examples and analyzing output. Figure 1 shows
the pseudocode. Since the jump matrix Q is typically very
sparse, we can store all matrices in sparse formats for efficient
storage and computation using SciPy’s sparse linear algebra
module.40 The script is general enough to treat any CTRW
on a finite discrete space given a list of states, their jump
probabilities, and at least their first waiting time moments.
The current implementation assumes separable waiting time
distributions, but modifying it to run the calculations for

FIG. 1. Pseudocode for the matrix calculations implemented in PathMAN.

non-separable distributions (Appendix E) is straightforward.
The user can specify any path boundary conditions (initial
distribution and final states) and functions of state B(σ) to
average over. The script reads all input data from plain text files
in a simple format (see GitHub repository for documentation).

The rate-limiting step of the algorithm is multiplying
the transfer matrices K and G with the vectors |τ(ℓ − 1)⟩
and |η(ℓ − 1)⟩ (Fig. 1) to obtain |τ(ℓ)⟩ and |η(ℓ)⟩, so we use
this step to estimate the time complexity of the algorithm.
Assume that each state has an average of γ outgoing jumps,
so that the jump matrix Q has γN nonzero entries. Each
transfer matrix has (nmax + 1)(nmax + 2)/2 nonzero blocks
(Eq. (43)), yielding approximately γN(nmax + 1)(nmax + 2)/2
total nonzero entries in K and G. Since we multiply these
matrices by the N(nmax + 1)-dimensional state vectors at each
of the Λ total jumps, the algorithm scales as

O
�
n2

maxγNΛ
�
. (59)

Assuming there are loops in the model (i.e., there is no
maximum possible path length), the cutoff Λ scales linearly
with the mean path length ℓ̄, as well as the maximum moment
nmax as argued in Sec. III C. For simple random walks, the
mean path length scales as a power of the total number of
states:

ℓ̄ ∼



Ndw/df for dw > df,

N for dw ≤ df,
(60)

where dw is the dimension of the random walk and df is
the fractal dimension of the space.11,14 Strictly speaking,
these scaling relations depend on the boundary conditions
(proximity of the initial and final states) and the presence of
an energy landscape; the scaling relations in Eq. (60) are a
“worst-case scenario” when the landscape is flat and the initial
and final states are very far from each other. Altogether this
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implies that the algorithm will scale as

O(n3
maxγN1+dw/df) for dw > df,

O(n3
maxγN2) for dw ≤ df.

(61)

Alternative recursive expressions for first-passage time
moments on 1D lattices scale as O(N3),41 as do general
methods for solving the backward equation (a linear system)
in transition path theory;42 our scaling will be equivalent in the
extreme case of a fully connected network where γ = N − 1.

IV. EXAMPLES

We now illustrate the path ensemble approach on a series
of simple examples.

A. 1D lattice

We first consider a Markov CTRW on a 1D lattice. Let
the lattice have L sites with equal and symmetric transition
rates between neighboring sites:

⟨x + 1|W|x⟩ = 1 for 1 ≤ x < L,

⟨x − 1|W|x⟩ = 1 for 1 < x ≤ L,

⟨y |W|x⟩ = 0 otherwise.
(62)

From the rate matrix W, we can obtain the jump matrix Q
and the waiting time moments θ(n) using Eqs. (2) and (5);
note that the reflecting boundary conditions mean the “bulk”
states (1 < x < L) have θ

(1)
bulk = 1/2, while the “edge” states

(x = 1, x = L) have θ
(1)
edge = 1 due to their different

connectivities (numbers of outgoing jumps). We consider
the ensemble of first-passage paths from one end of the
lattice (x = 1) to the other (x = L). Figure 2(a) shows the
distributions t̄(n)(ℓ) of path time moments over path lengths;
the path length probability distribution ρ(ℓ) = t̄(0)(ℓ) is very
close to exponential except for small ℓ, while the higher
moments illustrate the Erlang-like function derived in Eq. (58).
In particular, we confirm that the higher time moments decay
approximately exponentially for large ℓ. Since the connectivity
is nearly the same everywhere for large L (γ = 2 for all states
except x = 1 and x = L), Eq. (30) indicates the distribution of
path action will also be exponential with mean action (path
entropy) ≈ℓ̄ log 2.

We now introduce a potential energy V (x) = (L − x)/
(L − 1) that provides a constant force down the lattice
(Fig. 2(b), inset). If we use Metropolis transition rates38

⟨y |W|x⟩ = min(1,e−β(V (y)−V (x))), where β is the inverse
temperature, we obtain a biased random walk with forward
rate of 1 and backward rate of e−β/(L−1):

⟨x + 1|W|x⟩ = 1 for 1 ≤ x < L,

⟨x − 1|W|x⟩ = e−β/(L−1) for 1 < x ≤ L,

⟨y |W|x⟩ = 0 otherwise.

(63)

As we increase the inverse temperature β from zero, the bias
becomes exponentially stronger, leading to a distribution of
path lengths more tightly concentrated around the minimum
length ℓ = L − 1 (Fig. 2(b)). Since only a single path with
probability 1 is available in the limit β → ∞, the distributions

FIG. 2. Distributions of path lengths and times on a 1D lattice. (a) The nth time moments t̄ (n)(ℓ) for paths of length ℓ, normalized as fractions of the total
moments t̄ (n), in the absence of a potential energy. (b) Path length probability distribution ρ(ℓ) for several choices of β on a linear energy landscape V (x)
(inset). (c) The mean path length ℓ̄(1) (scaled by the mean waiting time θ(1)= 1/2 for bulk states), mean path time t̄ (1), path length CV ℓ̄(cv), and path time
CV t̄ (cv) as functions of β. (d) Skewness t̄ (3)std, kurtosis t̄ (4)std, hyperskewness t̄ (5)std, and hyperkurtosis t̄ (6)std of path time as functions of β. Values of β in (c) and (d)
are shifted by 1 to show β = 0 on a log scale. In all panels, we use a lattice of length L = 1000 with transition rates given by Eq. (63).
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of path lengths and actions become delta functions; in
particular, path entropy is zero because the process is
completely deterministic.

What is the distribution of path times as a function of β?
In Fig. 2(c), we show the mean path time t̄(1), which decreases
dramatically as the bias is increased through β. It is almost
exactly proportional to the mean path length ℓ̄(1) for all β,
as predicted by Eq. (26) since θ(cv) = 1 and ℓ̄(1) = ℓ̄ ≫ 1. We
also show the CVs ℓ̄(cv), t̄(cv) of the path length and time
distributions, which measure the dispersion. For β = 0 both
CVs are very close to 1, suggesting that the distributions
of path lengths and times are approximately exponential.
However, as β becomes large, the length CV ℓ̄(cv) drops to
zero, since the length distribution becomes a delta function,
but the time CV t̄(cv) decreases to a small but nonzero value,
indicating that the distribution becomes narrowly but finitely
distributed around its mean.

