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Abstract: Alterations in resting-state networks (RSNs) are often associated with psychiatric and neuro-
logic disorders. Given this critical linkage, it has been hypothesized that RSNs can potentially be used
as endophenotypes for brain diseases. To validate this notion, a critical step is to show that RSNs
exhibit heritability. However, the investigation of the genetic basis of RSNs has only been attempted in
the default-mode network at the region-of-interest level, while the genetic control on other RSNs has
not been determined yet. Here, we examined the genetic and environmental influences on eight well-
characterized RSNs using a twin design. Resting-state functional magnetic resonance imaging data in
56 pairs of twins were collected. The genetic and environmental effects on each RSN were estimated
by fitting the functional connectivity covariance of each voxel in the RSN to the classic ACE twin
model. The data showed that although environmental effects accounted for the majority of variance in
wide-spread areas, there were specific brain sites that showed significant genetic control for individual
RSNs. These results suggest that part of the human brain functional connectome is shaped by genomic
constraints. Importantly, this information can be useful for bridging genetic analysis and network-level
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INTRODUCTION

Our understanding of large-scale human brain networks
has been revolutionized by the inception of resting-state
functional magnetic resonance imaging (rsfMRI) [Biswal
et al., 1995; Fox and Raichle, 2007]. rsfMRI measures func-
tional connectivity between brain regions based on the
temporal synchronization of spontaneously fluctuating
rsfMRI signals. This technique has led to a remarkable dis-
covery that during a state of rest, the human brain is
organized into multiple large-scale networks including the
auditory, visual, sensorimotor, executive control, attention,
default-mode, basal ganglia, and cerebellum networks
[Allen et al., 2011; Beckmann et al., 2005; De Luca et al.,
2006; Smith et al., 2009]. These resting-state networks
(RSNs) are consistent with the functional networks derived
from task-based fMRI studies of various experimental
paradigms and are implicated in specific brain functions
[Smith et al., 2009]. Furthermore, the intrinsic connectivity
architecture of RSNs constitutes the human brain
“functional connectome” [Biswal et al., 2010].

Although the spatial patterns of RSNs are generally con-
sistent across healthy individuals with modest-to-high reli-
ability [Shehzad et al., 2009], appreciable inter-individual
variability still exists [Damoiseaux et al., 2006; Shehzad
et al., 2009]. Importantly, the inter-individual variability
between twins or pedigrees enables the examination of
genetic and environmental influences on RSNs and the
functional connectome [Fornito et al., 2011; Glahn et al.,
2010; Korgaonkar et al., 2014; van den Heuvel et al., 2013].
For instance, Fornito et al. [2011] investigated topological
changes in network dynamics of adult twins and demon-
strated that the global cost-efficiency is genetically herit-
able, whereas the genetic effects on regional cost-efficiency
are heterogeneous across different brain regions [Fornito
et al., 2011]. In another study with twin children, the nor-
malized path length, which reflects the global integration
of brain networks, was found to be under genetic control,
but the level of connectivity and normalized clustering
coefficient, which measures the segregation of brain net-
works, were not [van den Heuvel et al., 2013].

The genetic basis of the default-mode network is also
under interrogation. In a pedigree study, the posterior cin-
gulate/precuneus within the default-mode network
showed the highest heritability in functional connectivity
and gray-matter density [Glahn et al., 2010]. In another
twin study using seed-based correlational analysis, the
functional connectivity between posterior cingulate cortex
and right inferior parietal cortex in the default-mode net-
work was found to be genetically heritable [Korgaonkar

et al., 2014]. However, these two studies were both
focused on the genetic control over regions of interest
(ROIs), whereas the variability of genetic effects across
voxels within each ROI remains unknown. More impor-
tantly, genetic influences on RSNs other than the default-
mode network have not been studied yet.

Therefore, to enhance our understanding of the genetic
basis of RSNs, in the present study we have used a twin
design to investigate the genetic and environmental contri-
butions to individual RSNs. RSN spatial maps were
obtained using the group independent component analysis
(ICA) approach [Calhoun et al., 2001b]. The genetic and
environmental effects on each RSN were estimated by fit-
ting the functional connectivity covariance of each voxel in
the RSN to the classic ACE twin model [Neale and Cardon,
1992]. This model tests the hypothesis that the variance of a
given phenotype (i.e., the functional connectivity of a voxel
within a RSN) can be decomposed into the contributions of
additive genetic (A), common environmental (C) and
unique environmental (E) factors, and relies on the assump-
tion that monozygotic (MZ) twins share 100% of their
genetic information, while dizygotic (DZ) twins on average
share 50% of their genetic information [Neale and Cardon,
1992]. Our results showed that there was large variability in
genetic influences across different RSNs. Sensory networks
tend to be under stronger genetic control while the herit-
ability of cognitive networks was generally weaker.

