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Colistin-resistant mutants were obtained from 17 colistin-susceptible strains of Acinetobacter baumannii, Pseudomonas aerugi-
nosa, Klebsiella pneumoniae, and Escherichia coli. The stability of colistin resistance in these mutants was investigated. Three of
four colistin-resistant P. aeruginosa mutants recovered colistin susceptibility in colistin-free medium; however, colistin-suscep-
tible revertants were obtained from only one strain each of A. baumannii and E. coli. No susceptible revertants were obtained
from K. pneumoniae mutants.

Colistin resistance has been observed in Gram-negative patho-
gens (1–3). Colistin resistance is mediated by mutations in the

PmrAB or PhoPQ two-component regulatory systems, the loss of
lipopolysaccharide, or MgrB inactivation (4). Colistin resistance is
described as a type of adaptive resistance with the rapid develop-
ment of resistance in the presence of antibiotics and reversal to
susceptibility in the absence of the same (5). This suggests that
resistance to colistin may diminish in the absence of colistin or by
limiting the extracellular concentration of divalent cations. In this
study, we developed colistin resistance in vitro in four Gram-neg-
ative bacteria—Acinetobacter baumannii, Pseudomonas aerugi-
nosa, Klebsiella pneumoniae, and Escherichia coli. We also exam-
ined the stability of the resistant strains.

Seventeen strains, which were randomly isolated from patients
suffering from bacteremia or urinary tract infections in South Ko-
rea, were used in this study (Table 1). The patients had not re-
ceived intravenous or inhaled colistimethate. For all isolates, mul-
tilocus sequence typing (MLST) was performed as described
previously (6–9). MICs were determined by a broth microdilution
method using cation-adjusted Mueller-Hinton broth and inter-
preted according to CLSI breakpoints (10) for A. baumannii and
P. aeruginosa and EUCAST breakpoints (11) for E. coli and K.
pneumoniae.

Colistin-resistant mutants were developed from the colistin-
susceptible wild-type strains. Starting with a single colony of each
wild-type strain, colistin-resistant mutants were chosen by serial
passage, using progressively increasing concentrations of colistin
(12). At the end of the induction period, the spontaneous mutants
growing in Luria-Bertani (LB) medium containing 16 �g/ml
colistin were reinoculated on LB agar plates containing 32 �g/ml
colistin in order to obtain single resistant populations.

To investigate the stability of the colistin resistance developed,
the mutants were repeatedly subcultured in the absence of colis-
tin. Overnight cultures of all induced colistin-resistant mutants
were diluted 1:1,000 in fresh LB medium without colistin and
incubated with vigorous shaking (220 rpm) at 37°C for 24 h.
Colistin MICs for the pooled populations diluted in saline were
estimated for all serially transferred cultures. For E. coli and P.
aeruginosa, the maximum number of passages was 32 days, and A.
baumannii and K. pneumoniae cells were transferred serially for 62
and 42 days, respectively.

Heteroresistance to colistin was identified by population anal-
ysis profiling by spreading a 0.1-ml aliquot from a 24-h culture of

parental susceptible strains (13). Heteroresistance was defined as
the presence of colonies more than the limit of quantification
(LOQ) (400 CFU/ml) on the agar plate containing 10 �g/ml colis-
tin (13, 14). Mutation frequency was investigated using cultures
that were subjected to several serial passages in antibiotic-free LB
broth medium. Mutation frequency was defined as the ratio of the
CFU on a plate containing 4 �g/ml colistin to that on an antibi-
otic-free plate for each strain.

Amino acid substitutions were identified in pmrAB for A. bau-
mannii, P. aeruginosa, K. pneumoniae, and E. coli, phoPQ for P.
aeruginosa, K. pneumoniae, and E. coli, and mgrB for K. pneu-
moniae using primers described previously (12, 15, 16).

