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Abstract Substance use disorders (SUDs) are highly preva-
lent. SUDs involve vicious cycles of binges followed by occa-
sional periods of abstinence with recurrent relapses despite
treatment and adverse medical and psychosocial consequences.
There is convincing evidence that early and adult stressful life
events are risks factors for the development of addiction and
serve as cues that trigger relapses. Nevertheless, the fact that not
all individuals who face traumatic events develop addiction to
licit or illicit drugs suggests the existence of individual and/or
familial resilient factors that protect these mentally healthy
individuals. Here, I give a brief overview of the epigenetic
bases of responses to stressful events and of epigenetic changes
associated with the administration of drugs of abuse. I also
discuss the psychobiology of resilience and alterations in epi-
genetic markers that have been observed in models of resil-
ience. Finally, I suggest the possibility that treatment of addic-
tion should involve cognitive and pharmacological approaches
that enhance resilience in at risk individuals. Similar approaches
should also be used with patients who have already succumbed
to the nefarious effects of addictive substances.
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Abbreviations
BDNF Brain-derived neurotrophic factor
BLA Basolateral nucleus of the amygdala
CREB Cyclic AMP-responsive element-

binding protein
CBP CREB-binding protein

CeA Central nucleus of the amygdala
CPP Conditioned place preference
CREB Cyclic AMP response element binding
DNMT DNA methyltransferases
GDNF Glial cell-derived neurotrophic factor
GCN5 General control non-repressible 5
GNAT GCN5-related N-acetyltransferase
H3K14Ac Histone H3 acetylated at lysine 14
H3K9Ac Histone H3 acetylated at lysine 9
H3K18Ac Histone H3 acetylated at lysine 18
H3K4me2/3 Methylation of histone H3 at lysine 4
HATs Histone acetyltransferases
HDACs Histone deacetylases
HPA Hypothalamic–pituitary–adrenal
HR High responders
LC Locus coeruleus
LR Low responders
KMTs Histone lysine methyltransferases
KDMTs Lysine demethylases
MeA Medial nucleus of the amygdala
MeCP2 Methyl-CpG binding protein 2
MYST MOZ YBF2, SAS2, and TIP60
NAc Nucleus accumbens
NAD Nicotinamide adenine dinucleotide
NGF1A Nerve growth factor 1A
NR3C1 Neuron-specific glucocorticoid receptor
PCAP p300 CBP/p300-associated protein
SIRT Sirtuin
SUDs Substance use disorders
TET Ten-eleven translocation

Introduction

Early stressful life events are important risk factors for the
development of neuropsychiatric disorders that include
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affective disorders and addiction to food and illicit substances
[1–7]. These traumatic events are associated with significant
changes in cognitive, neurotransmitter, and neuroendocrine
systems in humans and animal models [8–11]. Of interest is
the fact that early stress events can cause significant changes
in brain structure and function [12, 13]. Although stress-
associated biochemical and structural alterations might con-
stitute important subsets of general pathobiological substrates
of psychiatric disorders, more experiments are needed to
develop a theoretical framework that may have stronger trans-
lational impact on the lives of patients who suffer from sub-
stance use disorders (SUDs). SUDs are chronic neuropsychi-
atric disorders that are characterized by a compulsion to use
licit or illicit substances, loss of control over drug use, and
increased use despite adverse medical and psychological con-
sequences [14, 15]. Some patients who are addicted to
psychostimulants including cocaine and methamphetamine
suffer from cognitive decrements that might impact their
activities of daily living [16–18]. Given the fact that over-
whelming stressful events can also be associated with some
cognitive deficits [19, 20], it is not farfetched to suggest that
repeated life events in addicted individuals might compound
the adverse consequences of their illicit drugs of choice.

It is, nevertheless, important to note, at this juncture, that
not all responses to stress are maladaptive since some of these
responses might constitute resilient attempts to protect the
individual against overwhelming odds [4, 13] that include
living in deprived neighborhoods and parental deprivation
[3, 21–23]. Indeed, evidence has accumulated to indicate that
not all individuals develop maladaptive behaviors or psychi-
atric disorders despite living in dire conditions that include
ethnic and social disparities [24–26]. In what follows, I will
first try to draw comparisons between the epigenetic sub-
strates of stress and addiction. I also provide a brief synopsis
of epigenetic modifications observed in some models of resil-
ience. Finally, I suggest that a better therapeutic handle of
SUDs may be provided by promoting behaviors associated
with resilience and by using, concomitantly, pharmacological
interventions that trigger epigenetic changes identified in
models of resilience.

