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Abstract

Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area 

(VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is 

in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons 

are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. 

How can these divergent processes both be mediated by VTA dopamine neurons? The answer 

may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA 

heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. 

Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and 

repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, 

the neural mechanisms driving the activation, and where these neurons project will provide 

valuable insight into how stress can promote psychiatric disorders associated with the dopamine 

system, such as addiction and depression.
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Introduction

Both aversive and rewarding stimuli rapidly and potently excite dopamine neurons in the 

ventral tegmental area (VTA). Furthermore, these seemingly opposite experiences interact 

with each other at both a neural and behavioral level. A history of exposure to aversive 

stimuli is strongly associated with later addictive behavior, with both clinical and preclinical 

work demonstrating that stress plays a powerful role in the initiation, escalation, and relapse 

to drug abuse (Shaham et al. 2000; Sinha 2007, 2009). However, the converse is also true—

a history of cocaine self-administration results in greater susceptibility to chronic social 

defeat stress in mice (Covington et al. 2011).
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As aversion/stress and reward are interacting at a behavioral level, it is logical that they 

interact at a basic neural level as well. Indeed, it appears that intersecting as opposed to 

parallel neural circuitry may be driving these two distinct experiences of aversion and 

reward, both mediated by the mesocorticolimbic dopamine system. Classic evidence has 

established a clear function of mesocorticolimbic dopamine in rewarding and reinforcing 

processes, and a key role of mesocorticolimbic dopamine in the response to acute and 

repeated stress is becoming increasingly apparent.

Unfortunately, with this rapidly growing body of research on the role of dopamine in the 

effects of stressful and aversive stimuli, the nature, schedule, and intensity of stressors are 

often overlooked. This may stem from a lack of consensus on the definition of stress. When 

Selye popularized the term “stress” as a biomedical construct in 1936, he proposed that 

stress was any demand on the body that resulted in adaptation but that all stressors resulted 

in identical non-specific physiological responses (Selye 1936). However, over the last 80 

years, it has become quite evident that while there may be some non-specific responses, 

different stressors/aversive stimuli can result in distinct, specific responses. Mason (1971) 

first questioned Selye's hypothesis of non-specific responses, noting that stressors could 

increase, decrease, or not change hypothalamic–pituitary–adrenal (HPA) axis activity. 

Chrousos and Gold (1992) expanded upon this, defining stress as a state that resulted from a 

threat to homeostasis, yielding behavioral and physiological adaptations that could be 

specific to the stressor or non-specific when the threat to homeostasis reaches a homeostatic 

threshold. McEwen (1998) applied the concept of allostasis as an active adaptive process to 

maintain stability through change. For the purposes of this review, we choose to define 

stress as a threat to homeostasis caused by an aversive event (stressor), either physical or 

perceived, which results in specific allostatic compensatory responses (Pacak and Palkovits 

2001).

Prior work from our and other laboratories has unambiguously demonstrated that different 

schedules, intensities, or modalities of stressor presentation can result in dramatically 

different behavioral and physiological responses. For example, intermittent/episodic and 

chronic social defeat engenders opposite effects on subsequent cocaine-stimulated dopamine 

increases in the nucleus accumbens shell (NAcSh) as well as cocaine self-administration 

(Miczek et al. 2011). But, how does stressor specificity interact with later reward-related 

behaviors? And, how is mesocorticolimbic dopamine poised to play a key interactive role 

between the seemingly opposite experiences of reward and aversion?

We begin by briefly reviewing the structure, connectivity, and function of VTA dopamine 

neurons, followed by evidence for VTA dopamine neuron activation and adaptation in 

response to both acute and repeated stress, with careful attention paid to the nature, 

schedule, and intensity of the stressor. The structure, connectivity, and function of VTA 

dopamine neurons with specific regard to reward-related behaviors have been thoroughly 

reviewed previously (Ikemoto 2007), so that will be summarized here only briefly. 

Ultimately, we propose that VTA dopamine neurons rapidly fire in response to both reward 

and aversion, and certain intensities and schedules of stress can induce neuroadaptations 

within these neurons to result in intensified responses to later aversive and rewarding 

stimulation.
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Heterogeneity in structure and function of VTA dopamine neurons

Prior to the advancement of current labeling techniques, the VTA was not considered a 

separate structure from the cell bodies of the substantia nigra (SN). The first anatomical 

description of the VTA was made with Golgi and Nissl preparations by Tsai (1925a, b), who 

concluded that the cell-free space overlying the sulcus, along with smaller cell size and close 

relationship to the tracti mammillo- and olfacto-tegmentalis, warranted a separation from the 

SN. Later anatomical investigations validated Tsai's initial hypothesis that this area contains 

a discrete population of dopaminergic cells serving a distinct function from SN 

dopaminergic neurons, leading other researchers to initially term the region the ventral 

tegmental area of Tsai.

Dopamine cells have been isolated in many animals, including fish (Lefranc et al. 1969), 

birds (Fuxe and Ljunggren 1965), rats (Carlsson et al. 1965), and other mammals (Fuxe and 

Owman 1965), but the VTA as a structure appears to be evolutionarily conserved only in 

higher-order vertebrates. Lower vertebrates do not show a defined VTA, with the 

“peripeduncular area” containing both dopamine and serotonin cells (Dube and Parent 

1982), and broader development of the VTA observed in only a few teleosts and reptiles 

(Oades and Halliday 1987). However, there is a high degree of similarity between the VTA 

of mammals, including opossum (Crutcher and Humbertson 1978), rat (Lindvall and 

Bjorklund 1974; Phillipson 1979a, b, c), rabbit (Blessing et al. 1978), dog (Shimada et al. 

