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An interregional surveillance program was conducted in the northwestern part of France to determine the prevalence of carbap-
enem-nonsusceptible Enterobacteriaceae (CNSE) isolates and their susceptibility to ceftazidime-avibactam and aztreonam-
avibactam combinations. Nonduplicate CNSE clinical isolates were prospectively collected from six hospitals between June 2012
and November 2013. MICs of ceftazidime and aztreonam, alone or combined with a fixed concentration of avibactam (4 �g/ml),
and those of carbapenems (comparator agents) were determined. MICs of ertapenem in combination with phenylalanine argi-
nine-naphthylamide dihydrochloride (PA�N) were also determined to assess active efflux. Genes encoding carbapenemases,
plasmid-mediated AmpC enzymes, extended-spectrum �-lactamases (ESBLs), and major outer membrane proteins (OMPs)
were amplified and sequenced. OMPs were also extracted for SDS-PAGE analysis. Among the 139 CNSE isolates, mainly Entero-
bacter spp. and Klebsiella pneumoniae, 123 (88.4%) were ertapenem nonsusceptible, 12 (8.6%) exhibited reduced susceptibility
to all carbapenems, and 4 Proteeae isolates (2.9%) were resistant to imipenem. Carbapenemase production was detected in only
two isolates (producing OXA-48 and IMI-3). In contrast, OMP deficiency, in association with AmpCs and/or ESBLs (mainly
CTX-M-9, SHV-12, and CTX-M-15), was largely identified among CNSE isolates. The ceftazidime-avibactam and aztreonam-
avibactam combinations exhibited potent activity against CNSE isolates (MIC50/MIC90, 1/1 �g/ml and 0.5/0.5 �g/ml, respec-
tively) compared to that of ceftazidime and aztreonam alone (MIC50/MIC90, 512/512 �g/ml and 128/512 �g/ml, respectively).
This study reveals the in vitro activity of ceftazidime-avibactam and aztreonam-avibactam combinations against a large collec-
tion of porin-deficient enterobacterial isolates that are representative of the CNSE recovered in the northern part of France.

Carbapenems are broad-spectrum antibiotics usually reserved
for severe life-threatening infections. Some isolates of Enter-

obacteriaceae have developed carbapenem resistance, which re-
sults in limited options for the treatment of infections caused by
these organisms. Except for the members of the Proteeae tribe,
carbapenem resistance in Enterobacteriaceae is almost always at-
tributable to the production of �-lactamases, which can be distin-
guished according to their carbapenemase activity. “True” car-
bapenemases (e.g., KPC, OXA-48, and metallo-�-lactamases
[MBLs]) confer resistance per se to carbapenems, whereas extend-
ed-spectrum �-lactamases (ESBLs) and AmpC-type enzymes re-
quire an additional mechanism of resistance, such as a decrease in
the uptake of antibiotics by porin deficiency (1, 2) or efflux system
overexpression (3), to be responsible for carbapenem resistance.

The rapid dissemination of carbapenemase-producing carbap-
enem-resistant Enterobacteriaceae (CP-CRE) that account for
worldwide outbreaks (4) could be attributable to the location of
the carbapenemase-encoding genes on mobile elements that facil-
itate transmission within and between isolates of Enterobacteria-
ceae. CP-CRE infections are associated with high rates of morbid-
ity and mortality and occur most frequently among inpatients
with a prolonged hospitalization stay and those who are critically
ill or exposed to invasive devices (4). The antibiotic agents for
treating carbapenem-nonsusceptible Enterobacteriaceae (CNSE)

infections, such as colistin, are extremely limited and are often
associated with adverse reactions.

CP-CRE isolates emerged in France in the late 2000s, and their
number has increased particularly in Paris and in the northern
part of the country (5). The aim of this study was to conduct a
prospective interregional surveillance program to assess the prev-
alence of CNSE clinical isolates at six health care facilities located
in the North of France and to identify their mechanisms of resis-
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tance. We also tested the activity of ceftazidime-avibactam and
aztreonam-avibactam against these strains to determine whether
these novel combinations could constitute therapeutic alterna-
tives in the future.