Besides CV, standardized moments offer a useful way to
characterize the shape of a distribution.43 They are defined as
dimensionless moments of a random variable X shifted and
rescaled to have mean 0 and standard deviation 1:

⟨X n⟩std =
⟨(X − ⟨X⟩)n⟩

(X − ⟨X⟩)2n/2 . (64)

Since the first and second standardized moments are 0
and 1 by construction, the lowest non-trivial moment is
the third moment, traditionally known as skewness since
it measures the asymmetry of the distribution around the
mean. The fourth standardized moment is the kurtosis; the
fifth and sixth standardized moments are sometimes called
the hyperskewness and hyperkurtosis. For an exponential
distribution, the nth standardized moment is !n, i.e., the
subfactorial or the number of derangements of n objects.
Therefore, exponential skewness, kurtosis, hyperskewness,
and hyperkurtosis are 2, 9, 44, and 265, respectively. For a
Gaussian distribution, the first four standardized moments are
0, 3, 0, and 15, respectively.

Figure 2(d) shows the first four non-trivial (n ≥ 3)
standardized moments of path time on the 1D lattice as
functions of β. For β = 0 the standardized moments are
very close to their exponential values, confirming that the
distribution of first-passage times for a simple random walk
is very close to exponential. However, as we increase the
rightward bias by increasing β, the moments undergo a rapid
transition near β ≈ 10. Note that this transition happens at
rather low temperature (T = β−1 = 10−1) compared to the
total change in energy across the lattice, which is set to 1. For
very large β, the standardized time moments saturate at the
Gaussian values of 0, 3, 0, and 15. This is because a single path
of minimal length ℓ = L − 1 dominates at low temperatures
(Fig. 2(b)), and thus the total path time is just the sum of
the waiting times along the single path. By the central limit
theorem, this sum will be approximately Gaussian for large
L. Since θ(1)edge = θ

(1)
bulk = θ

(2)
edge,c = θ

(2)
bulk,c = 1 in this limit (bulk

and edge states are the same since travel along the lattice is
one-way), the mean and variance of path time in this limit
should be the path length ℓ = L − 1 = 999 times the mean
and variance of each waiting time: t̄(1) = (L − 1)θ(1)bulk = 999

and t̄(2)c = (L − 1)θ(2)bulk,c = 999, leading to a coefficient of
variation t̄(cv) =

√
999/999 ≈ 0.03. This agrees with Fig. 2(c).

This simple model is reminiscent of downhill folding in
proteins17 and linear biochemical pathways such as those
used in kinetic proofreading,44 where non-exponential kinetics
and the transition between exponential and deterministic
(narrow Gaussian distribution) regimes have been previously
investigated.

Equation (26) suggests that the length and time
distributions should be very similar even for β → ∞, since
the correction term is still small (θ(cv) = 1 and ℓ̄ = L − 1
= 999 ≫ 1). Indeed, the time distribution is a Gaussian
narrowly distributed around its mean, whereas the length
distribution is a delta function; the differences in the moments
are of the order 1/ℓ̄ ≈ L−1. However, this slight difference is
better resolved by considering the complete relation between
length and time moments (Eq. (24)) with cumulants



T (n)�

c
and ⟨Ln⟩c instead of the raw moments. For β → ∞, all ⟨Ln⟩c =

0 for n ≥ 2, which means that we cannot expand Eq. (24) for
the cumulants as in Eq. (26). Instead, the only nonzero terms
in Eq. (24) yield the exact equation



T (n)�

c = θ
(n)
c ⟨L⟩c for

all n.

B. 1D comb and memory from coarse-graining

We now turn to an example that explores the effects of
waiting memory on distributions of path times. We consider
the 1D comb: a 1D backbone of length Lbackbone where
each site has a 1D tooth of length Ltooth extending from
it (Fig. 3(a)). Combs have traditionally represented simple
models of diffusion on percolation clusters and other fractal
structures in disordered materials;4,45 more recently, they have
also been proposed as a model for cancer cell proliferation.46

As in the previous example (Eq. (62)), we use symmetric
transition rates of 1 between neighboring sites in the comb.
If we are primarily interested in diffusion along the backbone
rather than within the teeth, it is natural to coarse-grain each
tooth into a single effective backbone state with some effective
waiting time distribution ψ(t) that describes the time spent
exploring the tooth before returning to make a jump along
the backbone (Fig. 3(a)).4,45 The waiting times within each
coarse-grained backbone state are therefore the first-passage
times to return to the backbone after exploring the tooth. The
distribution of these return times, f tooth(t), has the approximate
form4

ψ(t) = f tooth(t) ∼



t−3/2 for t < τL2
tooth,

e−t/(τL
2
tooth) for t > τL2

tooth,
(65)

where τ is a time scale that is O(1) in Ltooth. Since the
distributions of path times and lengths are very similar on
1D lattices in the absence of potential (cf. the β = 0 limit
in Fig. 2(c)), the crossover time τL2

tooth is essentially the
characteristic time scale to explore a 1D lattice of length Ltooth
(Eq. (60)). In Fig. 3(b) we show the path length distribution
ρtooth(ℓ) to exit the tooth, which according to Eq. (26) should
be approximately the same as the distribution of times f tooth(t)
for large Ltooth. Indeed, ρtooth(ℓ) follows the form of Eq. (65)
very clearly: there is a power law regime of ℓ−3/2 until
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FIG. 3. Distributions of path lengths and times on a 1D comb. (a) Schematic of a comb with backbone of length Lbackbone and teeth of length Ltooth. We
coarse-grain the teeth into single states (orange) along the backbone with effective waiting time distributions ψedge(t) and ψbulk(t). (b) Path length distribution
ρtooth(ℓ) to exit a tooth of different lengths Ltooth, along with the power law ℓ−3/2 for comparison. (c) Mean θ(1)bulk and second moment θ(2)bulk of ψbulk(t) as

functions of tooth length Ltooth; points are numerical calculations, while dashed lines show expected scaling behavior from Eq. (66). (d) Skewness ℓ̄(3)std, t̄ (3)std and

kurtosis ℓ̄(4)std, t̄ (4)std of length and time distributions for paths along the backbone as functions of Lbackbone, with Ltooth= 100.

approximately ℓ ∼ L2
tooth, after which there is an exponential

decay. To estimate the tooth waiting time moments θ(n) from
ψ(t) = f tooth(t), we make the approximation that the power-law
regime dominates the moment integrals:4

θ(n) ∼
 τL2

tooth
dt t−3/2tn ∼ L2n−1

tooth . (66)

In Fig. 3(c) we verify this scaling by numerically calculating
the moments from first-passage paths that exit the tooth.