1976), cat (Pin et al. 1968; Poitras and Parent 1978; Taber 1961), non-human primate 

(Felten et al. 1974; Garver and Sladek 1975; Hubbard and Di Carlo 1974; Jacobowitz and 

MacLean 1978; Tanaka et al. 1982), and human (Bogerts 1981; Bogerts et al. 1983; Nobin 

and Bjorklund 1973; Olson et al. 1973). Further, the number of VTA dopamine neurons 

increases with phylogenetic order, such that Balb/C mice have an estimated 25,000 

dopamine neurons, albino rats 40,000, and a 33-year-old man 450,000 (German et al. 1983).

Regardless of homology between higher-order species, researchers have struggled to clearly 

define the boundaries and function of the VTA. As reviewed below, the VTA is a 

heterogeneous structure in regards to cytoarchitecture, neuro-chemical, and 

electrophysiological profiles, and afferent/efferent connections, so it is not surprising that 

there is evidence that VTA dopamine neurons may serve multiple functions, such as reward 

and aversion.

Heterogeneity in dopaminergic cytoarchitecture

The VTA is characterized by considerable heterogeneity in dopaminergic cytoarchitecture. 

In mammalian species, the VTA is comprised of four major zones or subnuclei (Fig. 1). The 

rostrally located parafasciculus retroflexus area (PFR) and caudally located ventral 

tegmental tail (VTT) contain few dopaminergic cell bodies, while the paranigral nucleus 

(PN) and parabrachial pigmented area (PBP) are rich in dopaminergic neurons. Additionally, 

the adjacent midline nuclei—the caudal linear nucleus (CLi), interfasicular nucleus (IF), and 

rostral linear nucleus of the raphe (RLi)—are often considered VTA subregions (Oades and 

Halliday 1987; Swanson 1982). However, even within these subregions, dopaminergic cell 

body characteristics are still not homogeneous (for thorough review, see Ikemoto 2007).
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As described in detail by Ikemoto (2007), the PFR, restricted to the anterior portion of the 

VTA, contains a low density of small- to medium-sized dopaminergic cell bodies, which 

show light to moderate immunoreactivity for tyrosine hydroxylase (TH, the rate-limiting 

enzyme in dopamine biosynthesis, used as a marker of dopaminergic cells) and are 

continuous with dopaminergic cell bodies in the posterior hypothalamic area. The VTT also 

has a low density of dopaminergic cell bodies, which are small and moderately stained for 

TH. The densest TH-positive staining is found in the middle two thirds of the VTA, divided 

into the PN and PBP (some have characterized an additional subregion separating the PN 

and PBP, the paraintrafasicular nucleus, PIF). The PBP begins to emerge in the anterior 

VTA but spans the majority of the posterior VTA. The PBP is heterogeneous in terms of 

cytoarchitecture, leading to inconsistently defined borders in the rat and mouse. The PBP 

contains both large and medium cell bodies, with no unified orientation. Within the anterior 

VTA, the PBP contains large, intensely stained cell bodies, which are continuous with the 

anterior SN pars compacta. In the posterior VTA, the PBP is located dorsolateral to the PN 

and contains cell bodies and fibers that form a net-like structure. The PN is restricted to the 

posterior VTA and contains TH-positive cell bodies oriented mediolaterally, tilting toward 

the IF, that are relatively medium in size and medium to darkly stained. The midline nuclei, 

which are often considered part of the VTA, are also rich in TH-positive cell bodies. Most 

notably, the IF contains the densest population of dopaminergic cell bodies in the ventral 

midbrain. The CLi also contains a dense population of relatively homogenous dopaminergic 

cell bodies, which are medium in size and medium-dark in TH staining.

It is clear from this and other existing immunohistochemical data that a great deal of 

cytoarchitectonic heterogeneity exists not only within the VTA but also within specific 

subregions of the VTA. Not only has this led to a difficulty in establishing clear boundaries 

of the VTA and its subregions, but this heterogeneity in structure points to further 

heterogeneity in neurochemical and electrophysiological profiles, as well as overall 

function.

Heterogeneity in neurochemical profile

VTA neurons also differ in their neurotransmitter profile. VTA neurons have typically been 

classified as principal (primarily dopaminergic), secondary (GABAergic), or tertiary (other) 

on the basis of immunohistochemistry for TH, as well as electrophysiological and 

pharmacological properties (Cameron et al. 1997; Grace and Onn 1989; Johnson and North 

1992). Tertiary neurons are hyperpolarized by opioids and serotonin, and while one third of 

these have been identified as atypical-dopaminergic, the neurochemical profile of the 

remaining two thirds has yet to be clearly characterized (Cameron et al. 1997; Lammel et al. 

2014). Altogether, the VTA is comprised of approximately 65 % dopaminergic neurons, 35 

% GABAergic neurons, and less than 3 % glutamatergic neurons (Nair-Roberts et al. 2008; 

Sesack and Grace 2010). However, it should be noted that VTA dopamine neurons 

projecting to the NAc can also co-release glutamate (Hnasko et al. 2012; Stuber et al. 2010), 

further highlighting the neurochemical heterogeneity within the region.
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Heterogeneity in electrophysiological profile

Despite this immense anatomical and neurochemical heterogeneity in the VTA, it has until 

recently been common practice of most in vivo electrophysiological studies to consider 

VTA dopamine neurons as a single homogenous population (reviewed in Lammel et al. 

