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We assessed the prevalence of six biocide resistance genes among 82 methicillin-resistant Staphylococcus aureus (MRSA) and
219 methicillin-susceptible S. aureus (MSSA) isolates from three African countries; the prevalence was very high for sepA
(95.3%), mepA (89.4%), and norA (86.4%), intermediate for lmrS (60.8%) and qacAB (40.5%), and low for smr (3.7%). A signifi-
cant association between biocide resistance genes and antibiotic resistance was observed, and a new cutoff MIC of >1 mg/liter
for chlorhexidine nonsusceptibility was defined.

Biocides, as quaternary ammonium compounds (QACs) or bi-
guanides, are widely used in infection control programs, in-

cluding hand washing and skin decolonization prior to invasive
procedures. However, its overuse led to the emergence of Staphy-
lococcus aureus with decreased antiseptic susceptibility, which be-
came a problem in hospitals in different regions of the world (1–
3). Although biocide resistance might be multifactorial, multidrug
resistance efflux pumps are the predominant mechanisms medi-
ating cross-resistance to both antibiotics and biocides (4). Nu-
merous genes encoding multidrug efflux pumps, such as qacA,
qacB, smr, norA, lmrS, mepA, and sepA, have been described in
clinical S. aureus isolates from humans, animals, and environmen-
tal samples (2, 5–10). Moreover, reduced susceptibility to chlo-
rhexidine, one of the most frequently used biocides, is usually
associated with both the qacAB and smr gene families (11, 12).
Consequently, daily chlorhexidine baths in combination with
mupirocin nasal ointment, a usual practice in preventive decolo-
nization programs, and the usage of chlorhexidine hand soap as an
infection control measure might be compromised (13). Although
qacAB prevalence in methicillin-resistant S. aureus (MRSA) has
been reported as highly varied, from �1% in a few Asiatic coun-
tries to 80% in Brazil (1, 2, 14–20), the geographic distribution of
additional biocide resistance genes has been poorly studied and, to
date, there are no data from the African continent, where the
prevalence of MRSA is considerably high (up to 60%) (21).

In the present study, we aimed to fulfil this gap by determining
the prevalence of six biocide resistance genes among representa-
tive S. aureus isolates from previous nasal carriage surveillance
studies in Angola, São Tomé and Príncipe, and Cape Verde (21,
22). Antimicrobial resistance profiles, molecular characteriza-
tions, and information on the presence of virulence determinants
were available for all isolates (21, 22). In order to obtain the high-
est degree of clonal variability, convenience samples of 82 MRSA
and 219 methicillin-susceptible S. aureus (MSSA) isolates were
selected, including one isolate from each pulsed-field gel electro-
phoresis (PFGE) subtype described in each country and during
each screening period: (i) Angola, 57 MRSA and 62 MSSA isolates;
(ii) Cape Verde, 6 MRSA and 99 MSSA isolates; and (iii) São Tomé
and Príncipe, 19 MRSA and 58 MSSA isolates.

Internal fragments of six efflux pump genes (qacAB, smr, norA,
lmrS, mepA, and sepA) were amplified by PCR in all isolates. The

primer sequences, modifications of published protocols, and spe-
cific controls are listed in Table S1 in the supplemental material.

The chlorhexidine MIC and minimum bactericidal concentra-
tion (MBC) were determined for all isolates using a Clinical and
Laboratory Standards Institute broth microdilution method (23).
S. aureus strains ATCC 29213 and ATCC 12228 were used as qual-
ity controls.

Categorical variables were compared using Fisher’s exact test,
and prevalence increasing trends were verified by chi-square test
using the GraphPad software version 6.0. In all cases, P values of
�0.05 were considered statistically significant.

The global prevalence of six biocide resistance genes in the
present S. aureus collection was very high for sepA (95.3%), mepA
(89.4%), and norA (86.4%), intermediate for lmrS (60.8%) and
qacAB (40.5%), and low for smr (3.7%). A similar distribution was
observed in a comparison of the MRSA and MSSA populations
(see Table S2 in the supplemental material), except for sepA and
qacAB, which were more prevalent among MRSA isolates (P �
0.0137 and �0.0001, respectively). Although qacAB has com-
monly been reported among MRSA isolates (1, 3, 24, 25), no direct
relation was described between methicillin resistance and qacAB
prevalence (26).

Except for sepA, which was prevalent in all countries (P �
0.1249), the distributions of other genes were significantly differ-
ent (see Table S2 in the supplemental material); namely, a higher
percentage of qacAB was detected in Angola (56.3%, P � 0.0001).
The smr gene, sporadically reported in Europe and Asia (1, 2), was
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detected only among MSSA isolates from Angola (5.9%) and Cape
Verde (3.8%).