MATERIALS AND METHODS

Participants

Subjects were recruited from local schools of Chongqing,
China through posters and flyers. After a complete descrip-
tion of the study, written informed consent was obtained
from all subjects and subjects’ guardians. Subjects with any
psychiatric disorders, nervous system diseases or severe
physical diseases were excluded from the study. One hun-
dred and twelve (112) healthy twins participated in this
study. There were 32 pairs of MZ twins (64 individuals)
between the ages of 12 and 18 (mean 6 sd 5 15.7 6 1.5
years, 53% female) and 24 pairs of DZ twins (48 individu-
als) between the ages of 13 and 19 (mean 6 sd 5 16.0 6 1.5
years, 54% female). All twins were right-handed and reared
together. The IQ of the subject was assessed using the Chi-
nese version of Wechsler intelligence scale for children (C-
WISC). Zygosity was determined based on the features of
short tandem repeats and amelogenin [Yang et al., 2006].
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MRI Image Acquisition

MRI image acquisition was performed on a 3T scanner
(Signa, GE Medical Systems, Waukesha, WI) at The First
Affiliated Hospital of Chongqing Medical University. Sub-
jects were instructed to lie in the scanner with eyes closed
while keeping their head still. High-resolution T1 struc-
tural MRI images were acquired using the 3DT1 pulse
sequence with the parameters as follows: repetition time
(TR) 5 6.2 ms, echo time (TE) 5 2.8 ms, matrix size 5 256 3

256, field of view (FOV) 5 24 cm 3 24 cm, slice
number 5 166, slice thickness 5 1.2 mm. rsfMRI data were
acquired using the gradient-echo echo planar imaging
(EPI) pulse sequence with the parameters as follows:
TR 5 3000 ms, TE 5 30 ms, flip angle 5 908, matrix size 5 64
3 64, FOV 5 24 cm 3 24 cm, slice number 5 33, slice
thickness 5 3.5 mm. For each rsfMRI run, 240 volumes
were acquired. At the end of the rsfMRI scan, subjects
were asked to respond to ensure they did not fall asleep
during the scan.

Image Preprocessing

Data preprocessing was carried out using the Data Proc-
essing Assistant for Resting-State fMRI toolkit (http://
rfmri.org/DPARSF) [Yan and Zhang, 2010]. The first five
volumes of each rsfMRI run were discarded to allow mag-
netization to reach steady state. Slice-timing correction
was performed using the last slice (33rd) as the reference
frame and the slice order of ascending odd number slices
first followed by ascending even number slices. Head
motion was corrected using the realignment function in
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), which corrects
motion based on a rigid body model with six movement
parameters (three translational and three rotational move-
ment parameters). Functional images were subsequently
spatially normalized to the Montreal Neurological Institute
(MNI) space using an EPI template [Ashburner and Fris-
ton, 1999], and resliced to 3 3 3 3 3 mm3 voxels. Finally,
all functional images were spatially smoothed using a
Gaussian filter with a full-width-half-maximum (FWHM)
of 4 mm. A relatively small smoothing kernel size was
used to make sure we will be able to detect small spatial
variations of genetic and environmental effects within
each ROI.

Group ICA

Group ICA was carried out on preprocessed data of all
112 subjects using the GIFT toolbox (http://mialab.mrn.
org/software/gift/). The optimal number of independent
components was first estimated to be 63 using the Mini-
mum Description Length criterion. ICA was performed
using the Infomax algorithm. Subject-specific spatial maps
and time courses were calculated using the GICA back
reconstruction method [Calhoun et al., 2001b]. Component
images of each subject were scaled to z-scores. Each mean

component image was thresholded using the feature selec-
tion method based on a Normal-Gamma-Gamma model
developed in [Allen et al., 2011]. Specifically, the distribu-
tion of t values of all gray matter voxels for each compo-
nent was modeled as a mixture of a Normal distribution
and two Gamma distributions. The threshold of a given
component was selected based on the estimated mean (l)
and variance (r) of the Normal distribution at t> l 1 4r.

Out of 63 ICA components, 26 nonartifactual compo-
nents were identified, in which 22 components spatially
matched the ICA component templates previously
reported [Allen et al., 2011] based on the goodness-of-fit
and the template-matching method described in [Greicius
et al., 2004]. The goodness-of-fit was calculated by the
average t value of voxels falling within the template minus
the average t value of voxels falling outside the template,
and the template-matching method selected the compo-
nent with the greatest goodness-of-fit for each template
[Greicius et al., 2004] (mean 6 std of goodness-of-fit from
all 22 components selected 5 5.28 6 1.64). Four additional
ICA components were included due to the correspondence
of their spatial locations to RSNs reported in [Smith et al.,
2009] (two components in the visual network, one compo-
nent in the default-mode network and one component in
the cerebellum network). These 26 components were used
to generate eight RSNs including the default-mode, audi-
tory, basal ganglia, executive control, sensorimotor, cere-
bellum, attention, and visual networks described in [Allen
et al., 2011] and [Smith et al., 2009].