2014; Ungless and Grace 2012). As in vivo electrophysiological measurements do not allow 

for direct confirmation of the neurochemical identity of the neurons being recorded, neurons 

are putatively characterized based on standard classification criteria: broad action potentials, 

low-frequency pacemaker activity, D2-agonist-induced hyperpolarization, and/or the 

presence of large Ih currents generated by hyperpolarization-activated cyclic nucleotide–

regulated cation channels, or HCN channels (Kitai et al. 1999; Ungless and Grace 2012).

However, it has been established that these conventional criteria are not necessarily reliable 

(as reviewed extensively in Ungless and Grace 2012). Briefly, the presence of large Ih 

currents within the VTA can be observed in non-dopaminergic neurons (Margolis et al. 

2006; Margolis et al. 2008; Zhang et al. 2010). Furthermore, some verified VTA dopamine 

neurons are not responsive to dopamine bath application (Bannon and Roth 1983; Lammel 

et al. 2008) and others have very small or negligible Ih currents (Brischoux et al. 2009; Ford 

et al. 2006; Hnasko et al. 2012; Jones and Kauer 1999; Lammel et al. 2008; Lammel et al. 

2011; Margolis et al. 2006; Zhang et al. 2010). As such, it appears that VTA dopamine 

neuron heterogeneity extends to electrophysiological profiles as well. Unfortunately, this 

electrophysiological heterogeneity has resulted in some populations of dopamine neurons 

going unstudied in many prior reports, confounding previous conclusions drawn about VTA 

dopamine neuron function.

Not surprisingly, it appears that these electrophysiologically distinct dopamine neurons are 

located within discrete anatomical subregions of the VTA. Most in vivo electrophysiological 

studies have used these conventional classification methods described above to identify 

putative dopamine neurons, and as such have primarily focused on dorsal portions of the 

VTA, specifically within a region medial to the medial terminal nucleus of the accessory 

optical tract (Lammel et al. 2014; Ungless et al. 2010; Zhang et al. 2010), where putative 

dopamine neurons fit these conventional criteria. Thus, the studies focusing on the function 

of these specific, “conventional” dopamine neurons in this small portion of the VTA may 

not be applicable to “non-conventional” dopamine neurons in other subregions of the VTA. 

These other regions of the VTA, such as the ventromedial posterior VTA consisting of the 

PN and PBP, have been largely ignored as many of the dopaminergic neurons in this area do 

not conform to established conventional criteria such as large Ih (Lammel et al. 2008). 

Therefore, it has been proposed that while the correlation between Ih and dopamine 

phenotype may be high in the commonly targeted dorsolateral region of the VTA 

(specifically the anterior PBP), other subregions such as the PN and posterior PBP, which 

have been largely ignored, contain dopamine neurons with a distinct electrophysiological 

profile. Electrophysiological characterization of dopaminergic neurons within these other 

anatomical subregions of the VTA should be elucidated in future work, as these areas have 

been implicated in vastly different behavioral functions (discussed in section Heterogeneity 

in VTA dopamine neuron function).
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Heterogeneity in efferent connections

VTA connectivity is also critical because recent anatomical studies demonstrate localized 

projection targets of VTA sub-regions, which in turn have important behavioral and 

functional implications. VTA dopamine neurons project throughout the brain in a non-

overlapping mediolateral topography at an approximate 45° angle to the midline (Albanese 

and Minciacchi 1983; Fallon 1981; Ikemoto 2007). While few have closely examined the 

heterogeneity in efferent and afferent connections within VTA subregions, the most 

intensively mapped connections have been between the VTA subregions and the striatum. 

Ikemoto (2007) demonstrated that dopamine-rich cell bodies in the ventromedially located 

PN and dorsoposteromedial portions of the PBP selectively project to the medial nucleus 

accumbens (NAc) shell, medial prefrontal cortex (mPFC), and medial olfactory tubercle 

(OT, Fig. 2) regions heavily implicated in reward and reward processing (although these 

regions certainly mediate other functions as well). Along the mediolateral projection 

topography, lateral PBP dopamine neurons send dense projections to the ventrolateral 

striatum, which has been less heavily implicated in reward-related functions (Ikemoto 2007). 

The PFR and VTT do not contain dense dopamine cell bodies, but the sparse dopamine cell 

bodies of the PFR selectively project to the diagonal band. Projection targets of the midline 

nuclei are also distinct, with dopamine neurons in the IF projecting selectively to the 

dorsomedial NAc shell, and RLi to the diagonal band and pallidal zone of the OT (Ikemoto 

2007). Future work needs to evaluate VTA heterogeneity in other dopamine projection sites, 

such as the mPFC and BLA.

Heterogeneity in afferent connections

There may also be subregional differences in afferent connectivity to the VTA, although this 

has not yet been thoroughly investigated. VTA dopamine neurons receive innervation from 

widespread regions throughout the brain. The direct monosynaptic inputs to midbrain 

dopamine neurons have been thoroughly mapped recently (Watabe-Uchida et al. 2012). 

Notably, VTA dopaminergic neurons receive the most innervation from the ventral striatum, 

particularly the NAc, while the densest innervation originates from the dorsal raphe nucleus 

(DRN). NAc cells projecting to VTA dopamine neurons form extremely dense patches 

within the NAc. Moreover, these projection cells are morphologically distinct from NAc 

GABAergic medium spiny neurons, indicating distinct heterogeneity in the ventral striatum. 

Future circuit tracing experiments should investigate whether this afferent heterogeneity 

extends to the VTA.