Brief Overview of Epigenetic Mechanisms

Epigenetics is defined as the investigation of heritable changes
in gene transcription and/or phenotypic alterations that are not
secondary to changes in DNA sequences [27]. This definition
can be expanded to include meiotically and mitotically
inherited alterations in gene expression that are not DNA-
encoded [28–30]. The two most commonly studied epigenetic
alterations are modifications of histones present in chromatin
[31] and DNA methylation [32]. Chromatin represents the
structural and functional organization of the eukaryotic

genome [33, 34] and contains DNA, RNA, and several protein
components [34]. The basic repeating unit of chromatin is the
nucleosome that consists of 146 bp of DNAwrapped around
four core histones, H2A, H2B, H3, and H4, which form an
octomer (two of each core histone) [35]. Histone tails contain
amino acid residues that can be reversely modified by histone
acetyltransferases (HATs), histone deacetylases (HDACs),
histone lysine methyltransferases (KMTs), and kinases,
among others [36–38].

There are several classes of HATs, HDACs, and KMTs.
The HAT families include cyclic AMP-responsive element
binding (CREB)-binding protein (CBP)/p300, GNAT (general
control non-repressible 5 (GCN5)-related N-acetyltransfer-
ases), andMYST named after its founder proteins [MOZ (also
called MYST3, monocytic leukemia zinc-finger protein),
YBF2, SAS2 (something about silencing 2), and TIP60
(60 kDa trans-acting regulatory protein of HIV-type 1 (tat)-
interaction proteins)] subclasses [39, 40]. The GNAT HATs
include GCN5 and CBP/p300-associated protein (PCAP).
HDACs are subdivided into four classes according to se-
quence similarities [36]. These include Class I (HDAC1,
HDAC2, HDAC3, HDAC8), Class II (HDAC4, HDAC5,
HDAC6, HDAC7, HDAC9, HDAC10), Class III (sirtuins
1–7), and Class IV (HDAC11) HDACs [36, 41]. Class I, II,
and VI HDACs are referred to as “classical” HDACs and are
Zn2+-dependent enzymes [42], whereas the sirtuins require
nicotinamide adenine dinucleotide (NAD)+ as a cofactor
[43]. There are also several classes of KMTs that are involved
in mono-, di-, and trimethylation of specific lysine residues on
histones [44]. It needs to be kept in mind that methylation of
histone H3K4 is generally associated with increased transcrip-
tional activity [45] whereas methylation of H3K9 and H3K27
is associated with repression of gene expression [44, 46].
Moreover, several classes of lysine demethylases (KDMTs)
counteract the effects of the KMTs [47]. Several HATs,
HDACs, KMTs, and KDMTs are thought to play integral roles
in the development of pathological states in both humans and
animals [48, 49, 46].

DNAmethylation and hydroxymethylation are represented
by covalent modifications at the 5-position of cytosine to form
5-methylcytosine and 5-hydroxymethylcytosine, respectively
[50–52]. DNA methylation is mediated by the de novo DNA
methyltransferases, DNMT3A and DNMT3B, and by the
maintenance methyltransferase, DNMT1 [52]. In contrast,
ten-eleven translocation (TET1, TET2, and TET3) enzymes
mediate active DNA demethylation [53]. These epigenetic
enzymes are located in the brain and have been reported to
play important roles in neurodevelopment, learning and mem-
ory, and in some neurologic and psychiatric disorders [54–57].
Several recent papers have also indicated a role for epigenetic
modifications in the molecular processes that lead to addiction
to psychostimulants including cocaine and methamphetamine
[58–62]. These authors have also suggested that an approach
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that involves blocking the effects of the drugs on epigenetic
markers might be beneficial to patients. In what follows, I
suggest that any such approach will need to take into consid-
eration environmental factors that might have influenced
drug-induced epigenetic alterations in the brains of these
patients.

Epigenetic Bases of Responses to Stressful Events

Studies of environmental stress on epigenetic markers have
documented unfavorable modifications that impact gene tran-
scription in the brain and neuroendocrine systems [63–65].
Subsequent translational changes may in fact be the determin-
ing factors of the organism’s responses to both psychological
and physical stresses [66, 67]. In the case of mild to moderate
stresses, various species are able to cope by inducing general
and/or stress-specific responses [68–70]. In the case of over-
whelming stress, there is convincing evidence of significant
stress-induced damage to the brain [13, 71]. During the past
few years, several groups of investigators have reported that
both acute and chronic stresses can impact the epigenome
[72–75]. For example, a single immobilization stress alters
hippocampal brain-derived neurotrophic factor (BDNF) gene
expression and histone acetylation at BDNF gene promoters
[73]. Berton et al. [76] also reported that chronic social defeat
to repeated aggression caused increased BDNF in the brain.
Importantly, BDNF knockdown in the nucleus accumbens
(NAc) blocked the transcriptional effects of aggressive acts.
Krishnan et al. [77] also showed that only mice sensitive to
stress showed increased BDNF levels. Moreover, Roth et al.
[78] have reported that a psychosocial stress regimen pro-
duced increased BDNF DNA methylation at exon IV and
decreased mRNA expression in the dorsal hippocampus of
adult rats.