In this study, colistin-resistant mutants were obtained from all
susceptible parental strains (Table 1). Colistin-resistant mutants
were selected in vitro from all cultures grown in medium contain-
ing 0.5 to 16 �g/ml colistin, which indicates that colistin resistance
can be readily developed under antibiotic pressure. The colistin-
resistant mutants had a colistin MIC of �64 �g/ml. Rapid devel-
opment of colistin resistance in some bacterial species has previ-
ously been reported (12, 17, 18). A previous mutant prevention
concentration study also indicated that colistin resistance can be
readily induced during drug therapy by single-step mutation in A.
baumannii, P. aeruginosa, and K. pneumoniae (19). While MgrB
mutations were readily found in other colistin-resistant K. pneu-
moniae strains or mutants (20–23), no mutations of MgrB were
identified in this study.

Contrary to the nature of development of colistin resistance,
the stability of colistin resistance differed between strains.
Colistin-susceptible revertants were obtained from only 5 of
the 17 colistin-resistant mutants: one A. baumannii and three P.
aeruginosa strains and one E. coli strain (Table 1 and Fig. 1). None
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of the K. pneumoniae mutants produced any colistin-susceptible
revertants.

Heteroresistance to colistin was identified in all four K. pneu-
moniae strains, and two P. aeruginosa and two A. baumannii
strains and one E. coli strain were heteroresistant to colistin (Table
1). The correlation between colistin heteroresistance and stability
of colistin resistance may not be supported because the heterore-
sistant K. pneumoniae strains did not lose colistin resistance in
antibiotic-free medium. In addition, A. baumannii H07-988
showed heteroresistance to colistin, but it did not develop a colis-
tin-susceptible revertant, and P. aeruginosa P5 showed a com-
pletely opposite nature. Furthermore, mutation frequency might
not be associated with the heteroresistance and stability of colistin
resistance (Table 1).

We identified several mutations in PhoPQ and PmrAB in colis-
tin-resistant mutants. However, it was not proven that the muta-
tions are associated with colistin resistance. In colistin-susceptible
revertants of P. aeruginosa P5 and P155 and E. coli E015, addi-
tional mutations were found compared to their colistin-resistant
progenitors (Table 1). However, such compensatory mutations
were not observed in colistin-susceptible revertants of A. bauman-
nii H05-513 and P. aeruginosa P6, in which only genetic reversions
were identified. Such genetic reversion was also identified in P.
aeruginosa P5 and P155.

The induced colistin resistance was eliminated in most P.
aeruginosa strains in a colistin-free medium, but it remained sta-
ble in the other species tested (A. baumannii, K. pneumoniae, and
E. coli). Therefore, the principle of adaptive resistance can be ap-
plied to P. aeruginosa but not to the others. The stability of colistin
resistance has already been observed in A. baumannii (18). How-

ever, this stability is a major concern in the other three Gram-
negative species, as newly emerged resistance in these species can
be preserved and disseminated even in the absence of antibiotic
pressure. Many studies have discussed the factors affecting the
fitness cost of colistin resistance, such as increased susceptibility to
other antibiotics, growth retardation, and reduced virulence (15,
24, 25), which may prevent an increase in the cases of colistin
resistance in hospitals. However, compensatory mutations can
change this situation, making it more difficult to treat the infec-
tions caused by Gram-negative pathogens.

The colistin resistance developed in patients treated with colis-
tin for Gram-negative pathogenic infections may be preserved is a
valid concern in the public health domain, with respect to pre-
venting further development of resistance to the antibiotic. In
addition, the mechanisms underlying the stability of colistin resis-
tance, which has marked implications for the therapeutic options,
need to be investigated.

Nucleotide sequence accession numbers. The nucleotide se-
quences obtained in this study have been submitted to the GenBank
database under accession no. KT716084 to KT716131, KT716132 to
KT716179, KT719393, and KT719394.
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P. aeruginosa strains and one strain each of A. baumannii and E. coli resistant mutants. Dashed lines indicate the breakpoint of colistin resistance for each species.
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