MATERIALS AND METHODS
Bacterial strains. Enterobacterial clinical isolates that were recovered
from clinical samples and presented reduced susceptibility to at least one
carbapenem, according to the CLSI criteria (6), were collected from six
health care facilities (the teaching hospitals of Amiens, Lille, and Caen and
the general hospitals of Abbeville, Compiègne, and Beauvais). The isolates
were collected during a 1-year period, between June 2012 and November
2013, according to the hospital centers. Only one isolate per patient was
included in the study. All isolates were sent to the laboratory of bacteriol-
ogy of the teaching hospital of Amiens for reidentification by matrix-
assisted laser desorption ionization–time of flight mass spectrometry
(MALDI-TOF MS), antimicrobial susceptibility testing, and characteriza-
tion of resistance mechanisms.

Antimicrobial susceptibility testing. MIC measurements were per-
formed by the reference broth microdilution method as described in CLSI
document M07-A9 (6). MICs of ceftazidime and aztreonam alone or in
combination with avibactam (at a fixed concentration of 4 �g/ml; Astra-
Zeneca Pharmaceuticals) and MICs of ertapenem, imipenem, mero-
penem, and doripenem, which were used as comparators, were also mea-
sured. Moreover, MICs of carbapenems in combination with cloxacillin
(at a fixed concentration of 250 �g/ml; bioMérieux, Marcy l’Etoile,
France), which acts as an inhibitor of AmpC-type enzymes (7), were also
determined. Interpretation was made according to the criteria in CLSI
document M100-S23 (8). Quality control (QC) was performed using
Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, and
Pseudomonas aeruginosa ATCC 27853.

Efflux pump inhibitor tests. MICs of ertapenem in combination with
phenylalanine arginine-naphthylamide dihydrochloride (PA�N; Sigma-
Aldrich) (26.3 �g/ml), an inhibitor of RND pumps of enterobacteria (9),
were determined. A 2-fold decrease in MIC after addition of PA�N was
considered significant (9). The laboratory mutant E. coli AG102, which
overexpresses the AcrAB transporter, was used as a positive control (10).

�-Lactamase detection. The double-disk synergy test was performed
to screen for ESBLs as described by the CLSI (8). AmpC overproduction
was investigated using agar plates containing cloxacillin (250 �g/ml) (7).
Isolates were screened for class A, B, and D carbapenemases by using the
modified Hodge test (MHT) as recommended by the CLSI (8) and the
Carba NP test as described previously (11).

�-Lactamase identification. PCR was used to amplify carbapen-
emase genes (blaKPC, blaNDM, blaIMP, blaVIM, blaSIM, blaSPM, blaGIM,
blaIMI, blaOXA-48-like, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like,
and blaOXA-50-like), ESBL-encoding genes (blaCTX-M, blaTEM-like,
blaSHV-like, blaPER, blaVEB, and blaGES), and plasmid-mediated AmpC-
encoding genes (blaCMY-2, blaDHA, blaACC, blaECT, blaMOX, and blaFOX)
according to previously described procedures (12–15). All PCR products
were sequenced by use of an ABI7570 sequencer (Applied Biosystems,
Foster City, CA).

Examination of porin genes and porin expression. The sequences of
the ompK35 and ompK36 genes from K. pneumoniae, the ompC and ompF
genes from Enterobacter cloacae and E. coli, the omp-35 and omp-36 genes
from Enterobacter aerogenes, and the ompC-like and ompF-like genes from
Citrobacter freundii and Serratia marcescens were amplified and sequenced
using the primers shown in Table S1 in the supplemental material. The
amplification conditions used for the ompK35, ompK36, ompC, ompF,
omp-35, and omp-36 genes were identical to those previously described
(16, 17). The ompC-like and ompF-like genes from Citrobacter freundii
and Serratia marcescens were amplified using the following program: 95°C
for 5 min; 35 cycles of 94°C for 1 min, 51°C for 1 min, and 72°C for 1 min;
and a final elongation step of 72°C for 7 min. Strains used for the com-
parison of porin gene sequences were as follows: K. pneumoniae NTUH-

K2044, E. cloacae ATCC 13047, E. aerogenes ATCC 13048, Citrobacter
freundii ATCC 8090, and Serratia marcescens ATCC 13880. Outer mem-
brane proteins (OMPs) were isolated according to the rapid procedure of
Carlone et al. (18) and separated by sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) as previously described (16).

Molecular typing. Relatedness among isolates was established by ran-
dom amplified polymorphic DNA (RAPD) analysis and by enterobacte-
rial repetitive intergenic consensus PCR (ERIC-PCR), using Ap12h and
ERIC-2 primers, respectively, as previously described (19).