Interestingly, hypersensitivity to stress was found to be due
to loss of HDAC5, a class IIA HDAC [79]. In addition,
chronic defeated mice show decreased expression of HDAC2,
a member of class I HDACs, in the NAc [80]. There were also
decreased levels of histone H3 acetylated at lysine 14
(H3K14Ac) in mice euthanized at 1 h after the final stress
episode whereas there was increased H3K14Ac abundance at
24 h and 10 days after stress [80]. This study shows the time
dependence of the effects of stress and withdrawal from
stressful events. Mice susceptible to stress also show de-
creased expression of G9a (KMT1C) [81], an enzyme respon-
sible for H3K9 methylation [82]. There was an associated
decrease in the levels of H3K9 methylation in the NAc of
these mice. A causal relationship between G9a and stress
sensitivity was demonstrated by showing that increasing its
expression in the NAc antagonized the effects of stress [82].

Other investigators have also assessed the role of epigenet-
ic mechanisms in high responder (HR) and low responder

(LR) rats [83]. HR rats show high locomotor activity while
LR rats show low locomotor responses when exposed to a
novel environment [84, 85]. The HR and LR dichotomy is a
known predictor of behavioral and biochemical responses to
addictive substances including cocaine and the amphetamines
[86, 84, 87, 85]. The HR and LR rats were also reported to
show differential epigenetic responses to stress, with HR rats
exhibiting decreased H3K14 acetylation but the LR rats
experiencing increased H3K14 acetylation [83]. These results
indicate that these rats might show differential transcriptional
responses to stress because acetylation of histones is an im-
portant regulator of gene expression [88]. It needs also to be
pointed out that H3K14 acetylation is mediated, in part, by
CBP [89], a histone acetyltransferase that plays an important
role in the regulation of psychostimulant-induced behaviors
and gene expression in the brain [90, 91].

In addition to stress encountered during adulthood, early
life stresses can negatively impact the brain and behavioral
outputs during both adolescence and adulthood [92]. These
stresses include paternal and maternal deprivation [63, 93,
94]. Several investigators have also reported on the complex
epigenetic effects of these types of stressors [95, 96]. In
humans, prenatal exposure of maternal depression was asso-
ciated with increased methylation of the neuron-specific glu-
cocorticoid receptor (NR3C1) measured in genomic DNA
obtained from cord blood of newborns [97]. Interestingly,
McGowan et al. also reported decreased NR3C1 mRNA
expression and increased DNA methylation at an NR3C1
promoter in the postmortem hippocampi of suicide victims
who had a history of child abuse [98].Moreover, Perroud et al.
found changes in NR3C1 expression in adults with a history
of child abuse, changes that were linked to the severity of the
traumatic events [99]. These findings were further supported
by the report that parental loss and childhood mistreatment
were associated with increased NR3C1 promoter methylation
in DNA obtained for leukocytes [100]. Interestingly, the adult
rodent offsprings of high compared to low maternal care
mothers show differential epigenetic changes in promoter
regions and exons [95]. The epigenetic changes include de-
creased H3K9Ac enrichment, increased DNA methylation,
and decreased expression of several genes in the low maternal
care group [95]. Rats subjected to maternal deprivation for 2–
13 days showed hypothalamic–pituitary–adrenal (HPA) axis
hypersensitivity, increased corticotropin-releasing hormone
(CRH) transcription in the paraventricular nucleus, and de-
creased DNA methylation at a CRE site in the CRH promoter
[63]. More recently, convincing evidence has shown that
offsprings of males that were subjected to post-traumatic
stress showed impaired recognition memory, altered expres-
sion of genes involved in synaptic transmission and CREB
phosphorylation pathways in the hippocampus, as well as
abnormal hippocampal electrophysiological responses [101].
Therefore, when taken together, the accumulated literature
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indicates that early stressful events including maternal and
paternal deprivation can cause long-lasting epigenetic changes
that are measurable in adult mammals. It is, nevertheless,
important to keep in mind that stressful events can cause
epigenetically regulated biochemical, molecular, and structur-
al changes in the brain at any period throughout an individ-
ual’s lifespan [102].

Epigenetic Changes Associated with the Administration
of Drugs of Abuse

Humans who suffer from SUDs constitute a group of individ-
uals whose life spans are characterized by repeated stressful
life events [103–105]. Indeed, traumatic events are risk factors
for developing addiction to either licit or illicit drugs [2, 3].
These reports suggest that epigenetic alterations caused by
stressful events might have rendered these individuals more
susceptible to drug-induced neuroplastic changes that form
the substrates of addictive diseases. In what follows, I provide
a brief overview of some papers that have addressed the issue
of drug-induced epigenetic changes in the mammalian brain.
These drugs include, in alphabetical order, alcohol, cocaine,
methamphetamine, nicotine, and opiates.