Heterogeneity in VTA dopamine neuron function

The aforementioned heterogeneity in anatomy, neurochemistry, electrophysiological profile, 

and connectivity points to diversity in the overall behavioral functions VTA dopamine 

neurons mediate. As many of the dopamine projection targets of the VTA have been heavily 

implicated in reward, there has been considerable attention paid to VTA dopamine neurons 

in these processes. Both natural rewards (Berridge 1996) and drugs of abuse (Di Chiara and 

Imperato 1988) stimulate release of dopamine from VTA neurons projecting to the NAc, 

leading to a well-accepted hypothesis that this connection at least partially drives reward-

related functions.
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However, recent evidence has also shown heterogeneity within these projection targets in 

terms of reward-related function. Cocaine infused directly into the medial NAcSh produces 

significantly greater changes in locomotion compared to cocaine infused directly into the 

lateral NAcSh (Ikemoto 2002, 2007). Rats will selectively self-administer cocaine and 

amphetamine into the medial but not lateral NAcSh (Ikemoto 2002; Ikemoto and Donahue 

2005), with similar differences observed between the medial and lateral OT (Ikemoto 2002; 

Ikemoto and Donahue 2005). Therefore, it is not surprising that the posteromedial VTA, 

centered around the PN and posteromedial PBP and projecting to the medial NAcSh and 

OT, has been shown to also play a stronger role in reward processes than the anterior and 

lateral portions of the VTA (Rodd-Henricks et al. 2002; Sellings and Clarke 2003; Sellings 

et al. 2006). Specifically, cocaine, nicotine, opiates, ethanol, and cannabinoids are all 

selectively self-administered into the posterior but not anterior VTA (Ikemoto et al. 2006; 

Ikemoto and Wise 2002; Rodd et al. 2005; Rodd-Henricks et al. 2000; Zangen et al. 2006).

This mesocorticolimbic dopamine circuitry stemming from the VTA and projecting to the 

ventral striatum and medial prefrontal cortex thus plays a fundamental role in reward. This is 

paralleled by subsequent reports that rewards, as well as their predictive cues, can elicit 

strong phasic firing within the dopamine cell bodies of the VTA (Schultz 1997, 1998). 

These pioneering findings have led to a prominent hypothesis that this system primarily 

serves to mediate reward, hedonia, and related energizing processes (but see Salamone and 

Correa 2012). Given this overwhelming evidence, it was initially surprising and 

controversial to many researchers that VTA dopamine could be involved in stress and other 

aversive events (Thierry et al. 1976), which will be the focus of the remainder of this review.

Effects of acute stress on VTA dopamine neuron activity

Electrophysiological studies have shown that aversive stimuli inhibit putative VTA 

dopamine neuron firing (e.g., Mantz et al. 1989; Mirenowicz and Schultz 1996; Schultz and 

Romo 1987; Ungless et al. 2004). However, microdialysis studies examining extracellular 

dopamine and its metabolites collected over minutes and hours have found a robust 

dopaminergic increase during stress in VTA projection targets. Various stressors such as 

restraint, footshock, tail pinch/shock, social threat, and others potently increase extracellular 

dopamine in the NAc and mPFC (section Microdialysis evidence; see Tables 1, 2, 3, 4, 5, 6, 

7, 8, and 9 and Fig. 3). Across these studies, the nature and degree of the dopaminergic 

increase vary according to stressor and intensity. Recent electrophysiological studies have 

also found a discrete subset of VTA dopamine neurons that increase firing in response to 

aversive stimulation, corroborating the observed microdialysis results (section 

Electrophysiological evidence). Additional studies have found long-lasting neuroadaptive 

changes on VTA dopamine neurons after a single stress exposure, highlighting that acute 

stress can alter VTA dopamine neuron responsivity to future stimulation, whether by 

additional stressors or rewards (section Evidence for neuroadaptations on VTA dopamine 

neurons).

Microdialysis evidence

Early postmortem studies found altered dopamine and dopamine metabolite concentrations 

in brains of rodents following stress (Deutch et al. 1991; Deutch et al. 1985; Dunn and File 
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1983; Fadda et al. 1978; Kramarcy et al. 1984). With advances in microdialysis techniques 

to monitor in vivo extracellular monamine levels in awake, freely moving animals in the late 

1980s, researchers began to more directly assess dopamine in response to a variety of 

stressors.

Imperato and colleagues (1989) were among the first to use microdialysis to demonstrate a 

significant increase in extracellular dopamine in response to restraint stress. She and others 

have found that restraint stress reliably increases extracellular dopamine in the NAc (Table 

1) and mPFC (Table 2) to roughly equivalent degrees (average maximal percent change 

from baseline from Tables 1 and 2 142.5 and 155 % for NAc and mPFC, respectively).

Studies examining extracellular dopamine in the mPFC in response to immobilization have 

found a slightly greater response (average maximal percent change from baseline 200 %, 

Table 2), indicating that there may be a difference in severity between these two similar 

stressors. This may be explained by a confound within the methods of the experiments 

utilizing restraint stress. All but two studies (Garrido et al. 2013; Mokler et al. 2007) were 

conducted in the light phase of the light–dark cycle. Restraint stress during the dark (active) 

phase results in significantly reduced body weight gain and development of stomach ulcers, 

whereas no such effects are produced by restraint during the light (inactive) phase (Koolhaas 

et al. 2011; Pare and Glavin 1986; Rybkin et al. 1997). Wild Norway rats spend the light 

phase hiding in narrow burrow systems (Koolhaas et al. 2011), so restraint may be a less 

potent stressor during this phase. Rather than the physical compression used in restraint 

stress, immobilization involves restricting paw movement in a less constrained manner and 

as such may be a more powerful stressor during the light phase.