The dominant power-law regime of ψ(t) means that its
statistics are very different from those of an exponential
distribution. For example, the CV is θ(cv) ∼ L1/2

tooth rather than
∼1, indicating a much broader distribution of times compared
to the exponential case. The non-exponential nature of the
waiting time distribution is indicative of memory within
an effective backbone state: how much longer the system
waits in the state depends on how long it has already
waited. Mathematically, this apparent memory arises from
coarse-graining each tooth into a single state, which erases
information about the position of the system within the tooth.
Indeed, for the distribution of times in Eq. (65), the mean
waiting time starting from t = 0 is∼Ltooth, since it is dominated
by the power-law regime (Eq. (66)). However, if the system
waits at least time ∼L2

tooth, the mean additional waiting time
becomes ∼L2

tooth, due to the exponential regime. In other
words, if the system does not leave by time ∼L2

tooth—meaning
that it has diffused far from the backbone—it is likely to wait
much longer as the exponential regime of ψ(t) takes over.

One effect of this memory is that it can lead to
significant differences between the distributions of path
times and path lengths along the effective backbone states.
Equation (26) shows that the moments of path time and
path length are approximately proportional if the waiting
time distributions are not too broad relative to ratios of path
length moments; that is, the correction term in Eq. (26) is
small if (θ(cv))2 ≪ ⟨Ln⟩ / 
Ln−1�. We estimate the size of
this correction for the comb model, focusing on first-passage
paths from one end of the backbone to the other. The waiting
time CV is θ(cv) ∼ L1/2

tooth as previously mentioned. The path
length distribution, meanwhile, appears to be very close to
exponential: Fig. 3(d) shows that its skewness and kurtosis
are consistent with their exponential values (2 and 9) for
any backbone length. Since the mean path length should be
⟨L⟩ = ℓ̄ ∼ L2

backbone (Eq. (60)), this implies that the higher
moments are ⟨Ln⟩ ∼ n!L2n

backbone. Therefore, the correction
term in Eq. (26) is approximately( n

2

) (
θ(cv))2



Ln−1�

⟨Ln⟩ ∼
1
2
(n − 1) Ltooth

L2
backbone

. (67)

Thus, when Ltooth ≪ L2
backbone, we expect path lengths and

times along the backbone to have similar statistics, with a
pronounced difference in the opposite limit. In Fig. 3(d),
we calculate skewness and kurtosis of path time moments,
varying Lbackbone while fixing Ltooth = 100. Indeed, for
Lbackbone <

√
Ltooth = 10, there is a large discrepancy between

path length and time moments, while for Lbackbone > 10, they
become very close. The fact that the length of the teeth must
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be large compared to the square of the backbone length to
have an appreciable effect on the path statistics indicates that
dynamics along the backbone, rather than within the teeth,
tend to dominate the first-passage process.

C. Memory in coarse-grained metastable states

As the previous example showed, memory, in the form
of non-exponential distributions of waiting times, naturally
arises from coarse-graining because information about the
microscopic states of the system is lost. This principle
plays a crucial role in the generation of discrete stochastic
models for protein folding and other molecular processes.16

In these models, a high-dimensional space of “microscopic”
states (e.g., protein conformations) is coarse-grained into
a discrete set of “macroscopic” states with some effective
transition probabilities. The resulting coarse-grained model
is more amenable to calculating statistical properties of
dynamics over long time scales, such as the mean protein
folding time or kinetic bottlenecks.1,2 However, the coarse-
graining can result in qualitative differences between the
approximate macroscopic model and the true underlying
microscopic dynamics,16 including non-exponential waiting
times in the effective states that are not addressed by
conventional transition path theory.15

As a simple illustration of this phenomenon, we consider
a 2D double-well potential

V (x, y) = (x2 − 1)2 + 2y2, (68)

as shown in Fig. 4(a). This potential has two local minima
at (±1,0) with V = 0, a central barrier at (0,0) with V = 1,
and reflecting boundaries at x, y = ±2. At low temperatures,
the system will spend most of its time in the basins around
the two minima. Therefore, it is natural to coarse-grain the
“microscopic” 2D space into two metastable states, A and
B, separated by the central energy barrier (Fig. 4(a)). To
characterize the statistics of the two-state dynamics, it is
common to calculate a single reaction rate (inverse of the
mean time) from one state to another. However, using a single
rate parameter implicitly assumes that waiting times in the
coarse-grained states are distributed exponentially. Here we
show this to be a poor approximation.

When the system first transitions to B from A, it starts
just to the right of the interface separating the two states
(Fig. 4(a)). The effective waiting time in the coarse-grained
state B is therefore the time until the system first returns to that
interface, starting from one step off it. We explicitly calculate
the first-passage paths for this microscopic process using our
numerical method. We discretize the space into a 2D lattice
with ∆x = 0.05 and assume a Markov CTRW on the lattice
with Metropolis transition rates for jumps between nearest
neighbors. Although the system can enter state B at any point
along the interface with A, for simplicity we assume that it
entered through the central barrier at (0,0) (the lowest-energy
point along the boundary) and therefore starts in B at (∆x,0)
(marked by the blue square in Fig. 4(a)). In Fig. 4(b) we
show the distributions of path lengths (blue line) starting from
this point and returning anywhere along the interface for low

FIG. 4. Effect of memory in coarse-grained metastable states. (a) Double-well potential (Eq. (68)) exactly coarse-grained into states A and B with boundary
along the green dashed line. We also show example paths (solid blue and red lines) that both exit B (circles) but start from different initial conditions within
B (squares). (b) Length distributions ρ(ℓ) of paths (with β = 10) that exit B but start at different initial conditions (at the central barrier, corresponding to the
blue square in (a), or in the low-energy basin, corresponding to the red square in (a)), along with the power law ℓ−3/2 for comparison. For paths that exit the
coarse-grained state B, (c) the mean time t̄ (1) and CVs ℓ̄(cv), t̄ (cv) of length and time, and (d) skewness ℓ̄(3)std, t̄ (3)std and kurtosis ℓ̄(4)std, t̄ (4)std of length and time, all as
functions of β. All calculations use a discretized square lattice with ∆x = 0.05 over the space (x, y) ∈ [−2,2]× [−2,2].
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temperature (β = 10); an example of such a path is shown in
Fig. 4(a) (blue line). The distribution has a power-law regime
for small ℓ and exponential regime for large ℓ. These two
asymptotic limits are the same as the distribution of waiting
times in the 1D tooth (Eq. (65), Fig. 3(b)), and indeed, they
have a similar physical basis: the power-law regime arises
from paths that quickly return to the interface without falling
into the low-energy basin, while the exponential regime arises
from paths that fall into the low-energy basin before returning.
In contrast to the 1D comb, though, there is a broad flat region
of the distribution between the power-law and exponential
regimes. This is actually part of the distribution of paths that
fell into the low-energy basin before returning; it corresponds
to an intermediate regime before that distribution hits its
asymptotic exponential tail (cf. path length distributions on a
1D lattice in Fig. 2(b)). We confirm this by directly calculating
paths with the starting point in the basin (red line in Fig. 4(b);
an example path is shown in Fig. 4(a) from the red square to
the red circle).

