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MICs and biofilm inhibitory concentrations (BICs) were measured for 68 cystic fibrosis (CF) Achromobacter isolates for amika-
cin, aztreonam, colistin, levofloxacin, and tobramycin. With the exception of colistin and levofloxacin, the remaining antibiotics
had MIC90s, BICs at which 50% of the isolates were susceptible (BIC50s), and BICs at which 90% of the isolates were susceptible
(BIC90s) equal to or above the highest concentrations tested. In a biofilm model, tobramycin was able to significantly increase
killing of bacterial cells compared to controls, for intermediate-resistant strains only, at concentrations of 1,000 and 2,000
�g/ml.

Achromobacter species, previously known as Alcaligenes species,
are multidrug-resistant Gram-negative bacteria that have in-

creasingly been isolated from the sputum from cystic fibrosis (CF)
patients worldwide (1). Case-control studies have shown in-

creased decline in lung function following pulmonary infection
with Achromobacter xylosoxidans (2, 3). As with Burkholderia ce-
pacia complex and Stenotrophomonas maltophilia, A. xylosoxidans
species are intrinsically resistant to several classes of antibiotics
(4–7). Currently, there are no recommendations for chronic sup-
pressive aerosolized antimicrobial therapies to treat these infec-
tions in CF patients. The objectives of this study were thus to
examine the effects of antibiotics available for aerosolization
against a range of CF Achromobacter species grown planktonically
and as biofilms, which are important in CF pulmonary infections.

Sixty-eight Achromobacter isolates were collected from CF pa-
tients at The Hospital for Sick Children, Toronto, Ontario, Can-
ada (n � 15), and the CF Foundation B. cepacia Research Labora-
tory and Repository, Ann Arbor, MI (n � 53). The collection of
Achromobacter CF isolates included five species: A. xylosoxidans
(n � 50), A. denitrificans (n � 3), A. dolens (n � 5), A. insolitus
(n � 5), and A. ruhlandii (n � 5). Antimicrobial susceptibility
testing was performed on isolates grown planktonically and as
biofilms for amikacin, aztreonam, colistin, levofloxacin, and to-
bramycin, as previously described (8, 9). Five A. xylosoxidans CF
isolates with intermediate biofilm inhibitory concentrations
(BICs) (defined as �800 �g/ml tobramycin, representing the
mean peak sputum concentration of aerosolized tobramycin [10])
and another 5 isolates from the same species but with high BICs
(�800 �g/ml tobramycin) were selected for further study in the
biofilm slide chamber model. After 48 h of growth, biofilms were
treated with various concentrations of tobramycin (0, 8, 400,
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TABLE 1 Antibiotic MICs and BICs for Achromobacter CF isolates
measured by planktonic and biofilm susceptibility testing

MIC/BIC by
antibiotic

Results for Achromobacter species

All species
(n � 68)

A. xylosoxidans
(n � 50)

Other species
(n � 18)a

Amikacin
MIC50 512 1,024 256
BIC50 �4,096 �4,096 �4,096
MIC90 �4,096 �4,096 �4,096
BIC90 �4,096 �4,096 �4,096

Aztreonam
MIC50 256 512 512
BIC50 �2,048 �2,048 �2,048
MIC90 2,048 2,048 2,048
BIC90 �2,048 �2,048 �2,048

Colistin
MIC50 4 8 4
BIC50 �256 �256 �256
MIC90 64 64 64
BIC90 �256 �256 �256

Levofloxacin
MIC50 20 20 20
BIC50 5,120 5,120 5,120
MIC90 20 20 20
BIC90 �5,120 �5,120 �5,120

Tobramycin
MIC50 200 400 200
BIC50 3,200 3,200 3,200
MIC90 �3,200 �3,200 �3,200
BIC90 �3,200 �3,200 �3,200

a “Other species” includes A. denitrificans (n � 3), A. dolens (n � 5), A. insolitus
(n � 5), and A. ruhlandii (n � 5).
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1,000, and 2,000 �g/ml) for 24 h, stained using the FilmTracer
LIVE/DEAD biofilm viability kit, and visualized by confocal mi-
croscopy (see Methods in the supplemental material).