Alcohol The effects of alcohol on gene expression in the brain
are well documented [106, 107]. More recently, several
groups of investigators have begun to investigate potential
epigenetic modifications that are secondary to alcohol expo-
sure using various animal models [108, 109]. For example,
Pandey et al. [110] had reported that an acute injection of
alcohol caused decreased HDAC activity in the rat amygdala.
They also found increased acetylation of histones H3 and H4
in the central (CeA) and medial (MeA) nuclei but not in the
basolateral (BLA) nucleus of the amygdala. In contrast, alco-
hol withdrawal was associated with decreased histones H3
and H4 acetylation in the CeA and MeA. Moreover, alcohol
withdrawal produced decreased expression of the HAT, CBP,
in these brain amygdaloid nuclei. HDAC activity was, how-
ever, increased in the amygdala of similarly treated rats.
D’Addario et al. [111] recently reported that binge adminis-
tration of alcohol produced changes in the expression of
prodynorphin and pronociceptin genes in the rat amygdala.
The authors also reported increased acetylation of histone 3 at
lysine 9 (H3K9Ac) but decreased abundance of H3
trimethylated at lysine 27 (H3K27me3) at the promoters of
these two genes in animals treated with alcohol for 1 day.
These histone modifications were also associated with in-
creased prodynorphin and pronociceptin mRNA expression.
Animals treated for 5 days showed only increased H3K9Ac at
the pronociceptin promoter. Qiang et al. [112] also reported
that withdrawal from chronic intermittent administration of
alcohol increased H3K9Ac abundance at the glutamate

receptor, NR2B. They also found decreased abundance of
the methyltransferases, G9a and Suv39h1 (KMT1A), and of
HDAC1-3 on the NR4B promoter region. Using a global
chromatin immunoprecipitation (ChIP) technique, Zhou
et al. [113] reported that there were significant changes in
H3K4me3 abundance in a large number of genes in the
hippocampus of alcoholics. However, these changes were
not directly related to changes in the expression of any of
these genes. A similar study also found marked changes in
gene expression in the superior frontal cortex (CTX) as well as
in the CeA and BLA of the amygdala [114]. Among these
genes were mixed lineage leukemia (MLL also called
KMT2A), MLL4 (KMT2B), and SET domain containing
1A (SETD1A also called KMT2F) that are involved in histone
H3K4 trimethylation. The authors also observed increased
H3K4me3 abundance at the promoters of BCL2L1 (B cell
lymphoma 2-like1) and UBE1 (ubiquitin-like activating en-
zyme-1) whose mRNA levels are also increased in the brains
of the alcoholic patients. In addition to alcohol-induced
changes in histone markers, alterations in DNA methylation
in the brains of alcohol abusing individuals have also been
reported [115]. These authors reported that alcoholics showed
higher methylation peaks than controls. Some of these genes
of interest included HIST2H2AC and HIST1H4E, supporting
the notion that alcohol abuse might be associated with altered
histone modifications, as discussed above. In contrast,
Ponomarev et al. [114] reported hypomethylation at DNA
sequences called long terminal repeat (LTR)-containing
retroposons. Taken together, these investigations identify mul-
tiple epigenetic alterations associated with alcohol
administration.

Cocaine Cocaine causes substantial changes in gene expres-
sion in the brain [116–118]. However, the epigenetic bases of
these transcriptional alterations needed to be clarified. Several
groups of investigators have now published papers on the
effects of cocaine on epigenetic markers in several brain
regions [119]. These studies have included both acute and
chronic effects of the drug. For example, Kumar et al. [120]
reported that a single injection of cocaine increased c-fos
mRNA levels and increased histone H4 acetylation at the c-
fos promoter. In contrast, chronic cocaine did not induce c-fos
mRNA nor histone hyperacetylation. Moreover, the authors
detected increased histone H3 acetylation at the BDNF pro-
moter and increased BDNF mRNA levels. Subsequently,
Levine et al. [90] documented a role for the acetyltransferases,
CBP, which was found to control the effects of cocaine via
acetylation of histones at the fosB promoter. Malvaez et al.
[91] have also identified a role for CBP and histone acetyla-
tion in cocaine-induced behaviors. Moreover, Romieu et al.
[121] showed that HDAC inhibitors could decrease cocaine
self-administration, documenting roles for histone acetylation
in cocaine-induced behaviors and molecular effects. This
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suggestion is supported by the report that cocaine self-
administration caused increased HDAC2 and HDAC11 ex-
pression [122]. Cocaine self-administration also caused de-
creased HDAC5 accumulation in the nucleus, suggesting that
this class IIA HDAC may, in part, regulate some of cocaine-
induced molecular effects in the brain. In addition to HDAC5
[122, 123], other HDACs including HDAC1 [124], HDAC3
[125], and HDAC4 [126] have also been implicated in
cocaine-induced behavioral changes. The class III HDACs
including SIRT1 and SIRT2 also participate in the actions of
cocaine in the brain [127, 128].