In Figs. 4(c) and 4(d), we demonstrate that the distribution
of path times, i.e., the waiting times in the coarse-grained state
B (or A by symmetry), is nearly identical to the path length
distribution shown in Fig. 4(b). Besides the mean time t̄(1),
we also calculate the CV and standardized moments for both
length and time distributions, which are indistinguishable over
the entire range of β (despite the heterogeneities in waiting
time distributions across the lattice). Hence, the path length
distribution in Fig. 4(b) also describes the effective waiting
time distribution in the coarse-grained state. The power-law
regime of this distribution for short paths leaves a distinct
signature in the moments. Even at β = 10, which represents
a temperature that is 10 times smaller than the lowest energy
barrier (such that we expect the metastable approximation of
A and B to be very good), the distribution of times deviates
strongly from an exponential distribution: the CV is nearly 3,
while the skewness and kurtosis are much larger than their
exponential expectations. At lower β (higher temperatures),
the deviation from an exponential distribution becomes even
more pronounced. As with the comb, this enrichment of the
distribution for very short paths means that given the system
just transitioned to B, it is likely to quickly transition back to
A. But if it does not transition back quickly, it is likely to wait
much longer as it falls into the basin and the waiting times
become exponentially distributed.

From the comb and double-well examples, we can
deduce some general principles for the waiting memory
that results from coarse-graining a state space. Assume that
the microscopic state space for a system is d-dimensional
Euclidean space, which we coarse-grain into Nmacro effective
macroscopic states, each consisting of Nmicro microscopic
states. The interfaces between coarse-grained states have
dimension d − 1. When the system first enters one of these
coarse-grained states, it begins just inside an interface.
Therefore, the waiting time distribution ψ(t) in the coarse-
grained state is the first-passage time to return to that (d − 1)-
dimensional interface. This return process is effectively a
1D random walk, since only the direction normal to the
interface matters (at least within a neighborhood of the initial
state, assuming the interface is locally flat). Therefore, the

distribution of first-passage times to return to the interface
will be the same as for the 1D tooth in the comb (Eq. (65)):

ψ(t) ∼



t−3/2 for t < τNν
micro,

e−t/(τN
ν
micro) for t > τNν

micro,
(69)

where the crossover time between these regimes is the
characteristic time scale τNν

micro to explore the coarse-grained
state (Eq. (60); ν = 2 for d = 1, ν = 1 for d ≥ 2), and τ is a
microscopic time scale which is O(1) in Nmicro. The waiting
time moments are approximately

θ(n) ∼
 τNν

micro
dt t−3/2tn ∼ Nν(n−1/2)

micro . (70)

In particular, the CV is

θ(cv) =


θ
(2)
c

θ(1)
∼ Nν/4

micro =



N1/2
micro for d = 1,

N1/4
micro for d ≥ 2.

(71)

As with the 1D comb, the CV scales as a power of the
coarse-grained state size, but rather slowly.

We can now determine whether such waiting time
distributions will lead to different statistics of path lengths
and times in the coarse-grained model. Since the mean path
length in the coarse-grained model is ℓ̄ ∼ Nν

macro (assuming
the microscopic and coarse-grained spaces have the same
dimensionality), the condition (θ(cv))2 ≪ ℓ̄ (Eq. (29)) for
equivalent path length and time statistics becomes

Nmicro ≪ N2
macro. (72)

This is consistent with the condition found for the 1D comb
where Nmicro = Ltooth and Nmacro = Lbackbone. For the double-
well model, Nmicro ≈ 3200 (number of microscopic lattice
points in A or B) and Nmacro = 2; Eq. (72) does not hold in
this case, so we expect significant differences in the statistics
of path lengths (jumps between A and B) and path times in
the coarse-grained model. In general, Eq. (72) implies that the
more coarse-graining there is (resulting in fewer but larger
coarse-grained states), the more significant the memory effects
are on the effective CTRW.

D. Random barrier model (RBM)
and memory from spatial disorder

To further demonstrate the effects of a complex energy
landscape on path statistics, we consider the random barrier
model (RBM),3,30 a simple model of transport in disordered
systems. In this model, a particle diffuses across a lattice
with quenched energy barriers of random height between
neighboring points. Here we consider a 2D lattice with
energy barriers drawn from an exponential distribution
p(E) = E−1

0 e−E/E0, where E0 is the average energy.47 We
assume a Markov CTRW on this lattice with symmetric
transition rates between neighboring states that depend
exponentially on the intervening energy barrier:

⟨x ′, y ′|W|x, y⟩ = Γ0e−βE(x′, y′;x, y), (73)

where Γ0 is the rate of traversing a barrier of zero height
(maximum possible rate) and E(x ′, y ′; x, y) is the energy
barrier between (x ′, y ′) and (x, y). We use reflecting boundary
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conditions and set Γ0 = E0 = 1 without loss of generality, as
these two quantities set the overall time and energy scales.
From the rates in Eq. (73), we determine jump probabilities
and exponential waiting time moments using Eqs. (2) and (5).

Figure 5 shows a single (quenched) realization of the
RBM on a 10 × 10 lattice for different values of β. In each
panel, cells correspond to lattice points, while the gray-scale
bars between them indicate the height of the intervening
energy barriers (same in all panels). Due to the exponential
distribution of energies, most barriers are low (black), with
only a few relatively high barriers (white). We consider the
ensemble of first-passage paths on this landscape from (1,1)
(bottom-left corner) to (10,10) (top-right corner). First, we
determine path statistics for β = 0 (Fig. 5(a)), where all
transition rates are equal and the barriers have no effect
(Eq. (73)). The leftmost panel of Fig. 5(a) shows the mean
waiting time θ(1)(x, y) in each state. When all transition rates

are equal, θ(1)(x, y) depends only on the state’s connectivity:
the states in the bulk with more neighbors have shorter mean
waiting times than do the edge and especially the corner
states, which have fewer neighbors. The middle panel of
Fig. 5(a) shows the average number of visits v(x, y) to each
state during the first-passage process (Sec. III B). For β = 0,
the number of visits depends on both the distance to the final
state and the state’s connectivity: edge and corner states with
fewer neighbors are visited less often than are bulk states
the same distance from the final state. When we consider
the mean fraction of time spent in each state (the product of
θ(1)(x, y) and v(x, y), normalized by the total mean path time
t̄(1); rightmost panel of Fig. 5(a)), the connectivity-dependence
largely disappears, so that the fraction of time depends mostly
just on the distance to the final state.

