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The exogenously acquired 16S rRNA methyltransferases RmtD, RmtD2, and RmtG were cloned and heterologously expressed in
Escherichia coli, and the recombinant proteins were purified to near homogeneity. Each methyltransferase conferred an amino-
glycoside resistance profile consistent with m7G1405 modification, and this activity was confirmed by in vitro 30S methylation
assays. Analyses of protein structure and interaction with S-adenosyl-L-methionine suggest that the molecular mechanisms of
substrate recognition and catalysis are conserved across the 16S rRNA (m7G1405) methyltransferase family.

The retained potency of aminoglycoside antibiotics has re-
newed interest in their use in clinical practice (1). However,

among several resistance mechanisms, production of acquired
16S rRNA methyltransferases has emerged as a significant threat
to clinical efficacy (2, 3). These enzymes modify the aminoglyco-
side 16S rRNA binding pocket to confer high-level aminoglyco-
side resistance. The predominant 16S rRNA modification in
pathogenic bacteria is methylation of the N7 position of G1405
(m7G1405), with nine distinct enzymes (ArmA and RmtA to -H)
reported to date from clinical and veterinary isolates (3, 4).

Acquired 16S rRNA (m7G1405) methyltransferases are glob-
ally distributed, and the genes that encode them typically reside
within mobile elements that may coharbor additional resistance
determinants (3). For example, RmtD was first detected in Brazil
in Pseudomonas aeruginosa coproducing SPM-1, while both
RmtD and RmtG were identified in Klebsiella pneumoniae copro-
ducing KPC-2 and CTX-M (5, 6). Both enzymes and a variant of
RmtD (RmtD2) were subsequently identified in Enterobacter spp.,
Citrobacter freundii, and Escherichia coli isolates from South and
North America (7–10).

To extend our understanding of these resistance determinants,
we cloned, expressed, and purified the acquired 16S rRNA
(m7G1405) methyltransferases RmtD, RmtD2, and RmtG. The
genes that encode RmtD, RmtG, and RmtD2 were PCR amplified
from template DNA extracted from an endemic SPM-1-produc-
ing P. aeruginosa isolate and two separate isolates from hospital-
based outbreaks of K. pneumoniae in Brazil, respectively (5, 11;
L.L.C. and R.C.P., unpublished data). Amplicons were cloned via
the TOPO TA vector (Invitrogen) into a modified pET44a vector
to generate 6�His-tagged methyltransferases with a thrombin
cleavage site as described previously (12, 13). An equivalent con-
struct was also generated by using an E. coli codon-optimized gene
obtained by commercial chemical synthesis for the intrinsic 16S
rRNA methyltransferase Sgm from Micromonospora zionensis for
which m7G1405 activity has been directly experimentally verified
(14–16).

Recombinant proteins were expressed at 37°C in E. coli
BL21(DE3) using lysogeny broth (500 ml) containing ampicillin
(100 �g/ml). Protein expression was induced at mid-log phase
(optical density at 600 nm, 0.6 to 0.8) with 0.5 or 1.0 mM isopro-

pyl-�-D-thiogalactopyranoside, and growth was continued for 6 h
at 30°C or for 3 h at 37°C for RmtD and all other proteins, respec-
tively. Cells were harvested by centrifugation; resuspended in lysis
buffer (5 ml/g of wet cells) containing 50 mM NaH2PO4 (pH 8.0),
300 mM NaCl, 10% glycerol, and 10 mM imidazole; and lysed by
sonication. Insoluble cell debris was removed by centrifugation,
and target proteins were purified on an ÄKTApurifier10 system.
First, Ni2� affinity chromatography (HisTrap FF) was per-
formed in lysis buffer with target protein elution accomplished
by using a gradient of imidazole (10 to 300 mM). Target pro-
tein-containing fractions were pooled, concentrated, and fur-
ther purified by gel filtration chromatography (Superdex 75
16/60) preequilibrated with 20 mM Tris buffer (pH 8.0) con-
taining either 300 mM NaCl and 20% glycerol (RmtD and
RmtD2) or 200 mM NaCl and 10% glycerol (RmtG). Sgm was
purified by the same procedure but under previously estab-
lished solution conditions (17). All of the proteins eluted from
the gel filtration column and exhibited SDS-PAGE mobilities
in good agreement with their calculated molecular weights
(data not shown and Fig. 1A, respectively).

Measurements of aminoglycoside MICs were made as previously
described (12) in liquid cultures of E. coli BL21(DE3) transformed
with the empty pET vector, pET-HTrmtD, pET-HTrmtD2, or
pET-HTrmtG. All three enzymes conferred high-level resistance
to gentamicin and kanamycin but not to apramycin or neomycin
(Table 1), a profile consistent with the m7G1405 modification
which confers resistance to 4,6-disubstituted deoxystreptamines
but not other structural classes of aminoglycoside (3). All three
enzymes also efficiently methylated 30S subunits in in vitro assays
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using S-adenosyl-L-[3H]methionine ([3H]SAM) (13), with activ-
ity comparable to that of Sgm (Fig. 1B) and other Rmt enzymes
(18, 19). In contrast, in assays using 30S from Sgm-expressing
cells, no additional methylation was observed (Fig. 1B, 30S*).
These results demonstrate that each purified recombinant protein
is active and that RmtD, RmtD2, and RmtG modify the N7 posi-
tion of 16S rRNA nucleotide G1405.