Other investigators have also documented long-term
changes in gene expression after cocaine self-administration,
with some of these changes being related to differential alter-
ations in histone H3 acetylation [118]. One gene that is up-
regulated by chronic cocaine is CaMKIIalpha [126].
CaMKIIalpha is a very important kinase in the adult brain
and plays important roles in synaptic plasticity and in mech-
anisms involved in learning and memory [129]. It is also of
interest that increased BDNF expression observed after co-
caine withdrawal [130] also involves increased histone acety-
lation at the BDNF exon-I promoter [131]. Importantly, some
of the epigenetic effects of cocaine are dependent on stimula-
tion of DA D1-dependent signaling pathways [132]. In addi-
tion to histone acetylation, cocaine-induced neuroadaptations
appear to be also dependent on histone methylation because
repeated exposure to cocaine produced decreased global
levels of H3K9me2 and decreased expression of the methyl-
transferase, G9a, in the nucleus accumbens [133]. Interesting-
ly, repeated injections of THC, the active ingredient of mari-
juana, also caused decreased H3K9me2 but increased
H3K4me3 at sites flanking the proenkephalin transcription
start site (TSS) using tissues from the shell subdivision of
the rat NAc [134]. Cocaine also increased the expression of
methyl-CpG binding protein 2 (MeCP2) and produced de
novo DNA methylation [122, 135]. Moreover, exposure to
cocaine increasedMeCP2 phosphorylation [136, 137]. Impor-
tantly, knockdown of MeCP2 in the dorsal striatum was
shown to decrease cocaine intake by regulating BDNF levels
in that structure [138]. Furthermore, Anier et al. [139] reported
that acute cocaine caused upregulation of DNMT3A and
DNMT3B in the mouse NAc. Cocaine also caused hyperme-
thylation and increased MeCP2 binding at the promoter of the
protein phosphatase-1 catalytic subunit (PP1c) and decreased
PP1c mRNA expression. The reverse was true for the effects
of cocaine on the fosB promoter and fosB mRNA levels.
Together, these findings suggest that cocaine can trigger epi-
genetic alterations that might influence, in the long term,
memories associated with cocaine-related behaviors.

Methamphetamine Although methamphetamine is a highly
addictive drug with a higher prevalence than cocaine abuse
throughout the world, basic mechanisms associated with

methamphetamine addiction have been less well studied than
those of cocaine. In the past, many studies have been dedicated
to toxic effects caused, in part, by allostatic load due to drug-
induced release of high levels of dopamine in the dorsal stria-
tum [140]. Some studies have also focused on behavioral
models such as self-administration [141] and the effects of these
drugs on gene expression [142, 143]. More recently, a few
groups of investigators have begun to carry experiments to
elucidate potential epigenetic effects of this drug [58]. Specif-
ically, Martin et al. [144] reported that an acute injection of
methamphetamine caused decreased abundance of histone H3
acetylated at lysine 9 (H3K9Ac) and at lysine 18 (H3K18Ac) in
the rat NAc. There was also methamphetamine-induced
hyperacetylation of H4K5 and H4K8. The increased H4 acet-
ylation is consistent with the results of Harkness et al. [145]
who also reported that acute methamphetamine also increased
H4 acetylation in the striatum. These results are also consistent
with the report that acute methamphetamine increased the
expression of several immediate early genes and that these
increases were correlated with methamphetamine-induced in-
creased binding of acetylated H4K5 on the promoters of these
genes [146]. The increased histone acetylationmay be the result
of drug-mediated decreased HDAC1 expression since the
methamphetamine injection produced decreased HDAC1 ex-
pression in nuclear sub-fractions from the NAc [144]. The
possibility that the methamphetamine-induced increased H4
acetylation might be due to increase in CBP expression also
needs to be evaluated because increased CBP expression is
associated with increased histone acetylation [147]. This possi-
bility is bolstered by the fact that methamphetamine self-
administration can regulate gene expression via CREB phos-
phorylation [60]. In any case, the results of the acute metham-
phetamine injection suggest that both HDAC1 and HDAC2
might participate in the regulation of methamphetamine-
induced changes in gene expression in the brain. In the NAc,
acute methamphetamine injection also causes increased expres-
sion of the mitochondrial sirtuins, SIRT3 and SIRT5, sirtuins
known to play an integral part in regulating mitochondrial
functions [148, 149]. Other studies conducted by Jayanthi
et al. [59] have also documented that chronic methamphet-
amine can cause increased expression of HDAC1, HDAC2,
SIRT1, and SIRT2 in the dorsal striatum. Those authors also
reported increased expression of other epigenetic proteins in-
cluding MeCP2, REST, and Co-REST that are members of co-
repressor complexes with class I HDACs that serve to regulate
gene transcription [150–152]. Methylation of histone H3 at
lysine 4 (H3K4 me2/3) also appears to be important in
methamphetamine-induced conditioned place preference
(CPP) because increased methylation is associated with in-
creased CPP whereas decreased methylation is related to de-
creased CPP [153].

Related to the above discussion on stress is the fact that
maternal separation was found to promote greater
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methamphetamine self-administration and to enhance the ef-
fects of the drug on MeCP2 expression in the core of the
nucleus accumbens [154]. These results are consistent with
the possibility that methamphetamine might produce in-
creased DNA methylation because the drug increases
DNMT1 expression in the brain [59, 155]. Indeed, it was
recently reported that mice that had been exposed to metham-
phetamine in utero showed differentially DNA methylation in
their hippocampi [156]. When taken together, these results
indicate that methamphetamine can also exert a multiplicity of
epigenetic changes in the brain.