For β > 0, the effects of the random energy barriers
emerge. In Figs. 5(b) and 5(c), we show path statistics for

FIG. 5. Spatial properties of first-passage paths in the random barrier model. For a 10×10 lattice, we show statistics of first-passage paths from (1,1) to (10,10)
for a single quenched realization of the energy barriers. Each colored cell corresponds to a lattice point (x, y), with gray-scale bars indicating energy barriers
between lattice points (higher energies are white, lower energies are black). Energy barriers are randomly sampled from an exponential distribution with mean
E0= 1, and the transition rate across a zero energy barrier is Γ0= 1. The leftmost column shows the mean waiting time θ(1)(x, y), the middle column is the
average number of visits v(x, y), and the rightmost column is the average fraction of time θ(1)(x, y)v(x, y)/t̄ (1) spent at each lattice point. Rows correspond to
different inverse temperatures: (a) β = 0, (b) β = 1, and (c) β = 5. Magenta points show the average particle position for every 100th jump (connected by straight
lines to guide the eye).
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β = 1 and β = 5. States with large barriers around them
acquire significantly longer mean waiting times, leading to
a very broad distribution of time scales; at β = 5 the mean
waiting times span three orders of magnitude (Fig. 5(c),
leftmost panel). However, states with extremely long mean
waiting times also tend to have many fewer visits on average
(Figs. 5(b) and 5(c), middle panels). This is because the high
energy barriers that make these states difficult to exit also
make them difficult to enter in the first place. In contrast with
β = 0, where v(x, y) was determined by both the distance to
the final state and the state’s local connectivity, for large β the
average number of visits becomes predominately determined
by the state’s local properties, i.e., its mean waiting time,
rather than its global position on the lattice. However, the
heterogeneity of θ(1)(x, y) and v(x, y) across the lattice nearly
vanishes when considering their product, the mean fraction of
time (Figs. 5(b) and 5(c), rightmost panels): as with β = 0,
the distance to the final state primarily determines the fraction
of time spent at a lattice point. Instead of varying smoothly
across states as for β = 0, though, at β = 5 the fraction of
time appears to have four distinct plateaus on the 2D lattice.
Within each plateau, the particle spends approximately the
same fraction of total time at each lattice point.

Figure 5 also shows the average of all first-passage paths
(magenta lines). We calculate the average path by defining
state functions for each spatial coordinate as Bx(x, y) = x
and By(x, y) = y and using Eq. (55) to determine the mean
positions B̄x(ℓ) and B̄y(ℓ) as functions of the intermediate
jump ℓ along a path. We plot these mean positions for every
100th jump in Fig. 5 to represent the average path of the
particle. For β = 0, the average path is necessarily symmetric

across the diagonal and asymptotically converges toward the
final state (Fig. 5(a)). For β > 0, the energy barriers slightly
distort the average path at the beginning, but as the path
approaches the final state, these asymmetries largely average
out (Figs. 5(b) and 5(c)).

We next consider the distributions of path length, time,
and action for the RBM. For β = 0, all of these distributions
are close to exponential in shape, as expected from previous
examples. For example, the length distribution has CV
ℓ̄(cv) ≈ 0.89, skewness ℓ̄

(3)
std ≈ 1.99, and kurtosis ℓ̄

(4)
std ≈ 8.95.

The moments for path time and action are also very close
to these values: indeed, Eqs. (26) and (30) imply that these
distributions should all be very similar since the network is
nearly homogeneous.

What happens to these distributions in the presence
of a complex energy landscape (β > 0)? Figure 6 shows
distributions of the first four moments over many quenched
realizations of the RBM at different β. For β = 1, both
the mean path length and time are mostly close to their
values at β = 0 (Fig. 6(a)), and their CVs and standardized
moments indicate that the distributions are still close to
exponential (Figs. 6(b)–6(d)). Larger β, however, leads to a
very wide range of possible length and time moments, which
can span several orders of magnitude across realizations.
The correlations between path lengths and times are also
significant. Mean lengths and times are mostly clustered
along the diagonal, indicating their proportionality for most
realizations, but there are some realizations with mean time
much larger than mean length (Fig. 6(a)). For CVs and
standardized moments, many realizations that deviate from
exponential distributions do so equally in both length and time,

FIG. 6. Distributions of path statistics in the random barrier model. For 1000 quenched realizations of the energy barriers on a 10×10 lattice, we show: (a) mean
path length ℓ̄(1) versus mean path time t̄ (1); (b) length CV ℓ̄(cv) versus time CV t̄ (cv); (c) length skewness ℓ̄(3)std versus time skewness t̄ (3)std; (d) length kurtosis ℓ̄(4)std

versus time kurtosis t̄ (4)std; (e) mean length ℓ̄(1) versus mean action s̄(1); (f) length CV ℓ̄(cv) versus action CV s̄(cv); (g) length skewness ℓ̄(3)std versus action skewness

s̄
(3)
std; and (h) length kurtosis ℓ̄(4)std versus action kurtosis s̄

(4)
std. Blue points are β = 1, red points are β = 3, and green points are β = 5; the horizontal and vertical

dashed magenta lines correspond to the values of the moments for β = 0. We also show a diagonal gray line with slope 1 to guide the eye.
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resulting in points along diagonal. However, there are also
many realizations with highly non-exponential distributions
of path times, even though the length distribution is close to
exponential (Figs. 6(b)–6(d)). In this case, the approximate
equivalence between path length and time in Eq. (26) breaks
down not because (θ(cv))2 ≫ ℓ̄—this is never true in our RBM
model since θ(cv)(x, y) = 1 for all (x, y) and ℓ̄ is always
large—but because of the spatial disorder. Equation (26) is
derived for a network with identical waiting time distributions
at all states, but the RBM has a very broad range of mean
waiting times for large β, as the example in Fig. 5(c) shows.
Thus, a rugged energy landscape even with Markovian waiting
times can lead to non-exponential path statistics, and hence the
appearance of memory; such non-exponential kinetics have
long been discussed in the context of glasses.21,22

Figures 6(e)–6(h) show similar distributions of moments
for path action (plotted against path length moments for
reference). Equation (30) shows that the moments of length
and action are proportional for networks with homogeneous
connectivity. While the 2D lattice in the RBM is not exactly
homogeneous due to boundary conditions, Fig. 6(e) shows
mean length and action to be very nearly proportional for
almost all realizations. Since mean action is equivalent to
path entropy, its wide range of possible values indicates that
first-passage in some realizations is dominated by a few
relatively high-probability paths, while in other realizations,
it is dominated by a large number of much lower-probability
paths. The higher moments of action in Figs. 6(f)–6(h) indicate
that usually action is nearly exponentially distributed even
for larger β. In particular, many of the realizations with
non-exponential length distributions still have exponentially
distributed actions. This suggests that the distribution of path
actions is much more weakly affected by the energy landscape
compared to path lengths and times.