RESULTS
Diversity of CNSE isolates. A total of 139 CNSE isolates, includ-
ing 104 E. cloacae (75%), 16 K. pneumoniae (11.5%), 5 E. aerogenes
(3.5%), 5 C. freundii (3.5%), 3 Morganella morganii (2.1%), 3 E.
coli (2.1%), 2 S. marcescens (1.6%), and 1 Proteus mirabilis (0.8%)
isolate, were collected. Eighty-four (60.4%), 43 (31%), 9 (6.5%), 2
(1.4%), 1 (0.7%), and 0 (0%) isolates were collected from the
hospitals of Amiens, Lille, Caen, Beauvais, Abbeville, and Com-
piègne, respectively. A total of 11,431, 12,338, 1,862, 2,186, 1,235,
and 1,138 enterobacterial isolates were recovered in the respective
hospital centers during the study period.

Genotyping analysis revealed that 36 E. cloacae and 4 K. pneu-
moniae isolates in the teaching hospital of Amiens displayed un-
distinguishable genotyping patterns (data not shown) (clones A
and B, respectively). Moreover, 3 E. cloacae and 2 K. pneumoniae
isolates were genotypically related in the teaching hospital of Lille
(clones C and D, respectively). All other CNSE isolates were geno-
typically unrelated.

Characterization of carbapenem resistance. Only two strains
were detected as CP-CRE (1.4%). One K. pneumoniae isolate and
one E. cloacae strain, recovered in the hospital of Caen and in the
hospital of Amiens, respectively, tested positive for carbapen-
emase production. The K. pneumoniae isolate expressed an
OXA-48 enzyme (in association with an OXA-1 penicillinase),
whereas the E. cloacae isolate produced an IMI-3 �-lactamase (in
combination with the chromosomally encoded cephalosporinase)
(Table 1).

The other 137 CNSE isolates (98.6%) did not produce true
carbapenemases, as deduced from the Hodge test, PCR screening,
and the Carba NP test. One hundred twenty-four strains (90.5%)
among these 137 strains produced chromosomally encoded or
plasmid-mediated AmpC-type enzymes, as deduced from the sig-
nificant decreases in the MICs of cephalosporins with the use of
cloxacillin-containing plates (Table 1). One hundred nineteen
strains expressed their chromosomally encoded AmpC enzymes,
whereas 4 K. pneumoniae strains, which were clonally related
(clone B), and one E. coli isolate turned out to be positive for
blaCMY-2 and blaACC-1 genes, respectively.

Among the 139 CNSE isolates included in this study, 79 (57%)
were detected as ESBL producers by using the CLSI screening
criteria and the PCR screening method (Table 1) (8). They in-
cluded 64 E. cloacae (62% of the overall samples for this species),
11 K. pneumoniae (69%), 2 E. coli (66%), 1 E. aerogenes (20%), and
1 C. freundii (20%) isolate. CTX-M-type �-lactamases were de-
tected among 93% of ESBL-producing isolates. CTX-M-9 was the
most prevalent ESBL detected in E. cloacae isolates (94% of ESBL-
producing E. cloacae isolates), frequently in combination with the
SHV-12 enzyme (66%). In contrast, CTX-M-15 was the most
prevalent ESBL in E. coli and K. pneumoniae isolates (100% of
ESBL producers).

PA�N failed to restore susceptibility to ertapenem in the 139
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CNSE isolates included in this study, suggesting that efflux sys-
tems are unlikely to be involved. SDS-PAGE analysis of OMPs
revealed a deficit of at least one major OMP for all CNSE isolates
(Fig. 1), except the two CP-CRE strains and the four Proteeae
strains (Table 1). Sequence analysis of the ompC-like and ompF-
like genes revealed that the porin deficiency was attributable, in
48% of cases, to disruption by insertion sequence, nonsense mu-
tations leading to a premature stop codon, amino acid insertion in
the L3 loop (20). Some ompC-like or ompF-like genes were not
amplified, in agreement with complete gene deletion or a large
insertion preventing amplification. Moreover, 52% of CNSE iso-
lates with an altered OMP profile did not present mutations in the
coding sequences of the ompC-analogue and ompF-analogue
genes. Among the 133 porin-deficient CNSE isolates, 122 lacked
only one major porin, and the other 11 had a simultaneous loss of
both OMPs.