While some studies have demonstrated that dopamine levels in both the NAc and mPFC 

remain elevated for the duration of restraint (Cuadra et al. 2001; Cuadra et al. 1999; Garrido 

et al. 2013; Jackson and Moghaddam 2004; Mokler et al. 2007), when restraint is prolonged 

(>60 min), dopamine levels return to baseline within 70–120 min (Imperato et al. 1992; 

Imperato et al. 1993; Imperato et al. 1991; Imperato et al. 1989; Imperato et al. 1990; 

Puglisi-Allegra et al. 1991). Thus, there appears to be a habituation of the dopamine 

response upon extended stressor presentation. However, as restraint is the only stressor 

examined in microdialysis studies to date that is amenable to such prolonged presentation, it 

is not clear if this habituation would extend to other types of stress.

Mild footshock has also been shown to potently increase dopamine in both the NAc (Table 

3) and mPFC (Table 4) to comparable degrees (average maximal percent change from 

baseline 169.22 and 194 % for NAc and mPFC, respectively). Notably, all reports of 

microdialysis during footshock stress have used less than 0.55-mA intensity, generally 

considered to be mild. Future work could examine the relationship between footshock 

intensity and extracellular dopamine in the NAc and mPFC. Mild to moderate tailshock (1.0 

mA) also produces significant increases in extracellular dopamine in the mPFC (Table 7, 

average maximal percent change from baseline 169 %). Like footshock, the effects of 

varying intensities of tailshock on extracellular mesocorticolimbic dopamine efflux have not 

been examined and could be the focus of future work.
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Microdialysis has also been used to examine dopamine responses to acute tail pinch (Tables 

5 and 6). Unlike restraint and footshock, tail pinch stress may differentially increase 

extracellular dopamine in the NAc and mPFC, with greater dopamine efflux observed in the 

mPFC (average maximal percent change from baseline 124 and 184 % for NAc and mPFC, 

respectively). As none of the studies examined the dopamine response in both the NAc and 

mPFC, it is possible that there are differences in intensity of tail pinch pressure between 

labs. However, it may also be the case that very mild tail pinch stress is insufficient to 

activate VTA dopamine neurons, and the mPFC dopamine response is due to another 

function, such as novelty.

Likewise, handling, often considered a very mild stressor, has differential effects on 

extracellular dopamine in the NAc and mPFC (average maximal percent change from 

baseline 126 and 197 % for NAc and mPFC, respectively, Tables 8 and 9). Duration of 

handling stress does not appear to reliably affect extracellular dopamine concentrations, but 

there may be strain differences in reactivity to handling, as the greatest changes in mPFC 

dopamine were observed in Wistar as opposed to Sprague–Dawley rats.

However, not all stressors examined have produced increases in extracellular NAc and 

mPFC DA. Acute forced swim stress, often thought to be a much milder stressor than 

footshock and restraint stress (Jordan et al. 1994), does not alter extracellular dopamine in 

the NAc or the mPFC (Azzi et al. 1998; Jordan et al. 1994). Likewise, the similarly mild 

stressor of airpuff to the face or low-dose cytokine (IL-8) injection does not alter 

extracellular dopamine in either brain region, although these stressors work synergistically 

to increase dopamine when administered concurrently (Merali et al. 1997).

One potentially important distinction is that all the above-mentioned stressors involve direct 

physical tactile contact/stimulation of the animal. However, stressors that do not involve 

direct contact with the animals’ body can also elicit strong increases in extracellular 

dopamine in both the NAc and mPFC. The “psychological” stress of observing and smelling 

nine other rats receiving severe (3.0 mA) footshocks elicits a significant increase in 

extracellular dopamine in the NAc shell, but not core (Wu et al. 1999), one of the only 

studies to examine the difference in responsivity to stress between these subregions of the 

NAc. Additionally, presentation of a predator (fox) odor produces a gradual increase to 205 

% baseline levels in extracellular dopamine in the mPFC (Wu et al. 2003).

It is possible that these findings showing stress-induced elevations in extracellular NAc and 

mPFC dopamine are in line with a hypothesis that VTA dopamine neurons primarily 

subserve reward-related functions as opposed to stress-related functions. The removal of a 

stressor or aversive stimulus is negative reinforcement and can strengthen subsequent 

associated behaviors (Thorndike et al. 1932). Considerable behavioral evidence has 

demonstrated that the termination of a stressor or aversive stimulus can serve as a reward 

(e.g., Navratilova et al. 2012; Tanimoto et al. 2004). Thus, it could be expected that rather 

than stress activating these dopaminergic neurons, it is actually the offset of stress that 

excites VTA dopamine neurons, resulting in the observed extracellular dopamine increases 

in VTA projection sites. Indeed, approximately half of the VTA dopamine neurons inhibited 
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by footshock also show excitation at the termination of the aversive stimulation (Brischoux 

et al. 2009).

Some microdialysis studies are in support of this explanation. Although restraint stress 

produces a sustained elevation in extracellular dopamine in both the NAc and mPFC (Tables 

1 and 2), when restraint or immobilization is prolonged until dopamine levels return to 

baseline, most have shown that there is a strong, rapid increase in extracellular dopamine 

levels again upon release (Imperato et al. 1992; Imperato et al. 1991; Jackson and 

Moghaddam 2004; Lillrank et al. 1999; Pozzi et al. 2002; Puglisi-Allegra et al. 1991; 

Swanson et al. 2004). However, it is difficult to evaluate a dopamine response to the 

termination of a stressor, as most other types of stress studied (e.g., footshock and tail pinch) 

are much shorter in duration, rarely spanning greater than two microdialysis samples, and do 

not show a return to baseline prior to the termination of the stressor. Therefore, it cannot be 

concluded that any significant increases after termination of the stressor are due to negative 

reinforcement as opposed to carryover from the aversive experience. Regardless, this 

hypothesis that the dopamine increase is due to negative reinforcement as opposed to stress 

itself cannot explain the sustained dopaminergic increases observed in microdialysis studies 

where the stressors or aversive stimuli outlast the sampling time.