Nicotine The effects of nicotine on gene expression in the
brain have been documented [157, 158]. Recently, there has
also been a focus on identifying potential nicotine-induced
epigenetic alterations [159]. For example, chronic nicotine has
been reported to enhance cocaine-induced synaptic plasticity
by increasing H3K9 and total H4 protein acetylation that was
associated with increased H3K9Ac and total H4Ac binding to
the FosB promoter in samples obtained from the mouse ven-
tral striatum [160]. These nicotine-induced changes in histone
acetylation were secondary to decreased HDAC activity and
accompanied by increased FosB mRNA expression. Interest-
ingly, use of the HDAC inhibitor, suberoyl ailide
hydroxamine acid (SAHA), was reported to mimic the effects
of nicotine on the physiological effects of cocaine. A subse-
quent study by the same group also found that nicotine could
also enhance cocaine-induced physiological changes via
HDAC inhibition [161]. Another group of investigators re-
ported that repeated subcutaneous injections of nicotine pro-
duced increased expression of dopamine D1 receptors in the
rat frontal cortex [162]. These increases were associated with
increased H4 acetylation at the D1 receptor promoter. In
addition to increased histone acetylation, others have shown
that exposure to nicotine can decrease the expression of his-
tone methyltransferases including G9a and Setb1in the mouse
cortex [163]. This pattern of nicotine administration also
increased BDNF expression that was mediated, in part, by
decreased H3K9me2 binding to the BDNF promoter. Nicotine
injections also decreased the mRNA and protein expression
levels of the DNA methylation enzyme, DNMT1, in the
mouse cortex and hippocampus [164]. Nicotine also produced
increased cortical GAD67 mRNA expression that was accom-
panied by decreased levels of GAD67 promoter methylation.
Together, these papers support the notion that nicotine can
produce changes in gene expression via diverse epigenetic
alterations.

Opiates Administration of heroin and other opiates alters the
expression of genes involved in multiple molecular pathways
[116, 165, 166]. A few studies have now been conducted on
the role of epigenetic mechanisms in opiate-mediated behav-
iors. For example, heroin CPP produced dose-dependent

histone H3 phosphoacetylation in the nucleus accumbens
[167]. Morphine context-associated memory is enhanced by
injections of the HDAC inhibitor, trichostatin A (TSA), di-
rectly into the BLA of the amygdala [168]. These injections
led to increased H3K14 acetylation and increased BNDF
expression. Other investigators have demonstrated that mor-
phine withdrawal is associated with decreased histone H3K9
trimethylation at BDNF promoters II and III in the VTA and
locus coeruleus (LC) but increased H3K9/14 acetylation at the
BDNF promoter II only in the LC [169]. These epigenetic
modifications were consistent with increased BDNF mRNA
levels in morphine-withdrawn rats. Another interesting study
reported that chronic morphine administration did not cause
any changes in histone H3 phosphorylation [170]. However,
naltrexone-induced withdrawal produced increased H3 phos-
phorylation that was mediated, in part, by ERK-dependent
mechanisms in the rat NAc and the lateral septum. There was
also increased H3K14 acetylation in the shell of the NAc.
Chronic morphine decreased G9a expression and global levels
of H3K9me2 in the mouse NAc [171]. G9a upregulation in
the NAc also interferes with morphine CPP and locomotor
sensitization. In comparison to control mice, morphine also
caused marked changes in global H3Kme2 binding in the
mouse NAc, as detected by ChIP-Seq, with 8103 sites being
downregulated but 5669 being upregulated. Three glutamate
receptor genes (Grin2A, Grm5, and Grm8) that showed de-
creased H3K9me2 binding also showed increased mRNA
levels, thus implicating glutamatergic systems in opiate addic-
tion [171]. The effects of opiates on DNA methylation have
also being investigated, without there being any significant
changes observed in the mouse brain after chronic intermittent
heroin administration [172].

In summary, this overview of the molecular effects of
various drugs of abuse suggests that these substances can
produce a multitude of epigenetic modifications whether an-
imals were injected by experimenters or were put through a
self-administration paradigm. Nevertheless, the specific role
of these epigenetic alterations in the development of truly
addicted states remains to be elucidated further.

Psychobiology of Resilience

Resilience refers to a relative protection of an individual or
family against environmental stresses to which others might
be prone to succumb [173–176]. Levels of resilience have
been shown to predict hopelessness that is a harbinger of
future affective disorders [177, 178]. Resilience may also
explain the fact that not all adolescents or adults who live in
areas of deprivation based on ethnic and socioeconomic fac-
tors become addicted to either licit or illicit drugs [179–183].
There also appear to be gender differences in resilient
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outcomes, with women showing more resilience than men
[184]. In humans, interactions between family characteristics,
community involvement, and genetic markers may confer
sensitivity to increased morbidity to a number of medical
and psychiatric illnesses including SUDs [179, 180, 185].
Some of the genetic markers include polymorphism in genes
that encode dopamine receptors and the serotonin transporter
[179, 180, 185], with socioeconomic status influencing the
trajectory of pathologies associated with these polymorphisms
[186].

