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Abstract

There is growing recognition within the sexual and reproductive health field of the importance of 

incorporating both partners’ perspectives when examining sexual and reproductive health 

behaviors. Yet, the analytical approaches to address couple data have not been readily integrated 

and utilized within the demographic and public health literature. This paper seeks to provide 

readers unfamiliar with analytical approaches to couple data an applied example of the use of 

dyadic logistic multilevel modeling, a useful approach to analyzing couple data to assess the 

individual, partner, and couple characteristics that are related to individuals’ reproductively 

relevant beliefs, attitudes, and behaviors. The use of multilevel models in reproductive health 

research can help researchers develop a more comprehensive picture of the way in which 

individuals’ reproductive health outcomes are situated in a larger relationship and cultural context.
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INTRODUCTION

There is increasing recognition of the importance of incorporating both partners’ 

perspectives when examining sexual and reproductive health behaviors. The integration of 
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both partners’ perspectives allows us to better predict sexual and reproductive health 

behaviors, facilitates the development of more appropriate and effective couple-level 

interventions, and provides critical insights into the powerful influences beyond the 

individual that also affect reproductive outcomes, such as those attributable to gender 

inequity and power differentials in relationships [1, 2]. Despite the notable benefits of 

couple or dyadic data, however, analytic approaches have not been well-integrated and 

utilized within the demographic and reproductive health literature.

Dyadic data is typically derived from surveys that elicit information from both members of a 

partnership pair (e.g., husband and wife) and, as such, offer a more holistic view of sexual 

and reproductive behaviors. Partners’ beliefs, attitudes, and behaviors can have separate, and 

even interactive, effects on relationship functioning [3] and on sexual and reproductive 

outcomes [4–6]. The benefits of dyadic data, however, are coupled with additional 

considerations and potential complications. For example, partners’ reports may be 

discrepant, requiring a decision regarding how these reports should be handled. In some 

cases, discrepant couple reports may be discarded, yet this strategy reduces statistical power 

for detecting effects and also prevents further exploration of why partner reports are 

discrepant. For example, these differences may reflect disparate perceptions of the 

relationship and/or differences in information available to each partner, as well as how that 

information may be processed and internalized given prevailing gender norms and roles [7].

Additionally, partners’ reports are often dependent on each other, as partners are likely to 

influence one another and share a similar context. In addition to the conceptual issues, this 

dependency is statistically problematic because it creates a situation in which partners’ error 

terms may be correlated, violating the assumption of independent errors in general linear 

models. Thus, researchers must utilize a strategy that accounts for this dependency, while 

simultaneously incorporating the unique reports of partners within the relationship.

Dyadic multilevel modeling provides a useful approach to analyzing couple data to assess 

the individual, partner, and couple characteristics that are related to beliefs, attitudes, and 

behaviors. This article is intended to give reproductive health researchers unfamiliar with 

multilevel modeling techniques an initial introduction from which to build their 

understanding and use of the approach. An applied example of the use of dyadic logistic 

multilevel modeling is provided, demonstrating the potential of dyadic logistic modeling and 

its utility in developing a more comprehensive picture of the way in which individuals’ 

reproductive health outcomes are situated in a larger relationship and cultural context.

DYADIC LOGISTIC MULTILEVEL MODELING

Multilevel modeling is a statistical technique for the analysis of nested or clustered data, that 

is, individual observations within the same organizing unit. Since observations from within 

the same cluster maybe more similar to each other than randomly paired individual 

observations, the multilevel model includes an error structure that accounts for the 

dependence of the errors of observations from within the same cluster.

In the dyadic logistic multilevel model, there are two levels of analysis: the individual level, 

including both partners’ individual observations (Level 1; identified by subscript i), and the 
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couple level (Level 2; identified by subscript j). At Level 1, individual respondents’ 

outcomes and predictors are included in a single-level logistic regression equation specific 

to each couple. The logistic equation is used in cases in which the outcome is binary (0 = no 

outcome, 1 = outcome), transforming the binary outcome to the log odds of the outcome; 

this allows the formerly binary outcome to be analyzed using a linear regression model. 

Similar to logistic regression, predictors can be categorical or continuous and include main 

effects and interactions.

Level 1

(1)

As an example, let’s say the outcome in equation 1 represents the log odds of an individual 

respondent (i) in a particular couple (j) reporting that they make the decision to use family 

planning jointly with their partner (1: joint decision, 0: not joint decision). Predictor X1ij is 

the respondent’s age. Predictor X2ij is the respondent’s partner’s age.5

The b1j coefficient is the expected increase in the log odds of reporting a joint-decision for 

every 1 unit increase in respondent’s age, over and above the effect of partner age. The b2j 

coefficient is the expected increase in the log odds of reporting a joint-decision for every 1 

unit increase in partner age, over and above the effect of respondent age. At Level 1, the 

multilevel model is analogous to a logistic regression model performed for each couple.