Planktonic and biofilm susceptibility testing were performed
on a total of 68 Achromobacter isolates. To describe the overall
susceptibility results, the MICs and BICs at which 50% and 90% of
the isolates were susceptible are presented in Table 1. For all Ach-
romobacter species, the MIC50 of amikacin (512 �g/ml), aztreo-
nam (256 �g/ml), colistin (4 �g/ml), levofloxacin (20 �g/ml), and
tobramycin (200 �g/ml) were determined. With the exception of
the MIC90s of colistin (64 �g/ml) and levofloxacin (20 �g/ml), the
remaining three antibiotics had MIC90s, BIC50s, and BIC90s that
were equal to or above the highest concentrations tested. The sus-
ceptibility results were varied among the isolates, and the distri-
butions of the MICs and BICs are presented in Fig. S1 in the
supplemental material. From the distributions of the MICs and
BICs of all Achromobacter CF isolates, the five antibiotics tested
had right-skewed MICs and left-skewed BICs. Correlations be-
tween MICs and BICs were calculated for each antibiotic using the
Spearman correlation coefficient and were found to be statistically

significant for amikacin (r � 0.271, P � 0.05) and tobramycin
(r � 0.261, P � 0.05) only. To determine the effect of tobramycin,
one of the most commonly used and available inhaled antibiotics
in CF, on A. xylosoxidans, the most prevalent Achromobacter spe-
cies in CF, biofilms grown in a slide chamber model were treated
with various concentrations of antibiotic and imaged using con-
focal microscopy. Upon visualization of the intermediate-resis-
tant strains, there appeared to be an increase in bacterial killing at
concentrations of 1,000 and 2,000 �g/ml tobramycin, which was
not observed with the highly resistant strains (Fig. 1). In addition,
there was a statistically significant increase in the percentage of
dead cells at concentrations of 400, 1,000, and 2,000 �g/ml tobra-
mycin that showed a dose-response effect, but no change in thick-
ness was observed in a comparison of intermediate-resistant bio-
films to the untreated controls (Fig. 2). With the highly resistant
strains, there was no statistically significant change in thickness or
killing at any of the concentrations of tobramycin tested.

This study examined the antibiotic susceptibility of a large col-
lection of Achromobacter isolates from CF patients and included
the most common Achromobacter species encountered in this

FIG 1 Confocal microscopy of live and dead (green and red, respectively) intermediately resistant (A) and highly resistant (B) A. xylosoxidans CF isolates treated
with 1,000 and 2,000 �g/ml tobramycin in the biofilm slide chamber model.

FIG 2 Mean (with standard error of the mean) thickness (A) and percent dead (B) of intermediately (black bars, n � 5) and highly (white bars, n � 5) resistant
Achromobacter xylosoxidans CF isolates treated with increasing concentrations of tobramycin in the biofilm slide chamber model. *, P � 0.05; **, P � 0.01
compared to the untreated control.
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population (11, 12). These in vitro results highlight their high
degree of resistance to multiple classes of antibiotics in the context
of both planktonic and biofilm growth. Several studies have noted
that resistance among strains isolated from patients with CF is
quite common; however, none have studied antibiotic suscepti-
bility of Achromobacter spp. grown as biofilms (13–15). One of the
strengths of this study was the investigation of antimicrobial ac-
tivity against biofilm structures of Achromobacter using two mod-
els of biofilm growth, namely, the Calgary Biofilm Device and a
slide chamber model with visualization using confocal micros-
copy. The results confirmed that when grown as biofilms, these
bacteria, like others, exhibited higher tolerance to antibiotics (9,
16). The availability of aerosolized formulations of antibiotics,
however, allows for higher pulmonary concentrations to be
achieved in patients (10). All of the antibiotics tested in our study
are either commercially available or in phase III study for aerosol-
ization in CF patients, and the concentrations tested represent
those achievable in the lungs after aerosolization. While the ma-
jority of isolates still had BICs above the achievable aerosolized
concentration, levofloxacin and tobramycin showed the greatest
efficacy against Achromobacter spp. overall, with the highest per-
centages of isolates with MICs and BICs below the achievable
mean sputum drug concentrations (10). As we have previously
shown (9), there was a significant correlation between the MICs
and BICs for aminoglycosides but not for other antimicrobial
classes tested, suggesting potential efficacy against both planktoni-
cally grown and biofilm-grown organisms. Data using the biofilm
slide chamber model coupled with confocal microscopy con-
firmed the BIC data in this study. Strains deemed to be interme-
diate resistant via the Calgary Biofilm Device showed more killing
with increasing doses of tobramycin. In contrast, strains with high
resistance to tobramycin showed little increase in killing com-
pared to that with the control. Inhaled levofloxacin and tobramy-
cin thus represent the most promising treatment options, with
effects that go beyond merely inhibiting Achromobacter growth to
actually killing bacterial cells embedded in biofilms. Clinical trials,
however, are needed to demonstrate true in vivo efficacy.
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