In addition to potential individual genetic predilections
[187], evidence has been collected in animal models that
epigenetic modifications might also play a role in the devel-
opment of resilient phenotypes [81, 188]. As mentioned
above, resilient mice that were exposed to chronic stress do
not show abnormalities in the expression of the G9a histone
methyltransferase enzyme in their NAc whereas susceptible
animals do [81]. Stressed animals that were susceptible to
stressful events showed differential abundance of histone
H3K27 methylation at several genes whereas resilient mice
showed patterns that were similar to normal animals [189].
Uchida et al. [190] also published an interesting study show-
ing that stress can produce epigenetic regulation of striatal
GDNF (glial cell-derived neurotrophic factor) responses in
mice that differ in their susceptibility to stress.

There is also evidence that coping/resilient mechanisms in
response to stressful stimuli can be enhanced in various ways.
For example, the accumulated evidence suggests that the HPA
response to stressful events is influenced by maternal behav-
iors [191, 192]. In rodents, these responses are influenced by
maternal care and are mediated by epigenetically determined
changes in gene expression [193–195]. These maternal
behavior-induced epigenetic changes include differences in
DNA methylation and histone acetylation and binding of the
transcription factor, NGFIA (nerve growth factor 1A), at the
promoter of the glucocorticoid receptor [194], with some
degree of reversibility through a dietary manipulation [196].
Of singular importance to the theme being promulgated here is
the fact that these maternal behaviors can also influence future
daughters’ behaviors when they, themselves, become mothers
[197, 198]. Moreover, Gonzalez et al. [199] had reported that
maternal deprivation could have negative intergenerational
effects on the behaviors of female rats, with other investigators
reporting similar findings [200]. Furthermore, Shoji and Kato
[201] have investigated the development of maternal behav-
iors in BALC/c and CBA/Ca mice that differ in parenting
behaviors, with the CBA/Ca being better mothers. The authors
demonstrated that cross-fostering of BALB/c pups by CBA/
Ca mothers improves the future mothering behaviors of
BALB/c females that show, when they become mothers,
increased licking and grooming of their own pups. The evi-
dence reviewed here suggests that training human mothers to
provide good maternal care may have positive trans-

generational effects within communities affected by socioeco-
nomic adversities. Similar arguments can be put forward for
paternal care [202, 203]. Mychasiuk et al. [202] also reported
that paternal stress had negative impact on behaviors and
increased DNA methylation in the hippocampus of their off-
springs. In contrast, enrichment of the environment of male
Long Evans rats with toys, multiple levels of exploration, and
several cage mates for 28 days before mating with control
female rats had positive impact on exploratory behaviors of
the males’ offsprings and on DNA methylation in their hip-
pocampi and frontal cortices [203]. Enrichment of paternal
environment can also have positive effects on maternal care
and pup behaviors [204]. Althoughmore research is needed to
investigate the potential effects of these kinds of manipula-
tions on future drug taking in animal models, the reviewed
observations suggest that promoting resilience may impact
drug self-administration in the offsprings of parents reared in
enriched environments.

Therapeutic Implications: Promoting Resilience
Against Substance Use Disorders

In the past two decades, there has been a heavy reliance on the
potential of brain science to explain the cause, development,
and clinical course of SUDs [205]. This reductionist construct
has led to a large number of important basic science discov-
eries that have not yet significantly impacted the daily lives of
patients who suffer from these recalcitrant disorders. This
statement is not only true for SUDs but also for several
medical and psychiatric disorders where there are obvious
disparities based on ethnic and socioeconomic status
[206–208]. In the case of SUDs, the almost complete theoret-
ical reliance on the behavioral, biochemical, and epigenetic
observations in animals to explain human addiction might
have corrupted our efforts to develop therapeutic approaches.
This is because the focus has almost solely been on potential
pharmacological “magic bullets” for a quick fix of the addic-
tions. Similar approaches to other complex neuropsychiatric
illnesses have not necessarily met with greater therapeutic
outcomes. In fact, this reductionist emphasis might have led
to a closure of our minds to the potential for families, com-
munities, and other sources of enrichment to enhance resil-
ience in individuals who are at risk [209] or are already
suffering from SUDs.

As stated above, not everybody subjected to gross dispar-
ities ends up with a diagnosis of SUDs. This fact implicates
individual as well as family- and community-based resilient
factors in protecting these individuals against drug addiction
[180, 210, 211]. These observations notwithstanding, instead
of pursuing an agenda that actively promotes enhancement of
resilience by reinforcing identified protective factors
[212–214], the focus has been mainly on identifying negative
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or pathological elements in these communities [215]. I suggest
that a more profitable approach for our addicted patients may
be to identify resilient factors such as coping styles because
these characteristics have been shown to reduce vulnerability
to medical and psychiatric disorders in humans [216, 217].
There is also evidence, in animal models, that promotion of
active coping can have significant neuroendocrine and epige-
netic effects [218] whereas maternal deprivation can influence
drug-taking behaviors [94]. In fact, an agenda that tries to
identify resilient factors would have the added benefit of
improving the treatment of patients who are co-morbid for
SUDs and other psychiatric disorders [219].