As it is impossible to run this logistic regression model within each couple with only two 

observations, the multilevel model instead characterizes the distribution of such coefficients 

across couples. Two different types of parameters are thus estimated at Level 2 of the 

model: fixed effects (gammas or γ's) estimate the “average” Level 1 coefficients across 

couples, and variance components estimate the degree to which coefficients differ across 

couples. Specifically, each of the b coefficients at Level 1 are modeled as outcome variables 

at the couple level (Level 2) by an overall effect and, for the intercept only, a couple-specific 

error term. This couple-specific error term is known as a random effect because it allows the 

introduction of a random term (i.e., error term) at the couple level.

Level 2

(2)

var(u0j) = τ00u0j ~ N(0, τ)

(3)

5Respondent and partner ages are entered in their natural metric. Consequently, b0j is the expected log odds of reporting a joint-
decision for a respondent in couple j at 0 (“birth”). It may be more useful to center respondent and partner ages at the average age of 
the sample. For more information on centering, see (Kenny, Kashy and Cook 2006).
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(4)

The equations at Level 2 demonstrate how the b coefficients at Level 1 are modeled. In 

equation 2, the expected log odds of reporting a joint decision for a given observation in 

which both partner and respondent age are 0 in couple j (b0j) is modeled as a function of the 

overall log odds of reporting a joint decision at 0 for both respondent and partner age (γ00) 

and an adjustment for each couple’s deviation from the overall effect (u0j). The variance of 

the one Level 2 random effect (u0j) is referred to as τ00. This represents the amount of 

variance by which individual couples’ intercepts deviate from the overall intercept (γ00)6. 

Because individuals in the same couple share the same error term, the inclusion of the error 

also appropriately models within-couple similarity.

In equations 3 and 4, the effects of respondent age in couple j and partner age in couple j, 

respectively, are modeled as an overall fixed effect across couples with no corresponding 

random effect. In multilevel models with larger group sizes, more than one effect can be 

allowed to vary randomly at Level 2. However, the group size of the dyadic logistic 

multilevel model only allows for the estimation of one random effect at Level 2.7 Thus, this 

model is set up with the assumption that the effects of respondent and partner age are the 

same across couples.8

At Level 2, the first γ subscript indicates which Level 2 equation contains the coefficient. 

For example, in equation 2, the first subscript of the γ coefficient (0) indicates that that 

coefficient belongs to the 0 equation – in other words, the equation for the intercept (b0j). 

The second γ coefficient indicates the position in the equation. In equation 2, the second γ 

subscript (0) indicates that the coefficient is in the 0 position – in other words, the intercept 

position within the L2 equation.

Finally, couple predictors (i.e., those predictors that vary across couples but not across 

individuals) can be added to the Level 2 equations. For instance, a predictor Wj, representing 

the absolute difference between the partners’ ages, can be entered to equation 2 as a 

predictor of the couple intercept.

Level 2

(5)

In equation 5, γ01 is the main effect of age difference, or, more specifically, the expected 

increase in the log odds of reporting a joint decision for every 1 unit increase in the absolute 

difference between the partners’ ages, controlling for respondent and partner age. The 

6This allows the model to capture the degree to which relationship partners’ responses are similar to each other. However, it does not 
allow for situations in which partners’ responses are dissimilar. For an alternate parameterization of the Level 2 variance term, see 
Kenny, Kashy, & Cook, 2006, chapter 4.
7The use of additional random effects with such a small group size could prevent model estimation and create biased estimates of the 
error terms (Hox and Maas 2006, Newsom 2002, Raudenbush and Bryk 2002).
8Violation of this assumption (e.g., if the effects of respondent and partner age do vary across couples) will not bias significance tests 
of coefficients in this model (Kenny, Kashy and Cook 2006).
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variance of the random effect (τ00) is now the residual variance in intercepts after 

accounting for the absolute difference between partner ages.

While it is useful to conceptualize the multilevel model as a series of equations at two 

different levels, in actuality, the model is estimated as a single combined equation. For the 

example given above, algebraic substitution of the Level 2 expressions for the coefficients 

into the Level 1 model gives:

Single-Equation Form

6)

The single-equation form of the model makes clear that, in our example, the multilevel 

model actually estimates the coefficients across couples (the γs) and then includes one error 

term to model the deviation of individual couples’ intercept coefficients from the overall 

intercept.

