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The nosocomial spread of carbapenem-resistant Enterobacteri-
aceae (CRE) is a serious concern for health care facilities (1, 2),

and environmental sources are being increasingly implicated (3–
6). Carbapenems can be used to select for CRE in environmental
testing, but detection may be impacted when organisms are pres-
ent in low numbers. Bacterial tolerance to carbapenems can in-
crease as inoculum size increases (7, 8), but the impact of carbap-
enems on low inoculum sizes is not well studied. Here we report
the effect of different meropenem concentrations on the detection
of low numbers of CRE.

We tested 16 NDM- or KPC-producing Enterobacteriaceae
strains on Mueller-Hinton agar (MHA) with various concentra-
tions of meropenem (Table 1). Concentrations of 0.5, 1.0, 2.5, 5.0,
or 10.0 �g/ml were tested based on the concentrations used in
other environmental CRE studies (9–11). MHA plates without
antibiotic were used for comparison (control plates). The mero-
penem MIC for each isolate was determined with Etest strips
(bioMérieux Clinical Diagnostics, Marcy l’Etoile, France). Clini-
cal and Laboratory Standards Institute (CLSI) guidelines were fol-
lowed for antibiotic quality control (12).

Log-phase cultures of each organism were serially diluted to
inoculate triplicate plates with 50 to 150 organisms per plate. Col-
ony counts were averaged for each triplicate set after overnight
incubation. Percent recovery was calculated as the average colony
count of the triplicate plates for each organism and meropenem
concentration divided by the average colony count of the corre-
sponding control plates. The statistical significance (P � 0.05) of

average CFU counts on control versus meropenem plates was as-
sessed using a two-tailed Student t test.

All but one of the 16 isolates (KPC-R-2) could be detected at
the lowest meropenem concentration (0.5 �g/ml) (Table 1). A
second KPC producer (KPC-CO-1) was detected at 0.5 �g/ml
meropenem, but with less than 50% recovery (P � 0.016). At 1
�g/ml, two additional isolates, NDM-CO-4 and KPC-CO-4, had
reduced CFU counts (recovery � 53% and 30%, respectively). At
2.5 �g/ml meropenem, 12 isolates had significantly reduced CFU
counts. Only three isolates (KPC-CO-2, KPC-R-1, and NDM-
CO-5) were detected at 10 �g/ml meropenem, and two had sig-
nificantly reduced counts.

Inocula used to determine CLSI susceptibility breakpoints and
MICs range from 104 cells per spot (agar dilution) to 5 � 105 cells
per milliliter (broth microdilution) (13); however, in the environ-
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TABLE 1 MIC and average recoveries of organisms by meropenem concentrationb

Organism ID
Meropenem MIC
(�g/ml)a

Avg no. of CFU on
MHA with no
antibiotics

% recovery (P value) with indicated concn (�g/ml) of meropenem

0.5 1 2.5 5 10

ATCC BAA-2146 (NDM) �32 83 123 (0.245) 113 (0.322) 96 (0.745) 6 (0.008) 0 (0.008)
NDM-CO-1 �32 121 98 (0.880) 99 (0.911) 3 (0.001) 0 (0.002) 0 (0.002)
NDM-CO-2 �32 92 112 (0.150) 110 (0.140) 96 (0.606) 3 (0.001) 0 (0.002)
NDM-CO-3 �32 100 111 (0.319) 84 (0.210) 2 (0.006) 0 (0.007) 0 (0.007)
NDM-CO-4 �32 104 96 (0.694) 53 (0.017) 0 (0.005) 0 (0.005) 0 (0.005)
NDM-CO-5 �32 78 103 (0.818) 116 (0.222) 125 (0.162) 120 (0.120) 123 (0.088)
Env. KP NDM �32 134 98 (0.648) 100 (0.940) 68 (0.005) 0 (0.002) 0 (0.002)
Env. EC NDM 24 101 91 (0.185) 84 (0.129) 1 (0.001) 0 (0.001) 0 (0.001)
Utah NDM �32 68 98 (0.605) 91 (0.170) 0 (�0.001) 0 (�0.001) 0 (�0.001)
KPC-R-1 �32 52 103 (0.625) 97 (0.808) 106 (0.552) 69 (0.372) 76 (0.036)
KPC-R-2 8 53 0 (0.012) 0 (0.012) 0 (0.012) 0 (0.012) 0 (0.012)
KPC-CO-1 8 53 42 (0.016) 0 (0.010) 0 (0.010) 0 (0.010) 0 (0.010)
KPC-CO-2 �32 67 120 (0.086) 103 (0.818) 11 (�0.001) 20 (�0.001) 2 (0.001)
KPC-CO-3 12 71 88 (0.140) 92 (0.278) 40 (0.030) 8 (0.001) 0 (0.003)
KPC-CO-4 16 66 85 (0.320) 30 (0.049) 0 (0.011) 0 (0.011) 0 (0.011)
KPC-CO-5 16 74 105 (0.584) 99 (0.933) 9 (0.007) 16 (0.003) 0 (0.006)
a MICs were determined by the meropenem Etest per the manufacturer’s instructions.
b ID, identifier; MHA, Mueller-Hinton agar; Env., environmental.
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ment, bacteria are typically present in lower numbers. In this
study, recovery was significantly reduced when plates were inoc-
ulated with approximately 100 cells, even when meropenem con-
centrations were much lower than the organism MIC. Testing
other reduced inoculum sizes would better depict the effect of
meropenem on the recovery of low numbers of organisms, but
these results are limited to only one inoculum size. Recovery in
liquid media was not evaluated as part of this study but is de-
scribed elsewhere for three isolates (ATCC BAA-2146, KPC-R-1,
KPC-R-2) (14). We did not evaluate the recovery of CRE in actual
or simulated environments, which might also demonstrate the
impact of meropenem on selectivity. Carbapenems may effec-
tively suppress nontarget growth in CRE environmental studies;
however, high carbapenem concentrations may also suppress
CRE growth, leading to inaccurate conclusions about CRE prev-
alence in the environment.
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