CNSE isolates fell into three groups according to their carbap-
enem MICs. The first one included 123 isolates (88% of the overall
CNSE strains) that presented a reduced susceptibility to ertap-
enem, whereas they remained susceptible to imipenem, mero-
penem, and doripenem (Table 2). All these strains, except the
OXA-48-producing isolate, were also resistant to extended-spec-
trum cephalosporins. The 12 isolates (9% of the overall CNSE
strains) of the second group were resistant or had intermediate
resistance to all carbapenems (Table 2). They included three clon-
ally related SHV-12/CTX-M-9-producing E. cloacae strains, de-
rived from clone A isolated in the city of Amiens, one clonally
unrelated SHV-12/CTX-M-9-producing E. cloacae strain that was

recovered in Caen, one IMI-3-producing E. cloacae isolate, four
clonally related CMY-2-producing K. pneumoniae strains (clone
B), one CTX-M-15-producing K. pneumoniae strain, one TEM-
24-producing E. aerogenes strain, and one non-ESBL-producing
S. marcescens strain. These strains were resistant to all �-lactams,
except the IMI-producing E. cloacae isolate, which remained sus-
ceptible to cefepime. The four strains of the tribe Proteeae, which
were susceptible to all carbapenems but imipenem, were inte-
grated in the third group (3% of the overall CNSE strains). They
did not produce ESBL and carbapenemase and were susceptible to
cefepime.

It is noteworthy that the level of resistance to carbapenems
correlated with the number of porins expressed, except with re-
gard to the two carbapenemase producers and the four Proteeae
strains. CNSE strains resistant only to ertapenem expressed one
OMP, whereas those that were resistant or had intermediate resis-
tance to all carbapenems produced neither OmpC nor OmpF an-
alogues. Moreover, a �2-fold decrease in the MIC of ertapenem in
combination with the AmpC inhibitor cloxacillin was shown for
all of the E. cloacae, E. aerogenes, C. freundii, and S. marcescens
isolates, except the IMI-3-producing E. cloacae isolate, thus dem-
onstrating the important contribution of class C �-lactamases to
carbapenem resistance in our study.

To define the spectra of activity of ceftazidime-avibactam and
aztreonam-avibactam against the CNSE isolates that were col-
lected in our survey, we tested the susceptibilities of the 139 strains
to these novel combinations. The ceftazidime-avibactam and az-
treonam-avibactam combinations exhibited overall potent activ-
ities against CNSE isolates (MIC50/MIC90, 0.5/1 �g/ml and 0.5/0.5
�g/ml, respectively) compared to those with ceftazidime and az-
treonam alone (MIC50/MIC90, 512/512 �g/ml and 128/512 �g/
ml, respectively) or ertapenem and imipenem alone (MIC50/
MIC90, 1/4 �g/ml and 0.5/8 �g/ml, respectively) (Table 2). The
123 ertapenem-nonsusceptible enterobacterial isolates exhibited
ceftazidime-avibactam MICs and aztreonam-avibactam MICs of
�1 �g/ml, whereas the 12 carbapenem-nonsusceptible entero-
bacterial strains exhibited ceftazidime-avibactam and aztreonam-
avibactam MICs of �4 �g/ml (Table 2). The three imipenem-
nonsusceptible M. morganii isolates and the P. mirabilis isolate

TABLE 1 �-Lactamase production and OMP profiles for the 139 CNSE isolates

OMP profile

Organism with �-lactamase production, �-lactamase(s) (no. of strains)

Carbapenemase ESBL AmpC ESBL � AmpC No �-lactamase

Wild-type outer
membrane profile

E. cloacae, IMI-3 (1) M. morganii (3) P. mirabilis (1)

K. pneumoniae,
OXA-48 (1)

Loss of one major outer
membrane porin

K. pneumoniae, CTX-M-15 (10) E. aerogenes (4) E. cloacae, CTX-M-9/
SHV-12 (36)

E. coli, CTX-M-15 (2) E. cloacae (39) E. cloacae, CTX-M-9 (20)
C. freundii (4) E. cloacae, SHV-12 (4)
S. marcescens (1) C. freundii, CTX-M-9 (1)
E. coli, ACC-1 (1)