Thus, while the temporal resolution and correlational nature of these microdialysis 

experiments could not conclusively prove that VTA dopamine neurons are excited by stress 

as opposed to the removal of a stressor, the magnitude and duration of dopaminergic 

increases in these target areas indicate a likely effect on VTA firing in response to stress. 

Overall, as summarized in Fig. 3, most stressors elicit an increase in extracellular dopamine 

in VTA projection targets, with the most potent stressors eliciting the greatest changes from 

baseline. However, with milder stressors, there seems to be a greater increase in mPFC 

dopamine compared with NAc dopamine, indicating a possible lower threshold of 

stimulation or alternative function for mPFC projecting dopamine neurons. Alternatively, 

mPFC projecting dopamine neurons may be less sensitive to different types of stressors.

Electrophysiological evidence

Initially, extracellular increases in dopamine concentration in VTA projection targets were 

difficult to reconcile, as most studies had shown a suppression of VTA dopamine neuronal 

firing during stress or aversive stimulus presentation (Guarraci and Kapp 1999; Mantz et al. 

1989; Mirenowicz and Schultz 1996; Schultz and Romo 1987; Ungless et al. 2004). 

However, recent evidence demonstrates that there is in fact a subset of dopamine neurons 

within the VTA that are rapidly and potently excited by stressful, aversive stimuli. Single 

unit recordings in awake rats showed that both firing rate and burst firing are increased in 

putative VTA dopamine neurons during restraint stress (Anstrom and Woodward 2005), 

while multi-unit recording showed similar increases in burst firing, but not firing rate, during 

social defeat stress (Anstrom et al. 2009). Burst firing is thought to play an important 

functional role in dopamine release, as frequencies may overwhelm the dopamine 

transporter, causing supralinear increases in extracellular dopamine concentration (Gonon 

1988).
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As described in section Heterogeneity in electrophysiological profile, most in vivo 

electrophysiological studies have focused on the dorsolateral VTA dopamine neurons using 

classic criteria, particularly large Ih current. When examining ventromedial VTA dopamine 

neurons, which were characterized by smaller Ih currents, Brischoux and colleagues (2009) 

found that there was a subset of neurons rapidly and strongly excited by stress (Fig. 4). 

Similarly, others have found increased activity in these “non-conventional” VTA dopamine 

neurons in response to aversive stimulus presentation (Cohen et al. 2012; Zweifel et al. 

2011). It is highly likely that a subpopulation of dopamine neurons responsive to aversive or 

stressful stimuli have been overlooked in prior work due to sampling bias and 

mischaracterization of VTA dopamine neurons (Brischoux et al. 2009; Ungless et al. 2010; 

Ungless and Grace 2012). In light of this growing evidence, it has been proposed that there 

are at least two subpopulations of VTA dopamine neurons: one group encoding reward-

prediction error that is suppressed by aversive stimulation, and a second group, with atypical 

Ih and high baseline burst firing, that is phasically stimulated by aversive stimuli (Ungless et 

al. 2010).

Evidence for neuroadaptations on VTA dopamine neurons

Exposure to a single acute stressor can also promote long-lasting neuroplastic changes in 

VTA dopamine neurons in a manner similar to exposure to drugs of abuse (Dong et al. 2004; 

Graziane et al. 2013; Niehaus et al. 2010; Saal et al. 2003). Acute stress induces long-term 

potentiation (LTP) at glutamatergic synapses onto VTA dopamine neurons, while 

concurrently blocking the formation of LTP at GABAergic synapses (Graziane et al. 2013; 

Niehaus et al. 2010). During induction of LTP at glutamatergic synapses, new AMPA 

receptors are inserted, increasing the AMPA/NMDA ratio and increasing later excitability of 

the postsynaptic neuron (Malinow and Malenka 2002). This alteration in the AMPA/NMDA 

ratio enhances calcium permeability and changes calcium dynamics in the synapse, such that 

subthreshold stimulation can induce robust LTP (Polter and Kauer 2014). Acute exposure to 

stress increases this ratio of AMPA to NMDA receptors within excitatory synapses on VTA 

dopamine neurons (Dong et al. 2004; Graziane et al. 2013; Saal et al. 2003). However, 

consistent with the theme of importance of VTA heterogeneity, distinct regional differences 

in AMPA/NMDA ratio alterations within the VTA have been observed after acute stress 

exposure. Injection of formalin into the hindpaw, an intense noxious stimulus, results in a 

significant increase in the AMPA/NMDA ratio in medial VTA dopamine neurons projecting 

to the mPFC, whereas VTA dopamine neurons projecting to the NAc shell do not exhibit 

such alterations (Lammel et al. 2011). These increases in AMPA/NMDA ratio are present 

within 2 h of stress and have been observed for at least 24 h (Daftary et al. 2009). 

Furthermore, intra-VTA antagonism of both AMPA and NMDA receptors prevents tail 

pinch–induced dopamine efflux in the mPFC, although the NAc has not been examined 

(Butts and Phillips 2013).

Recent evidence also demonstrates that acute exposure to stress can block the induction of 

LTP at GABAA synapses on VTA dopamine neurons (Graziane et al. 2013; Niehaus et al. 