This discussion further suggests a need for a research em-
phasis that attempts to identify coping styles of individuals and
families that show resilience against the ravages of SUDs
although they are still living in environments marred by pover-
ty, poor access to education, or repeated discriminatory aggres-
sive acts [220]. Once these coping styles are identified, it may
be possible to enhance these behavioral patterns through active
mentoring of individuals at risks, in effect, recognizing the

potential prominence of social interactions in the development
of phenotypic diversity within specific environments. Because
the effects of life stresses [221] and resilient behaviors [203] can
be transmitted across generations, these environmental inter-
ventions may have substantial positive cost/benefit ratios for
our health care systems and our nations by negating the com-
plex effects of environmental stresses on the behaviors of
young children and adolescents reared in these settings. This
conclusion is supported by the high co-morbidity of other
psychiatric diatheses and SUDs and the fact that some of these
disorders appear to share similar developmental risks and po-
tential epigenetic substrates [222, 223].

This thesis does not negate the need for continued support of
reductionist approaches that provide useful neurobiological ex-
planations for the direct effects of drugs on the brain. It hints,
however, to the added possibility of using therapeutic agents
such as antidepressant drugs alone or in combination with other
epigenetic agents that have been shown to promote resilience in
animalmodels [81]. I argue, however, that these pharmacological
agents may be more beneficial when used in conjunction with

Genome Epigenomic Changes 
Histone Acetylation, Methylation, Phosphorylation.
DNA Methylation (gene-specific changes).
DNA Hydroxymethylation (gene-specific changes).

Transcriptome
Drug-dependent Changes
Drug/Environment Interactions

Proteome
Post-translational Modifications

Functional Changes
Synaptic Adaptations
Metabolic Abnormalities
Re-activation of Developmental Programs-Neuronal differentiation 
Glial Cell Adaptations
Cognitive Impairments
Complex Behavioral Syndromes-Addiction

Drug Exposure

Environmental Conditions
Multifactorial Stresses
Parental Deprivation 
Community Enrichment
Resilience Factors

Individual Factors

Fig. 1 Schema showing the potential interactions of drugs of abuse with
an individual’s genome and the impact of environmental vicissitudes on
the individual’s responses to these agents. The epigenetic responses to the
drug will probably be dependent on the genetic background, family
resilient factors, and environmental stressors that individuals face
during their lifetimes. Substance use disorders (addiction) are thus
viewed not as reductionist constructs but as multifactorial complex
neuropsychiatric disorders, with only a few individuals actually
developing those syndromes after trying various rewarding substances.

This statement suggests the need to develop more animal models that take
these issues into consideration. By extension, our pharmacological
treatments may thus be bound to fail because present approaches of
developing therapeutic agents employ all animals that self-administer a
drug in question whereas only a few percentages of humans become
addicted to a licit or illicit substance. The schema also suggests the need
to identify resilient factors within individuals and families that treatment
personnel can shore up within addicted individuals and teach to those
who are living in high-risk situations
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mentoring activities that promote active coping. This proposal
also points to the need to develop better animal models that are
more representative of human conditions [224, 225, 141, 226]
since not everyone who experiments with drugs is or will be-
come a drug addict. The development of better models will help
to differentiate biochemical and epigenetic effects observed after
simple drug exposure from those alterations associated with true
addicted states. The need to use better animalmodels of addiction
in molecular studies is illustrated well by recent papers that have
purported to identify nicotine-induced epigenetic modifications
that were proposed as supporting evidence for the idea of nico-
tine as a gateway agent to psychostimulant abuse [159]. I argue
further that these new models would need to go beyond super-
ficial similarities between animal responses to drugs of abuse and
the complex cognitive behaviors and affective states observed in
our addicted patients. As a consequence of using better models,
pharmacologic agents derived from these experiments would be
more specific in terms of blocking or suppressing epigenetic,
transcriptional, and biochemical changes associated with sensi-
tivity to stress and SUDs. By extension, these medications may
have a greater impact on the lives of our patients. Using this line
of reasoning, SUDs will need to be viewed not as being second-
ary solely to drug-induced biochemical and epigenetic effects but
as, most likely, to be secondary to interactions of drugs with the
genomes of individuals living within an environment that was
permissive to the development of pathologic use of drugs (see
Fig. 1 for a schematic rendering). This statement re-emphasizes
the need to always bear in mind the existence of resilient factors
or traits in individuals, families, and sub-communities that have
shown their utilities in combating the effects of drugs in individ-
uals, even when said individuals had experimented with addic-
tive substances during their adolescence. I believe that this
capacity to thrive against inordinate odds can be strengthened
through mentored good mothering.
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