Loss of OmpC-like and
OmpF-like porins

K. pneumoniae, CTX-M-15 (1) K. pneumoniae,
CMY-2 (4)

E. cloacae, CTX-M-9/
SHV-12 (4)

S. marcescens (1) E. aerogenes, TEM-24 (1)

FIG 1 OMP profiles of representative CNSE isolates compared to wild-type
reference strains. OMPs were profiled by SDS-PAGE. Lanes: 1, E. coli porin-
deficient strain BH01043; 2, E. coli porin-deficient strain DP02127; 3, E. coli
wild-type strain TOP10; 4, E. cloacae porin-deficient strain BH01124; 5, E.
cloacae porin-deficient strain AJP01076; 6, E. cloacae wild-type strain ATCC
13047; 7, K. pneumoniae porin-deficient strain AG02123; 8, K. pneumoniae
wild-type strain NTUH-K2044. The arrows indicate the positions of the OMPs
OmpC and OmpF.

CAZ-AVI and ATM-AVI Efficiency against CNSE in France

January 2016 Volume 60 Number 1 aac.asm.org 217Antimicrobial Agents and Chemotherapy

http://aac.asm.org


TABLE 2 MIC distributions for the 139 carbapenem-nonsusceptible Enterobacteriaceae clinical isolates, with cumulative percentages

Organism
(no. of strains) Agent(s)a

MIC (�g/ml) (cumulative %)

MIC50 MIC90�0.06 0.125 0.25 0.5 1 2 4 8 16 �32

E. cloacae (104) CAZ 2 (2) 3 (5) 99 (100) �32 �32
CAZ-AVI 9 (9) 21 (29) 58 (85) 12 (96) 4 (100) 0.5 1
ATM 2 (2) 3 (5) 14 (18) 85 (100) �32 �32
ATM-AVI 14 (13) 23 (36) 63 (96) 4 (100) 0.5 0.5
ERTA 82 (79) 12 (90) 5 (93) 5 (100) 1 2
IMP 5 (5) 8 (13) 76 (86) 10 (95) 4 (99)b 1 (100)c 0.5 1
MERO 11 (11) 79 (87) 9 (95) 4 (99)b 1 (100)c 0.5 1
DORI 18 (17) 71 (86) 9 (94) 1 (95) 4 (99)b 1 (100)c 0.25 1

K. pneumoniae (16) CAZ 1 (6) 15 (100) �32 �32
CAZ-AVI 3 (19) 8 (69) 1 (75) 4 (100) 0.25 4
ATM 1 (6) 15 (100) �32 �32
ATM-AVI 1 (6) 9 (63) 2 (75) 4 (100) 0.125 4
ERTA 7 (44) 3 (63) 2 (75) 5 (100)b 2 �32
IMP 2 (13) 8 (63) 1 (69) 1 (75)b 4 (100)b 0.5 �32
MERO 2 (13) 9 (69) 1 (75)b 4 (100)b 1 �32
DORI 2 (13) 7 (56) 2 (69) 1 (75)b 4 (100)b 0.5 16

E. aerogenes (5) CAZ 1 (20) 4 (100) �32 �32
CAZ-AVI 2 (40) 2 (80) 1 (100) 0.5 2
ATM 1 (20) 1 (40) 3 (100) �32 �32
ATM-AVI 3 (60) 1 (80) 1 (100) 0.25 1
ERTA 4 (80) 1 (100)b 2 �32
IMP 4 (80) 1 (100)b 1 8
MERO 4 (80%) 1 (100)b 1 8
DORI 1 (20%) 3 (80%) 1 (100%)b 0.5 4

E. coli (3) CAZ 2 (67) 1 (100) 2 �32
CAZ-AVI 1 (33) 2 (100) 0.25 0.25
ATM 2 (66) 1 (100) 8 �32
ATM-AVI 1 (33) 1 (67) 1 (100) 0.125 0.25
ERTA 2 (67) 1 (100) 1 2
IMP 3 (100) 0.25 0.25
MERO 3 (100) 0.25 0.25
DORI 1 (33) 2 (100) 0.25 0.25

C. freundii (5) CAZ 5 (100) �32 �32
CAZ-AVI 2 (40) 3 (100) 0.5 0.5
ATM 4 (80) 1 (100) 16 �32
ATM-AVI 4 (80) 1 (100) 0.25 0.5
ERTA 1 (20) 3 (80) 1 (100) 2 4
IMP 1 (20) 2 (60) 2 (100) 0.5 1
MERO 3 (60) 2 (100) 0.5 1
DORI 3 (60) 1 (80) 1 (100) 0.25 1