We next used circular dichroism spectroscopy and deconvolu-
tion using the CDSSTR algorithm via DICHROWEB (20) to assess
the solution structure of each methyltransferase (Fig. 1C) as pre-
viously described (12). All three methyltransferases were well
folded with predicted secondary-structure contents in excellent
agreement with those calculated from the high-resolution struc-
tures of Sgm and RmtB (21, 22).

The aminoglycoside resistance methyltransferases require
SAM as their obligatory cosubstrate (methyl group donor) and
produce S-adenosylhomocysteine (SAH) as the methylation reac-
tion by-product. Analyses of enzymes that catalyze the m1A1408
modification have revealed a characteristic, though not universal,
higher relative affinity for SAH than for SAM (12, 23). In contrast,
for Sgm, SAH binding was reported to be several hundred times
weaker despite its comparable affinity for SAM (21). We therefore
used isothermal titration calorimetry (ITC) to measure the affin-
ities of RmtD, RmtD2, and RmtG for SAM and SAH (Fig. 2 and
Table 2). Purified proteins were dialyzed against a mixture of 20
mM Tris (pH 8.0), 300 mM NaCl, 20% glycerol, and 10 mM
�-mercaptoethanol, except Sgm, for which previously established
solutions were used (17). SAM (1.0 to 1.5 mM) and SAH (0.4 to
0.8 mM) were prepared by using the final dialysis solutions, and
titrations were performed on an Auto-iTC200 microcalorimeter
(Malvern/Microcal) as described previously (12). All SAM
binding affinities were in the low micromolar range (Table 2),
consistent with previous measurements for Sgm and other
RNA methyltransferases (17, 21). Surprisingly, all methyl-
transferases had significantly greater affinity for SAH, includ-
ing Sgm, contradictory to the prior report (21). We considered
whether differences in solution conditions might have affected
the measured affinities. We first attempted to dialyze Sgm
against the conditions used previously, where weaker SAH
binding was observed (21), but found that the protein consis-
tently precipitated from solution. As an alternative compari-
son, titrations were performed with Sgm under the conditions
used for the acquired methyltransferases and for RmtD2 under
our prior conditions for Sgm (17). Regardless of the solution
conditions used, essentially identical SAM and SAH affinities
for Sgm and RmtD2 were measured in each case.

Defining the molecular mechanisms of antimicrobial resis-
tance is critical to support the development of new effective strat-
egies to combat multidrug-resistant pathogens. Here, we have es-
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FIG 1 Expression and purification of active recombinant RmtD, RmtD2, and
RmtG. (A) SDS-PAGE analysis of purified recombinant RmtD (29.5 kDa),
RmtD2 (29.5 kDa), and RmtG (31.5 kDa). The intrinsic 16S rRNA (m7G1405)
methyltransferase Sgm (32.4 kDa) is shown for comparison. MW, protein
molecular weight standards (protein masses in kDa are shown to the left). (B)
In vitro time course methyltransferase assays of RmtD (green), RmtD2 (blue),
and RmtG (orange) using 30S subunits isolated from E. coli MRE600 in the
presence of [3H]SAM. Single 60-min time points are also shown for assays
using m7G1405 modified 30S (30S*) isolated from E. coli BL21(DE3) express-
ing Sgm. (C) Circular dichroism spectroscopy analyses of RmtD, RmtD2, and
RmtG. Spectra were deconvoluted to estimate the secondary-structure content
shown in the inset. Values for RmtB (Protein Data Bank code 3FRH) and Sgm
(Protein Data Bank code 3LCV) were calculated from X-ray crystal structures
via the STRIDE webserver (24). MRW, mean residue molar ellipticity.

TABLE 1 Aminoglycoside MICs for E. coli harboring plasmids encoding
acquired resistance methyltransferases

Plasmid

MIC (�g/ml)

Apramycin Gentamicin Kanamycin Neomycin

pET vector 32 4 16 16
pET-HT_rmtD 32 �1,024 �1,024 16
pET-HT_rmtD2 32 �1,024 �1,024 16
pET-HT_rmtG 32 �1,024 �1,024 16
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tablished recombinant expression of active RmtD, RmtD2, and
RmtG methyltransferases, providing protein samples suitable for
detailed structure-function studies. Our results show that each
protein likely adopts a structure very similar to that of character-
ized m7G1405 enzymes and indicate that higher affinity for SAH
than for SAM may be a feature common to all aminoglycoside
resistance methyltransferases. For both groups of enzymes, the
potential for product inhibition may contribute to the regulation
of methyltransferase activity and/or control of substrate specific-
ity. In contrast, contrary to the emerging evidence for the
m1A1408 methyltransferase family, our findings suggest that
among the 16S rRNA (m7G1405) methyltransferases, the molec-
ular mechanisms of substrate recognition and catalysis are likely
to be highly conserved between intrinsic and acquired enzymes.
Therefore, the development of inhibitors that are broadly effective
against this resistance enzyme family may be feasible.
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