V. DISCUSSION

We have studied CTRWs on networks using statistical
mechanics of the path ensemble. A particular convenience
of the path formalism lies in exploring the relationship
between the distributions of path lengths and path times,
which can be viewed as the relationship between the full
continuous-time process and its discrete-time projection.
Discrete-time models have generally dominated the theory
of random walks not only due to their simplicity but also
because we expect a continuous-time process on the same
network to be nearly equivalent under certain conditions.3,13

A well-known exception to this expectation is for waiting
time distributions ψ(t) without a characteristic time scale
(divergent mean), which can produce anomalous diffusion
even on regular lattices.3 Using our approach, we have
identified two more important exceptions. If all states have
identical waiting time distributions ψ(t), Eq. (26) shows that
continuous- and discrete-time dynamics will have different
statistics if (θ(cv))2 ≫ ⟨Ln⟩ / 
Ln−1� ∼ ℓ̄, where θ(cv) is the CV
of the waiting time distribution ψ(t) and ℓ̄ is the mean path
length. We should therefore expect significant differences
between continuous- and discrete-time dynamics to occur

when ψ(t) is much more broadly dispersed than an exponential
distribution (large θ(cv)) and for small state spaces, which
tend to produce small ℓ̄ (Eq. (60)). Furthermore, the 2D
double-well example suggests this condition is still valid
(Fig. 4(d)) even if the waiting time distributions and jump
probabilities vary across states, as long as they do not vary too
much. If they do, however, we find another exception to the
equivalence of continuous- and discrete-time dynamics: even
with exponential waiting times, spatial disorder can produce
very different distributions of path lengths and path times, as
illustrated in the random barrier model (Fig. 6).

Although we have focused primarily on moments of path
statistics in this work, ideally we would like to know the
entire distributions of these quantities. In principle, one can fit
a parameterized distribution to the moments. In most statistical
applications, this “method of moments” typically produces a
good approximation for well-behaved distributions, especially
using a very general parameterization such as the Pearson
distribution.43 For path distributions, a linear combination
of exponential functions may be a more appropriate choice.
Since path length, time, and action distributions are frequently
very similar and since our method explicitly calculates the
entire path length distribution already, fitting distributions
from moments would be most valuable in cases where the
continuous- and discrete-time processes are very different.

In any case, the moments of path statistics themselves are
valuable for quantifying deviations from a simple exponential
distribution. These deviations are important because they
represent a form of memory: the amount of time for a
process to occur depends on how much time has already
passed. We have emphasized how coarse-graining many
“microscopic” states of a system into a smaller number
of effective “macroscopic” states generally leads to non-
exponential ψ(t) in the coarse-grained states; we explicitly
demonstrated this by coarse-graining teeth in a 1D comb
(Fig. 3) and low-energy basins in a double-well potential
(Fig. 4). Furthermore, we have argued that ψ(t) in coarse-
grained states will frequently obey Eq. (69), with a power-law
regime for short times and an exponential regime for long
times. Physically, this distribution arises because the system
always starts just inside the boundary of a coarse-grained state;
therefore, it can either quickly recross the boundary, leading to
the power-law regime, or explore the rest of the coarse-grained
state, leading to the exponential regime. Compared to a simple
exponential distribution, this hybrid distribution is enriched
by the power law at short times, meaning that very short
waiting times are much more likely than would be expected
if the system started in the middle of the coarse-grained state
rather than near the boundary. However, if the system does not
quickly exit, it is likely to wait much longer as it explores the
rest of the coarse-grained state. This effective ψ(t) is typically
much broader than an exponential distribution, indicated by
its larger CV (Eq. (71)); linking this with our condition
on path length and time statistics (θ(cv))2 ≪ ℓ̄, we obtain a
condition that shows how much coarse-graining is necessary
to see significant memory effects in the statistics of path times
(Eq. (72)).

Representing complex state spaces by simpler, coarse-
grained representations has long been an implicit element of
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stochastic models. In recent years, it has been explored in
Markov models of molecular systems such as proteins.1,2,16

Non-exponential effects may be important in these systems,
especially if the coarse-grained networks are not very large.
Indeed, non-exponential distributions of transition times have
previously been found for both protein folding17 and enzyme
kinetics;19 Reuveni et al.20 showed that these memory effects
could lead to qualitatively different properties of enzyme
unbinding within the Michaelis-Menten framework. Our
observations underscore the importance of going beyond
characterizing such processes by single rates, which implicitly
assumes an exponential distribution of times.

Besides waiting memory in the form of non-exponential
time distributions, an additional form of memory induced by
coarse-graining is in the jump process. For example, consider
a triple-well potential coarse-grained into states A, B, and C.
When the system crosses the barrier from A into B, it is much
more likely to jump back into A rather than jump to C, since
it begins much closer to A in the microscopic space. We can
account for this in our framework by extending the state space
to include not only the current state of the system (e.g., A,
B, or C) but also the previous state; the jump process in
this extended state space is once again Markovian (although
the waiting time distributions remain non-exponential). We
also note that this coarse-graining may require non-separable
waiting time distributions ψ(t |σ → σ′), since the distribution
of times to return to A from B may be quite different from the
distribution to reach C. Our framework can readily address this
generalization (Appendix E). We look forward to studying the
combined roles of jump and waiting memory in coarse-grained
molecular models.
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APPENDIX A: ASYMPTOTIC FORM OF THE PATH
LENGTH DISTRIBUTION

The path length distribution ρ(ℓ) is formally given by
Eq. (12), which involves the sum of path probabilities P[ϕ]
for all paths ϕ of length ℓ. More explicitly, we can write ρ(ℓ)
using matrix elements of powers of the jump matrix Q and
summing over all final states,

ρ(ℓ) =


σ∈Sfinal

⟨σ |Qℓ|π0⟩, (A1)

where |π0⟩ = 
σ π0(σ)|σ⟩ is the vector of initial state

probabilities. We can decompose Q into its Jordan form

Q = P(D + N)P−1, (A2)

where D is a diagonal matrix with the eigenvalues of Q, N is
a nilpotent matrix, and P is an invertible matrix.48 Powers of

Q are therefore

Qℓ = P(D + N)ℓP−1

=

ℓ
ℓ′=0

(
ℓ

ℓ′

)
PDℓ′Nℓ−ℓ′P−1. (A3)

If Q is exactly diagonalizable, then N = 0, and so for large
ℓ, the leading order term in Eq. (A1) is proportional to
qℓ = eℓ log q, where q < 1 is the largest eigenvalue of Q. If Q is
not diagonalizable, the leading term will still be proportional
to eℓ log q, but may also include a polynomial factor in ℓ
due to the binomial coefficient in Eq. (A3). However, the
polynomial factor only contributes logarithmically to the
exponent, i.e., ℓkeℓ log q = eℓ log q+k log ℓ, and thus we can neglect
it for large ℓ. Therefore, in general we have ρ(ℓ) ∼ eℓ log q for
large ℓ, and since this suggests that the mean path length must
be ℓ̄ ∼ −1/ log q, we obtain Eq. (13).