Single Level and Cross-Level Interactions

As stated previously, any type of individual predictor can be entered into the Level 1 

equation (see equation 1). This includes interactions among multiple predictors. For 

instance, if we add a third predictor into the Level 1 equation – let’s say the respondent’s 

income (X3ij), we could examine the interaction of respondent’s age and respondent’s 

income by entering that interaction of the Level 1 equation as follows.

Level 1

(7)

The b4j coefficient would have been modeled at Level 2 as an overall interaction coefficient.

Level 2

(8)

The single-equation form for the full model would have then included an interaction term, 

specifying a Level 1 interaction.

Single-Equation Form

(9)

Likewise, had we wanted to examine the interaction of two couple-level predictors, absolute 

age difference (W1) and relationship duration (W2), we could have entered the interaction 

on the Level 2 equation for b0j (equation 10) and algebraically combined the equations as 

indicated in equation 11.9
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Level 2

10)

Single-Equation Form

(11)

However, cross-level interactions, or interactions between two or more variables represented 

at different levels of the model, are represented differently. For example, had we wanted to 

examine the interaction of absolute age difference (W) and respondent age (X1), we would 

have needed to enter absolute age difference on not only the equation for b0j (the intercept 

for group j), but also the equation for b1j (the coefficient for respondent age in group j).

Level 2

(12)

(13)

Thus, when the Level 1 and Level 2 equations are combined algebraically, both the lower-

order effect of absolute age difference (from the b0j equation) and its interaction with 

respondent age (from the b1j equation) are present in the single-equation form of the model.

Single-Equation Form

(14)

In equation 14, the coefficient γ11 represents the effect of the cross-level interaction of 

respondent age and absolute age difference, over and above the effect of partner age. In 

other words, this represents the expected change in the association between respondent age 

and the log odds of reporting a joint decision for each one unit increase in absolute age 

difference between partners, controlling for partner age.

RESEARCH EXAMPLE

Sample

We used data from the 2005 Cebu Longitudinal Health and Nutrition Survey (CLHNS), part 

of an ongoing cohort study of Filipino women who have been followed, along with their 

children, since 1983–84 [13, 14]. The analytic sample includes data from the CLHNS 

9It should be noted that a cross-product term formed by multiplying two Level 1 predictors representing respondent and partner 
measures of the same construct (e.g., X1ij and X2ij representing respondent and partner age in equation (8) multiplied to produce the 
cross-product X1ijX2ij will be identical for both members of the couple and thus will form a Level 2 interaction.
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children (aged 20 – 22 years in 2005) and their opposite-sex romantic partners (398 couples; 

n = 796 individuals).

Dependent Variable

The dependent variable in this example represents the log odds of an individual respondent 

(i) in a particular couple (j) reporting that they confide in their partner when they have a 

problem (0 =does not confide with partner, 1 = confides with partner). Across the sample, 

65% of respondents indicated that they confided in their partner.

Partners reports of confiding in each other were positively correlated (r = .07, p =.03). This 

correlation highlights the importance of using an analytic technique that can account for the 

relationship between respondent and partner responses. However, the small size of the 

correlation indicates a notable lack of agreement between partners, further highlighting the 

importance of including both partner responses in the analysis. Thus, a multilevel approach 

is ideal.

Independent Variables

For the purpose of this example, characteristics used to predict whether a respondent 

confides in their partner were respondent’s age, partner’s age, and the absolute difference in 

age between the respondent and partner. The average age across the sample was 22 years 

(21 for females; 23 for males) and the average age difference was three years. All three age 

variables were centered on the mean so that a “0” value for each variable corresponded to 

the mean (for more information on centering, see Kenny, Kashy, & Cook, 2006). To control 

for gendered differences in responses and possible differences in predictor associations by 

gender, sex was included in the model and interacted with each of the other predictors. Sex 

is coded as a dummy variable, with 1 representing males and 0 representing females.