2010). VTA dopamine neurons are relatively depolarized at baseline, and thus typically at or 

very close to action potential threshold (Graziane et al. 2013; Johnson and North 1992). This 

loss of LTP at inhibitory synapses on VTA dopamine neurons may represent the removal of 
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a brake on the system, which combined with the induction of LTP at excitatory synapses can 

lead to increased responsivity of VTA dopamine neurons to future stimulation, whether by 

additional stressors or rewards such as drugs of abuse.

Effects of repeated and chronic stress on VTA dopamine neuron activity

Activation of VTA dopamine neurons during acute stress exposure and subsequent 

neuroadaptations may result in altered VTA dopamine response to later stimulation. The 

effects of repeated or chronic stress on VTA dopamine neurons have remained largely 

unstudied by electrophysiological measures, as electrophysiological evidence for a subset of 

VTA dopamine neuron activation by stress has only recently emerged. However, a few in 

vivo microdialysis studies indicate that repeated exposure to stress might indeed alter 

dopaminergic release in VTA projection targets, particularly the NAc and mPFC. 

Importantly, repeated stress exposure can affect both tonic (basal levels) and phasic (release 

in response to stimulation) dopamine in the NAc and mPFC.

The schedule, intensity, and nature of stressors or aversive stimuli again have differential 

effects on extracellular NAc and mPFC dopamine, related to altered VTA dopamine neuron 

activity. For example, repeated intermittent exposure to social defeat stress increases 

dopaminergic tone in the NAc (Miczek et al. 2011), while chronic social defeat reduces 

overall dopaminergic tone in both males and females (Miczek et al. 2011; Shimamoto et al. 

2011). Chronic, inescapable restraint stress, a relatively severe stressor, also decreases 

dopamine tone in the NAc (Mangiavacchi et al. 2001), while other animal models used to 

study symptoms of depression such as chronic cold and chronic mild stress have no effect on 

basal dopaminergic tone in the NAc, striatum, or mPFC (Di Chiara et al. 1999; Gresch et al. 

1994). Both chronic restraint and repeated social defeat stress increase both spontaneous and 

burst firing of VTA dopamine neurons (Anstrom et al. 2009; Anstrom and Woodward 2005; 

Cao et al. 2010; Krishnan et al. 2007). Notably, studies investigating individual differences 

in responses to chronic social defeat have found that these effects on VTA firing are only 

observed in susceptible mice that exhibit behavioral signs of anhedonia (Cao et al. 2010; 

Feder et al. 2009; Krishnan et al. 2007). Furthermore, these effects are long-lasting, still 

observed 3 weeks after stress termination (Razzoli et al. 2011).

In addition to altered tonic dopamine in VTA projection targets, the phasic dopamine 

response in the NAc and mPFC to subsequent stressors is also altered. While daily restraint 

stress for 6 consecutive days results in a habituation of the extracellular dopamine response 

in the NAc across time, when restraint is again repeated after 72 h, the extracellular 

dopamine phasic response in the NAc is equivalent to the response on the first day (Imperato 

et al. 1992; Imperato et al. 1993). Repeated footshock stress (Young 2004) and intermittent 

social defeat stress (Holly et al. 2015), on the other hand, do not show such habituation in 

the phasic extracellular NAc dopamine response, while a sensitized response is observed 

after the much milder stresses of repeated tail pinch (Naef et al. 2013) or forced swim 

(Jordan et al. 1994; Petty et al. 1997).

In addition to altered responses to repeated presentations of the same stressor, a history of 

repeated stress can also alter the subsequent phasic extracellular dopamine response to a 

different stressor. Prior history of chronic variable stress results in a significantly greater 
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phasic extracellular dopamine response in the mPFC in response to restraint stress (Cuadra 

et al. 2001; Cuadra et al. 1999), as well as both the NAc and mPFC during tail pinch stress 

(Di Chiara et al. 1999) compared to previously non-stressed controls. Continuous chronic 

cold exposure, another model of repeated stress shown to elicit anhedonic-like responses in 

rodents, also produces greater mPFC phasic extracellular dopamine responses to tail pinch 

(Finlay et al. 1995) and tail shock (Gresch et al. 1994; Murphy et al. 2003). A similar 

sensitized effect of extracellular NAc dopamine is observed in animals with a history of 

isolation rearing in response to footshock stress (Fulford and Marsden 1998), and history of 

prior social defeat stress results in greater NAc and mPFC response to social threat 

compared to previously non-stressed controls (Tidey and Miczek 1996, 1997; Watt et al. 

2014). When repeated footshock stress is paired with a conditioned stimulus (CS), an 

augmented response is observed in both the NAc and mPFC, with the CS alone significantly 

elevating extracellular dopamine above baseline (Feenstra et al. 2001; Young 2004; Young 

et al. 1993).

Overall, while the effects of repeated stress on VTA dopamine neuron activity and related 

tonic and phasic dopamine levels in the NAc and mPFC have received only limited 

attention, current evidence points to a clear effect of repeated stress on subsequent tonic 

dopamine activity as well as subsequent response to both identical and different stressors. 

As with the effects of acute stress, the nature, intensity, and schedule of repeated stress are 

critical, such that mild or intermittent stressors may potentiate basal VTA dopamine neuron 

activity and more severe or chronic uncontrollable stressors may reduce basal VTA 

dopamine activity, but the response to later stressors of a different nature is generally cross-

sensitized.