APPENDIX B: EXACT RELATIONS BETWEEN
PATH LENGTH AND TIME MOMENTS USING
GENERATING FUNCTIONS

Here we derive exact relations between path length
and time moments when all states have identical waiting
time distributions: ψ(t |σ) = ψ(t). We define the moment-
generating function for the path length distribution

ρ̃(s) =
∞
ℓ=0

ρ(ℓ) esℓ, (B1)

so that the moments are

⟨Ln⟩ = ρ̃(n)(0), (B2)

where the superscript denotes the derivative:

ρ̃(n)(0) = dn

dsn
ρ̃(s)

�����s=0
. (B3)

The cumulant-generating function is therefore ρ̃c(s)
= log ρ̃(s) with

⟨Ln⟩c = ρ̃
(n)
c (0). (B4)

We similarly define the moment- and cumulant-generating
functions for the waiting times:

ψ̃(s) =
 ∞

0
dt ψ(t) est, θ(n) = ψ̃(n)(0),

ψ̃c(s) = log ψ̃(s), θ
(n)
c = ψ̃

(n)
c (0).

(B5)

When the waiting time distributions are ψ(t) for every
state, the path time distribution is (Eqs. (7) and (14))

f (t) =
∞
ℓ=0

ρ(ℓ)
 ∞

0
dt0 ψ(t0)

 ∞

0
dt1 ψ(t1) · · ·

×
 ∞

0
dtℓ−1 ψ(tℓ−1) δ *

,
t −

ℓ−1
i=0

ti+
-
. (B6)
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Therefore, the moment-generating function for path time is

f̃ (s) =
 ∞

0
dt f (t) est

=

∞
ℓ=0

ρ(ℓ)(ψ̃(s))ℓ

=

∞
ℓ=0

ρ(ℓ)eℓ log ψ̃(s)

= ρ̃
�
ψ̃c(s)� , (B7)

while the cumulant-generating function for path time is

f̃c(s) = log f̃ (s)
= log ρ̃

�
ψ̃c(s)�

= ρ̃c
�
ψ̃c(s)� . (B8)

We can obtain moments and cumulants of path time by taking
derivatives of its generating functions:

T (n) = f̃ (n)(0), 
T (n)

c
= f̃ (n)c (0). (B9)

To express these in terms of the length and waiting time
moments, we use Faà di Bruno’s formula for derivatives of
composite functions:37

dn

dsn
g(h(s)) =

n
k=1

g(k)(h(s))Bn,k(h(1)(s),h(2)(s), . . . ,

h(n−k+1)(s)), (B10)

where Bn,k are the partial Bell polynomials and superscripts
again denote derivatives. Thus, the path time moments are

T (n) = f̃ (n)(0)

=
dn

dsn
ρ̃
�
ψ̃c(s)�

�����s=0

=

n
k=1

ρ̃(k)(ψ̃c(0))

× Bn,k

(
ψ̃
(1)
c (0), ψ̃(2)

c (0), . . . , ψ̃(n−k+1)
c (0))

=

n
k=1

⟨Ln⟩ Bn,k

(
θ
(1)
c , θ

(2)
c , . . . , θ

(n−k+1)
c

)
. (B11)

This proves Eq. (24). We can similarly obtain the path time
cumulants:
T (n)

c
= f̃ (n)c (0)

=
dn

dsn
ρ̃c
�
ψ̃c(s)�

�����s=0

=

n
k=1

ρ̃
(k)
c (ψ̃c(0))

× Bn,k

(
ψ̃
(1)
c (0), ψ̃(2)

c (0), . . . , ψ̃(n−k+1)
c (0))

=

n
k=1

⟨Ln⟩cBn,k

(
θ
(1)
c , θ

(2)
c , . . . , θ

(n−k+1)
c

)
. (B12)

APPENDIX C: APPROXIMATE RELATIONS
BETWEEN PATH LENGTH AND TIME MOMENTS
USING THE CENTRAL LIMIT THEOREM

Here we use the central limit theorem to obtain
approximate relations between path length and time moments
when all states have identical waiting time distributions:
ψ(t |σ) = ψ(t). Equation (B6) gives the general relation
between the length and time distributions in this case, where
the nested integrals represent the probability distribution of
the sum of the waiting times. For sufficiently long paths, this
distribution will be approximately Gaussian

1
2πℓθ(2)c

exp
*..
,
−

(
t − ℓθ(1)c

)2

2ℓθ(2)c

+//
-
, (C1)

and hence,

f (t) ≈
∞
ℓ=0

ρ(ℓ) 1
2πℓθ(2)c

exp
*..
,
−

(
t − ℓθ(1)c

)2

2ℓθ(2)c

+//
-
. (C2)

From this, we can obtain approximate relations between the
moments. For example, the first two path time moments are


T (1) ≈ θ(1)c ⟨L⟩ ,
T (2) ≈ (θ(1)c )2 
L2� + θ(2)c ⟨L⟩ , (C3)

which are in fact identical to the exact result (Eqs. (24) and
(25)) as expected.

APPENDIX D: PATH LENGTHS AND TIMES
WITH HOMOGENEOUS EXPONENTIAL
WAITING TIME DISTRIBUTIONS

When every state has the same exponential waiting time
distribution ψ(t) = θ−1e−t/θ, the sum of the ℓ waiting times
has an Erlang distribution,

 ∞

0
dt0

1
θ

e−t0/θ
 ∞

0
dt1

1
θ

e−t1/θ · · ·

×
 ∞

0
dtℓ−1

1
θ

e−tℓ−1/θ δ *
,
t −

ℓ−1
i=0

ti+
-

=
(t/θ)ℓ−1

(ℓ − 1)!θ e−t/θ. (D1)

Thus, the total path time distribution is (using Eq. (B6))

f (t) = 1
θ

e−t/θ
∞
ℓ=0

ρ(ℓ) (t/θ)
ℓ−1

(ℓ − 1)! . (D2)

In this case, we can determine the complete distribution of
times f (t) given the complete distribution of lengths ρ(ℓ). We
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can directly calculate the path time moments to be


T (n) =  ∞

0
dt f (t) tn

=

∞
ℓ=0

ρ(ℓ)
 ∞

0
dt

(t/θ)ℓ−1

θ(ℓ − 1)! e−t/θtn

=

∞
ℓ=0

ρ(ℓ)θn (n + ℓ − 1)!
(ℓ − 1)!