Data Organization and Analytic Strategy

All analyses were conducted in Stata/MP 13.1 using the melogit command — Multilevel 

mixed-effects logistic regression. We initially tested interactions of all predictors with 

respondent sex; however, respondent’s sex by respondent’s age was the only significant 

interaction. Therefore, we ran a final combined logistic model regressing confiding in one’s 

partner on respondent’s age (X1), partner’s age (X2), respondent sex (X3), an interaction 

between respondent’s age and sex (X1X3) and the difference between respondent’s and 

partner’s ages (W) as specified in the following single-equation form of the model:

Single-Equation Model

(15)

RESULTS

The likelihood ratio test comparing the multilevel model against a single level ordinary 

linear regression model containing the same predictors was marginally significant, chi-

square = 1.67, p = 0.09, indicating that variance of u0j (i.e., τ00) was marginally greater than 
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0. This test further affirmed the importance of using a multilevel model to analyze this data 

to avoid bias in significance testing [15, 16].10

The effect of partner’s age was significant, over and above the effects of the other predictors 

included in the model (Table 1). Specifically, a one-year increase in the partner’s age was 

related to a 0.10 increase in the log-odds of confiding in one’s partner (γ10=0.10, p=.04). By 

exponentiating the coefficients (i.e., e^ γ20), the coefficient can be converted to an odds 

ratio, offering a multiplicative interpretation. Specifically, the results indicate that the 

expected odds of confiding in one’s partner are 1.11 times greater with each one year 

increase in partner’s age (OR10=1.11, p=.04).

The effect of the difference between partners’ ages was also significant, over and above the 

effects of the other predictors. Specifically, each additional year difference in the age 

between the two partners corresponded to a 0.12 decrease in the log odds of confiding in 

one’s partner (γ01=−0.12, p=.03), or, alternatively, the expected odds of confiding in one’s 

partner decreases by a factor of 0.88 (OR01=−0.89, p=.03). In other words, the greater the 

difference between the two partners in age, the less likely the respondent is to confide in 

their partner.

Sex was not statistically significant in predicting whether or not the respondent confided in 

their partner. However, the interaction of respondent sex and age was significant in the 

multivariate model (γ40 =0.21, p=.014; OR40=1.23, p=.014). We, therefore, examined the 

effect of partner age on confiding in the partner separately by respondent sex (i.e., simple 

effects).

For male respondents, their age was related to a 0.24 increase in the log odds of confiding in 

their partner (γsimple =0.24, p<.001). In terms of odds ratios, a one year increase in age 

corresponded to a 1.27 increase in the expected odds of confiding in their partner (ORsimple 

=1.27, p<.001). In other words, older male respondents were more likely to respond that 

they confided in their partner. On the other hand, for female respondents, age was not 

significantly related to their reports of confiding in their partner (γsimple =0.04, p=.62; 

ORsimple =1.04, p=.58). This difference between the importance of age for male and female 

respondents suggests age has a much larger effect and is only statistically significant when 

the respondent is male.

DISCUSSION

Multilevel modeling offers a flexible framework, with which researchers can analyze 

couples data to assess the individual, partner, and couple characteristics that are related to 

individuals’ reproductively relevant beliefs, attitudes, and behaviors. Using the methods 

outlined in the first part of this paper, we were able to show that an individual’s age, sex, 

10While a significant likelihood ratio test clearly indicates a need for a multilevel model (as opposed to a single-level regression 
model), a non-significant result should be interpreted with caution, as power of this test may be an issue when sample sizes are small 
to moderate, and simulation studies of clustered data indicate that even a very small degree of within-group similarity can lead to 
downwardly biased standard errors and overly liberal inferences (e.g., Barcikowski 1981). In the case of dyadic data, relationship 
partners’ data is very likely to be dependent to at least some degree, and even if that dependence is not detected by the likelihood ratio 
test, it can nonetheless bias results. In the case of dyadic data, therefore, it is almost always advisable to use a multilevel model to 
account for error dependence simply because of the strong likelihood of dependence inherent in this data structure.
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partner’s age, and age difference between respondents and partners each have an important 

and simultaneously unique relationship with the individual’s report of confiding in their 

partner. Had we not included both partners’ data in these analyses, we could not have 

detected the different relationships between one’s own characteristics and the outcome and 

one’s partner’s characteristics and the outcome.

While there are alternatives to multilevel modeling for the analysis of couple data, including 

structural equation modeling (e.g., [11, 17]) and bivariate probit/logit regression models 

(e.g., [18]), the multilevel modeling framework offers a flexible, intuitive approach that can 

help researchers develop a more comprehensive picture of the way in which individuals’ 

reproductive health outcomes are situated in a larger relationship and cultural context.

Supplementary Material
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Table 1

Dyadic logistic multilevel model of whether or not the respondent confides in their partner.

Logistic
Multilevel Model

Intercept 1.03***

(0.20)

Respondent’s age 0.04
(0.07)

Partner’s age 0.10*

(0.05)

Age difference −0.12*

(0.05)

Sex −0.08
(0.19)

Respondent’s age * sex 0.21*

(0.09)

  τ00 0.34

***
p≤0.001;

*
p ≤ 0.05;
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