Although the presence of some biocide resistance genes has
been associated with major S. aureus clonal lineages (9, 13, 18, 19,
27, 28), this was not the case in our collection, in which all genes
but one (smr) were present among the 14 MRSA clonal types (Fig.
1A). Concerning the major clones currently circulating in the
three African countries (A-ST5-IVa, B-ST88-IVa, and C-ST8-
IV/V) (21), mepA, norA, and qacAB were predominant not only in
the B-ST88-IVa lineage (100%, 95%, and 77%, respectively) but
in the majority of A-ST5-IVa isolates (81%, 85%, and 59%, re-
spectively) as well. Moreover, lmrS was widespread between the
B-ST88-IVa (86%) and C-ST8-IV/V (77%) lineages and also
found in the A-ST5-IVa lineage (41%). Therefore, biocide resis-
tance genes are highly prevalent among major MRSA clonal lin-
eages in these African countries.

The MSSA population showed higher clonal lineage vari-
ability (30 clones) than that of the MRSA population (21), with
a parallel variability in the distribution of biocide resistance
genes (Fig. 1B). Although a direct correlation between the pres-
ence of a biocide resistance gene and a specific clone was not
traced, qacAB was poorly represented in two of the most pre-
dominant MSSA lineages (Q-ST45 and M-ST152) and absent
in V-ST188 (Fig. 1B).

In this study, biocide resistance genes were significantly asso-
ciated with antibiotic resistance (see Table S3 in the supplemental
material). qacAB was associated with resistance to �-lactams (cefoxi-
tin), aminoglycosides, rifampin, trimethoprim-sulfamethoxazole,
and chloramphenicol, which has also been reported in S. aureus clin-
ical isolates in China (3). qacAB and smr resistance genes are lo-
cated on mobile genetic elements, namely, plasmids that fre-
quently carry other antibiotic resistance genes, which results in the
coselection of antibiotic-resistant bacteria (4, 8, 29). Rifampin re-
sistance, which was high in these African countries (21), was as-
sociated with the presence of four out of the six antiseptic resis-
tance genes (see Table S3). Rifampin resistance is driven by
mutations in the rpoB gene, and several reports have suggested
that the fitness burden associated with rifampin resistance might
influence the prevalence of specific resistance genotypes in clinical
strains of S. aureus (30). Although these suggestions might justify
the maintenance of antiseptic genes as an advantage for bacterial
persistence in this environment, this association should not be
excluded as a confounding parameter.

The MIC for chlorhexidine ranged between 0.125 and 8 mg/
liter in the entire collection, although the overwhelming majority
of the isolates (90%) showed an MIC of 0.5 to 1 mg/liter. Higher
MICs of 4 and 8 mg/liter were observed in three Angolan isolates
only. Similar chlorhexidine MICs (0.5 to 1 mg/liter) were found in

FIG 1 Distribution of the six biocide resistance genes by major MRSA (A) and MSSA (B) clonal lineages circulating in Angola, São Tomé and Príncipe, and Cape
Verde.
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MRSA and MSSA populations (85.0% [70/82 isolates] of MRSA
versus 91.8% [201/219 isolates] of MSSA; P � 0.1285), as previ-
ously reported for MRSA isolates from human and animal origins
(10, 31). To date, there is no breakpoint consensus to define bio-
cide-reduced susceptibility, and independent reports have pro-
posed different epidemiological cutoff (ECOFF) values based on
the normal distribution of MICs in different S. aureus populations
(27, 32, 33). In our study, an MIC cutoff of �1 mg/liter was de-
fined, since �1% of the isolates showed an MIC of �2 mg/liter. In
Cape Verde, 40% of the S. aureus isolates showed a chlorhexidine
MIC of �1 mg/liter, which is significantly higher than the values
observed in São Tomé and Príncipe (34%) and Angola (23%)
(P � 0.0186). Chlorhexidine nonsusceptibility still seems to be
low in these African countries, despite the high percentage of bio-
cide resistance genes detected in S. aureus isolates there. The pres-
ence of qacAB and norA genes was not associated with increased
chlorhexidine nonsusceptibility in our collection (P � 0.7069 and
0.7196, respectively), although these associations have commonly
been described in staphylococci (11).

One of the limitations of our study was the lack of availability
of quantitative data concerning biocide usage. Although the prev-
alence of biocide-resistant isolates in the African population
might be underestimated due to the use of convenience samples,
these data show that the use of antiseptics might be selecting for
antibiotic-resistant strains and assisting their survival in the health
care environment, which is of major concern for future infection
control programs.
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