= θn ⟨L(L + 1) · · · (L + n − 1)⟩

= θn
n

k=1



Lk

� |sn,k |, (D3)

where |sn,k | are the unsigned Stirling numbers of the first
kind.37 The first few moments are


T (1) = θ ⟨L⟩ ,
T (2) = θ2 �
L2� + ⟨L⟩� ,
T (3) = θ3 �
L3� + 3



L2� + 2 ⟨L⟩� .

(D4)

This is consistent with the general result in Eq. (24)
since θ

( j)
c = ( j − 1)! θ j for an exponential distribution and

Bn,k(0!,1!, . . . , (n − k)!) = |sn,k |.37

APPENDIX E: PROOF OF RECURSION RELATIONS
FOR MOMENT MATRICES

We now show that the T(n)
ℓ matrices generated by the

recursion relation of Eq. (34) indeed calculate the path time
moments according to Eq. (33). We first successively apply
the recursion relation to expand the ℓth-order matrix in terms
of lower-order matrices:

T(n)
ℓ = Q

n
jℓ−1=0

(
n

jℓ−1

)
Θ( jℓ−1)T(n− jℓ−1)

ℓ−1

= Q
n

jℓ−1=0

(
n

jℓ−1

)
Θ( jℓ−1)Q

n− jℓ−1
jℓ−2=0

(
n − jℓ−1

jℓ−2

)
Θ( jℓ−2)T(n− jℓ−1− jℓ−2)

ℓ−2

...

=

n
jℓ−1=0

n− jℓ−1
jℓ−2=0

· · ·
n− jℓ−1− jℓ−2−···− j1

j0=0

(
n

jℓ−1

) (
n − jℓ−1

jℓ−2

)
· · ·

(
n − jℓ−1 − jℓ−2 · · · − j1

j0

)
×QΘ( jℓ−1)QΘ( jℓ−2) · · ·QΘ( j0)T(n− jℓ−1− jℓ−2−···− j0)

0

=


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
QΘ( jℓ−1)QΘ( jℓ−2) · · ·QΘ( j0), (E1)

where we have invoked the initial condition T(n− jℓ−1− jℓ−2−···− j0)
0 = δ0,n− jℓ−1− jℓ−2−···− j01 from Eq. (31) to obtain the multinomial

sum (recall that each summation in the multinomial sum is from 0 to n subject to the constraint j0 + j1 + · · · + jℓ−1 = n). Now
we take the matrix element of T(n)

ℓ for the initial distribution |π0⟩ = 
σ π0(σ)|σ⟩ and σℓ ∈ Sfinal and insert identities of the form

σ |σ⟩⟨σ | to obtain

⟨σℓ|T(ℓ)
n |π0⟩ =


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
×


σ0,σ1, ...,σℓ−1

⟨σℓ|QΘ( jℓ−1)|σℓ−1⟩⟨σℓ−1|QΘ( jℓ−2)|σℓ−2⟩ · · · ⟨σ1|QΘ( j0)|σ0⟩π0(σ0)

=


σ0,σ1, ...,σℓ−1

⟨σℓ|Q|σℓ−1⟩⟨σℓ−1|Q|σℓ−2⟩ · · · ⟨σ1|Q|σ0⟩π0(σ0)

×


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
θ( j0)(σ0)θ( j1)(σ1) · · · θ( jℓ−1)(σℓ−1). (E2)

Next, we sum over final states σℓ and path lengths ℓ to obtain

∞
ℓ=0


σℓ∈Sfinal

⟨σ |T(n)
ℓ |π0⟩ =

∞
ℓ=0


σℓ∈Sfinal


σ0,σ1, ...,σℓ−1

⟨σℓ|Q|σℓ−1⟩⟨σℓ−1|Q|σℓ−2⟩ · · · ⟨σ1|Q|σ0⟩π0(σ0)

×


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
θ( j0)(σ0)θ( j1)(σ1) · · · θ( jℓ−1)(σℓ−1). (E3)
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Substituting P[ϕ] (Eq. (8)), the time moment functional
T (n)[ϕ] (Eq. (16)), and the sum over paths

ϕ

=

∞
ℓ=0


σℓ∈Sfinal


σ0,σ1, ...,σℓ−1

(E4)

into Eq. (E3), we finally obtain Eq. (33):
∞
ℓ=0


σℓ∈Sfinal

⟨σ |T(n)
ℓ |π0⟩ =


ϕ

P[ϕ]T (n)[ϕ]

=

T (n) . (E5)

We now show that the recursion relation of Eq. (40) is
correct for any functional of the form in Eq. (22); this will
prove the action recursion relation (Eq. (37)) as a special case.
As in Eq. (E1), successive applications of the U(n)

ℓ recursion
relation yield

U(n)
ℓ =


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
Ω( jℓ−1)Ω( jℓ−2) · · ·Ω( j0).

(E6)

After inserting identities and using the definition ⟨σ′|Ω( j)|σ⟩
= ⟨σ′|Q|σ⟩(U(σ′,σ)) j, we obtain

⟨σℓ|U(ℓ)
n |π0⟩ =


σ0,σ1, ...,σℓ−1

⟨σℓ|Q|σℓ−1⟩⟨σℓ−1|Q|σℓ−2⟩ · · · ⟨σ1|Q|σ0⟩π0(σ0)

×


j0, j1, ..., jℓ−1

(
n

j0, j1, . . . , jℓ−1

)
(U(σℓ,σℓ−1)) jℓ−1(U(σℓ−1,σℓ−2)) jℓ−2 · · · (U(σ1,σ0)) j0. (E7)

Just as in Eqs. (E3) and (E5) for time moments, we can
then sum over final states and path lengths to show that
the U(n)

ℓ matrices are related to the path ensemble averages
via Eq. (39). Finally, we explain how to use the generalized
recursion relation in Eq. (40) to calculate path time moments
when the waiting time distributions are non-separable. In
this case, we define ⟨σ′|Ω( j)|σ⟩ = ⟨σ′|Q|σ⟩θ( j)(σ → σ′),
where θ( j)(σ → σ′) is the jth moment of the non-separable
waiting time distribution ψ(t |σ → σ′). We can then use the
recursion relation of Eq. (40) to calculate the time moments
U(n)
ℓ = T(n)

ℓ .
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