S. marcescens (2) CAZ 2 (100) �32 �32
CAZ-AVI 1 (50) 1 (100) 0.5 1
ATM 2 (100) �32 �32
ATM-AVI 1 (50) 1 (100) 0.25 1
ERTA 1 (50) 1 (100)b 1 �32
IMP 1 (50) 1 (100)b 0.5 �32
MERO 1 (50) 1 (100)b 0.25 �32
DORI 1 (50) 1 (100)b 0.25 4

P. mirabilis (1) CAZ 1 (100) �0.06 �0.06
CAZ-AVI 1 (100) �0.06 �0.06
ATM 1 (100) �0.06 �0.06
ATM-AVI 1 (100) �0.06 �0.06
ERTA 1 (100) �0.06 �0.06
IMP 1 (100) 8 8
MERO 1 (100) �0.06 �0.06
DORI 1 (100) �0.06 �0.06

(Continued on following page)
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exhibited ceftazidime-avibactam and aztreonam-avibactam MICs
of �2 �g/ml (Table 2).

DISCUSSION

This study was intended to determine the epidemiology of CNSE
clinical isolates in the northern part of France and to assess the
potency of the ceftazidime-avibactam and aztreonam-avibactam
combinations against these isolates. A notable feature of our in-
terregional study is that the CNSE isolates were prospectively and
exhaustively collected during a 1-year period, thus providing an
accurate picture of the epidemiology in the North of France. Most
CNSE isolates in this study were collected in teaching hospitals
(97% of the overall strains), whereas only a few CNSE strains were
recovered in general hospitals (3%). Most of the CNSE isolates
included were recovered in the teaching hospitals of Amiens and
Lille, which could be attributable to the local spread of ESBL-
and/or AmpC-producing epidemic strains. It is possible that
carbapenem-containing regimens, which were used to treat infec-
tions due to ESBL producers, might have further selected for mu-
tants lacking outer membrane permeability. By reducing the an-
tibiotic concentration inside the periplasm, porin changes can
amplify the �-lactamase effects of ESBLs and AmpC-type enzymes
on weakly hydrolyzed substrates, such as carbapenems (1, 2). An
additional study is ongoing to assess the contribution of carbap-
enem regimens to selection of porin-deficient mutants.

AmpC enzymes appeared to contribute greatly to carbapenem
resistance in our collection. The carbapenem-hydrolyzing activity
of class C �-lactamases has been reported previously (1, 7). This
activity could be attributable, at least in part, to the asparagine
residue at position 346, which plays a role in placing the acyl en-
zyme intermediate of extended-spectrum cephalosporins (ESCs)
in a position that is more competent for hydrolytic attack (1, 21).

In contrast, the prevalence of isolates producing true carbap-
enemases was low in our study. Only 2 of 139 strains produced
�-lactamases (IMI-3 and OXA-48). These results are in agreement
with previous studies, carried out in Chile (22), Korea (23), China
(24), United Kingdom (25), Belgium (26), and France (5, 27),
which showed that the emergence of carbapenem resistance in
Enterobacteriaceae could be supported mainly by the combination
of ESBLs or AmpC �-lactamases with porin deficiency in certain
areas. Recent reports highlighted the implication of carbapenem-
nonsusceptible noncarbapenemase producers in nosocomial out-
breaks (28) in different countries, mostly from K. pneumoniae or
Enterobacter spp. (29–31). These isolates are commonly selected in

vivo during the course of carbapenem therapy, as a consequence of
a lack of membrane permeability.

In 48% of the overall porin-deficient CNSE isolates, loss of
membrane permeability resulted from changes in OMP structure.
Genes encoding major porins were affected by mutations causing
protein structure changes in the L3 loop, by premature termina-
tion of translation, or by gene disruption. The L3 domain consti-
tutes a pore constriction region that exhibits negative charges and
plays a critical role in determining the characteristics of the pore
(20). The two amino acid replacements identified in our study,
Y214T and A141V, which were located in OmpC-like and OmpF-
like porins of E. cloacae isolates, respectively, may perturb the
electrostatic field acting in the eyelet and modify the physico-
chemical and biological channel properties. Most of these struc-
tural alterations occurred in only one of the two major OMPs,
thus affecting the susceptibility to ertapenem (1). Reduced sus-
ceptibility to other carbapenems, such as imipenem and dorip-
enem, was achieved once both major porins were altered. It is
noteworthy that no significant changes in the ompC-like and
ompF-like genes were identified in 52% of the porin-deficient
CNSE isolates. We assume that a loss of permeability might result
from decreased porin production. Further investigations into the
nature of the purported regulatory system and its mutations are
ongoing.