Conclusions and future perspectives

Two critical themes regarding the role of VTA dopamine neurons in response to stress have 

emerged within this review: (i) The heterogeneous structure of the VTA may be the basis for 

divergent functions in aversion and reward, and (ii) the nature, schedule, and intensity of the 

stressor matter. Recent research demonstrates that there may be at least two distinct types of 

VTA dopamine neurons mediating different behavioral functions, namely, reward and 

aversion. Anatomical, neurochemical, and electrophysiological data reveal a subset of 

dopamine neurons in the ventral posteromedial VTA that have previously been ignored and 

are rapidly and potently excited by stress. Future research should be driven to determine the 

specific afferent and efferent connections of this particular subtype.

The nature of stressors and aversive stimuli are also crucial to the interpretation of both 

microdialysis and electrophysiology results. A general tendency of past research has been to 

extrapolate findings with one type of stressor to a general response to all types of stressors. 

However, as reviewed here, it is clear that the nature, intensity, and schedule of repeated 

stress can have vastly different effects on dopamine release in VTA projection targets. 

Notably, the comparatively mild, inescapable stress of chronic cold induces a pronounced 

reduction in VTA dopamine neuron activity, whereas more severe inescapable stress such as 

acute restraint can increase this neuronal activity (Moore et al. 2001; Valenti et al. 2012). Of 

note, chronic stressors generally used as animal models of depression, such as chronic cold 
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exposure or chronic mild stress, generally tend to blunt subsequent tonic dopaminergic 

activity, while more severe acute or intermittent stressors, such as those typically associated 

with anxiety or heightened vulnerability to subsequent addictive-like behaviors, tend to 

augment tonic dopaminergic activity. However, even within each so-called class of 

stressors, different stimuli can still promote profoundly different effects on not only tonic 

and phasic dopamine but also behavior.

Importantly, the emerging evidence reviewed here suggests that a small subpopulation of 

dopamine neurons in the VTA is responsive to stressful and aversive stimuli. Molecularly 

characterizing this specific subset of VTA dopamine neurons may give rise to the use of 

targeted techniques to elucidate direct monosynaptic afferents/efferents as well as directly 

manipulate these neurons through optogenetics, or designer receptors exclusively activated 

by designer drugs (DREADDs). Understanding which dopamine neurons are activated by 

stress, the neural mechanisms driving the activation, and where these neurons project to will 

provide valuable insight into how stress can promote psychiatric disorders associated with 

the limbic system, such as addiction and depression. This information can then provide new, 

improved avenues for therapeutic intervention when stress shifts from an adaptive to a 

maladaptive response.
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Fig. 1. 
Subregional distinctions in the VTA. Coronal sections are arranged from anterior (−4.20) to 

posterior (−7.10) from bregma. The division between anterior and posterior VTA is drawn 

between the interpeduncular nucleus and the interpeduncular fossa. PFR (red), 

parafasciculus retroflexus area; PBP (blue), parabrachial pigmented area; PIF (purple), 

parainterfascicular nucleus; PN (green), paranigral nucleus; VTT (brown), ventral tegmental 

tail; midline nuclei (yellow); IF, interfascicular nucleus; RLi, rostral linear nucleus; CLi, 

caudal linear nucleus (Color figure online)
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Fig. 2. 
Heterogeneity in efferent connections of the VTA to the ventral striatum. Striatal efferents 

project along a mediolateral trajectory to the nucleus accumbens (NAc) and olfactory 

tubercle (OT), such that laterally located parabrachial pigmented area (PBP, blue) dopamine 

neurons send projections to the lateral NAc core and shell, while the medially located 

paraintrafascicular nucleus (PIF, purple), paranigral nucleus (PN, green), and midline nuclei 

(yellow) project to the medial NAc shell and medial OT (Color figure online)
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Fig. 3. 
Reward and stress activate VTA dopamine neurons, increasing extracellular dopamine in the 

mPFC and NAcSh. Both rewarding and stressful stimuli induce dopaminergic increases in 

ventral tegmental area (VTA) projection targets, namely, the medial prefrontal cortex 

(mPFC) and nucleus accumbens shell (NAcSh), to a similar degree. Average maximal 

percent change from baseline dopamine is representative of papers presented in Tables 1, 2, 

3, 4, 5, 6, 7, 8, and 9
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Fig. 4. 
Dorsal VTA dopamine neurons are inhibited by noxious stimuli, whereas ventral VTA 

dopamine neurons are excited. a Averaged extracellular waveform and baseline firing 

activity from a recorded neuron. b, c This neuron showed an inhibitory response to 

footshocks (b) (peristimulus time histogram averaged across six footshocks; mean+ SEM; 

500-ms bins) and was immunohistochemically identified as dopaminergic (c) (Nb indicates 

neurobiotin). d–f In contrast, a second neuron with a similar averaged extracellular 

waveform and baseline firing rate (d) showed an excitatory response to footshocks (e), but 

was also immunohistochemically identified as dopaminergic (f). (Scale bars: 20 μm.) g A 

parasagittal schematic view of the VTA (lateral, 0.6 mm) showing the distribution of 

individual dopamine neurons and their responses to footshocks and showing a clear 

anatomical segregation of functional subgroups (horizontal numbers are distance from 

bregma in millimeters; vertical numbers are depth in millimeters). fr, fasciculus retroflexus; 

IP, interpeduncular nucleus; ml, medial lemniscus; mp, mammillary peduncle; PBP, 

parabrachial pigmented nucleus; PFR, parafasciculus retroflexus area; PIF, 

parainterfascicular nucleus; PN, paranigral nucleus; rs, rubrospinal tract; tth, 

trigeminothalamic tract; VTAc, ventral tegmental area caudal. Reprinted with permission 

from Brischoux et al. (2009) in PNAS
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