In addition, the peculiar resistance phenotype exhibited by the
M. morganii and P. mirabilis isolates, which were fully suscepti-
ble to all carbapenems but imipenem, could be related to an
alteration of penicillin-binding protein 2 (PBP2), as reported
previously (32, 33).

The carbapenemase threat remains rare in French hospitals
compared with the ESBL endemicity. In contrast, carbapenem
resistance has arisen from local spread of E. cloacae and K. pneu-
moniae clones associated with the dissemination of ESBL (partic-
ularly CTX-M-9 and/or SHV-12 for E. cloacae and CTX-M-15 for
K. pneumoniae) and AmpC production, leaving few therapeutic
options available.

Several studies, conducted on a wide range of enterobacterial
clinical isolates recovered throughout the world, have already
demonstrated the overall activity of the ceftazidime-avibactam
combination, including activity against ESBL, AmpC, and KPC
producers (ceftazidime-avibactam MIC50 of �0.5 �g/ml and cef-
tazidime-avibactam MIC90 of �2 �g/ml) (34–38). However, few
data describe the in vitro activity of this combination against

TABLE 2 (Continued)

Organism
(no. of strains) Agent(s)a

MIC (�g/ml) (cumulative %)

MIC50 MIC90�0.06 0.125 0.25 0.5 1 2 4 8 16 �32

M. morganii (3) CAZ 1 (33) 1 (67) 1 (100) 8 �32
CAZ-AVI 1 (33) 1 (67) 1 (100) 0.125 0.25
ATM 1 (33) 1 (67) 1 (100) 0.125 1
ATM-AVI 3 (100) �0.06 �0.06
ERTA 3 (100) �0.06 �0.06
IMP 2 (67) 1 (100) 8 16
MERO 3 (100) �0.06 �0.06
DORI 3 (100) �0.06 �0.06

a CAZ, ceftazidime; CAZ-AVI, ceftazidime-avibactam; ATM, aztreonam; ATM-AVI, aztreonam-avibactam; ERTA, ertapenem; IMP, imipenem; MERO, meropenem; DORI,
doripenem.
b CNSE isolates with a complete loss of OmpC and OmpF porins.
c True carbapenemase producers.
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porin-deficient enterobacterial isolates. To the best of our knowl-
edge, only two articles showed the in vitro efficiency of this com-
bination against well-characterized porin-deficient enterobac-
terial clinical isolates, namely, Cedecea davisae FUR and K.
pneumoniae C2/pMG247 (7, 39). Livermore et al. also reported
the activity of the ceftazidime-avibactam combination against a
few ertapenem-resistant enterobacterial isolates, but these isolates
were not characterized on the molecular level (40).

Our study shows the in vitro activity of the ceftazidime-avibac-
tam and aztreonam-avibactam combinations against a represen-
tative collection of well-characterized CNSE clinical isolates lack-
ing outer membrane permeability. It appears that porin deficiency
does not impair the penetration of avibactam into the periplasmic
space. The highest MIC value for the ceftazidime-avibactam
and aztreonam-avibactam combinations against porin-deficient
CNSE isolates was 4 �g/ml. According to the U.S. FDA ceftazi-
dime-avibactam MIC breakpoints for Enterobacteriaceae (suscep-
tible, �8 �g/ml; and resistant, �16 �g/ml) (41), which are based
on pharmacokinetic/pharmacodynamic analyses (42), these
porin-deficient CNSE isolates are susceptible. Additional studies
are needed to establish what the potential roles of ceftazidime-
avibactam and aztreonam-avibactam might be as substitutes for
carbapenems to reduce the dissemination of CNSE in the future.

Concluding remarks. OMP deficiency in association with
AmpCs and/or ESBLs was the main mechanism conferring car-
bapenem resistance in this survey. This study reveals the in vitro
activity of the ceftazidime-avibactam and aztreonam-avibactam
combinations against a representative collection of well-charac-
terized CRE isolates with OMP deficiency.
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