Heritability Analysis

Univariate twin analysis was used for assessing the
genetic and environmental influences on individual RSNs.
Specifically, the classic ACE twin model was applied to
estimate the contributions of three latent factors—additive
genetic factor (A), shared environmental factor (C), and
unique environmental factor (E)—to the variance of z-
scores of each voxel in an ICA component map across all
subjects. For each twin pair, the observed z-scores (z1 from
Twin 1; z2 from Twin 2) were modeled using a linear com-
bination of these three latent factors:

z ¼ aA 1 cC 1 eE (1)

As a result, the covariance matrix R for (z1, z2) can be
written in the following equation [Neale and Cardon,
1992]:

X
¼

cov z1; z1ð Þ cov z1; z2ð Þ

cov z2; z1ð Þ cov z2; z2ð Þ

 !
¼

a21c21e2 ga21c2

ga21c2 a21c21e2

 !

(2)

Based on the assumption that MZ twins share 100% of
their genetic information and DZ twins on average share
50% of their genetic information, we have g 5 1 for MZ
twins and g 5 0.5 for DZ twins in Eq. (2). Therefore,
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coefficients a, c, and e can be estimated by fitting the right
side of Eq. (2) to the covariance matrix of (z1, z2) (i.e., R)
using the maximum likelihood estimation, and the values
of a2, c2, and e2, respectively, represent the relative contri-
butions of A, C, and E to the variance of z-scores.

The above twin analysis was carried out on a voxel-by-
voxel basis using OpenMx 1.4 (http://openmx.psyc.vir-
ginia.edu/) [Boker et al., 2011] in the R environment
(R3.0.2, http://www.r-project.org/). A double-entering
method, in which each subject was entered twice, once
with the label Twin 1 and the other time with the label
Twin 2 [Plomin et al., 2013], was used to avoid any poten-
tial confounding effects due to the twin label and ensure
the identical variance between the Twin 1 group and Twin
2 group. Before fitting, three head motion components
used in [Couvy-Duchesne et al., 2014] including mean
translation, maximum translation and mean rotation, as
well as age and gender were first regressed out from the
observed variables as covariates. Subsequently, voxel-wise
twin analysis generated the A, C, and E maps for each
nonartifactual ICA component. The A, C, and E maps for
each RSN were then generated by correspondingly com-
bining the A, C, and E maps of all components belonging
to the same RSN. In the case when a RSN had more than
one component and these components were spatially over-
lapping, the A, C, and E values for each overlapped voxel
were then, respectively, calculated by weighted averaging
the corresponding A, C, and E values across all overlap-
ping components with the weight of the z-scores in these
components.

The statistical significance of the A and C values for
each voxel was, respectively, tested by dropping the factor
under test (A or C) from the ACE model and comparing
the fitting results of the full model (ACE) and the reduced
model (CE or AE) using the likelihood ratio test. Consider-
ing the non-negativity constraint of variance components,
P values were calculated using the method described in
[Dominicus et al., 2006]. The result indicated that the C
factor did not significantly account for the variance of any
voxels in six of eight networks after multiple-comparison
correction using a false discovery rate of 0.05 [Genovese
et al., 2002], with the exception of eight scattered voxels in
the sensorimotor network and nine scattered voxels in the
visual network. Insignificant contributions from the com-
mon environmental factor to RSNs have also been
reported in numerous previous studies using the same
model [Blokland et al., 2011; Fornito et al., 2011; Korgaon-
kar et al., 2014; van den Heuvel et al., 2013]. Therefore, the
C factor was dropped and all results reported here were
based on the AE model.

An endophenotype for each RSN was defined as a cluster
of voxels that met two criteria: (1) at the cluster level, the
significance of the genetic factor (i.e., A factor) must be at
P< 0.05, and (2) at the voxel level, the heritability of indi-
vidual voxels must be higher than 40% (i.e., A> 0.4 for all
voxels in the cluster). The threshold of A> 0.4 was selected

based on a recent publication by [Korgaonkar et al., 2014].
The P value for each endophenotypic cluster was estimated
based on the Monte Carlo simulation with 20,000 iterations
using Rest AlphaSim [Song et al., 2011] (www.restfmri.net),
with the mask of the corresponding RSN map,
FWHM 5 4 mm, cluster connection radius 5 3.5 mm, and
individual voxel threshold probability 5 0.05.

All data analysis procedures are summarized in Figure 1.

RESULTS

Subjects between the MZ and DZ groups were compara-
ble in age, gender, and IQ. There was no statistically sig-
nificant difference in age (two-sample t-test, P 5 0.22),
gender (Chi-square test, P 5 0.91), or IQ (two-sample t-test,
P 5 0.34) between MZ and DZ twins. The demographic
information of all subjects is summarized in Table I.

We first quantified the genetic and environmental influ-
ences on eight well-known RSNs: the visual, basal ganglia,
sensorimotor, cerebellum, auditory, attention, executive-
control, and default-mode networks. The first two rows of
each panel in Figures 2 and 3, respectively, show the
voxel-wise spatial patterns of the relative contributions of
the genetic (A) and environmental (E) factors to each indi-
vidual RSN. Overall, the results indicate that environmen-
tal effects accounted for the majority of the variance in
wide-spread areas for all RSNs. However, there were
clearly specific brain sites that showed significant genetic
control, suggesting that the human brain RSNs are par-
tially shaped by genomic constraints.

Endophenotypic clusters defined by spatially connected
voxels exhibiting statistically significant genetic control
(P< 0.05 at the cluster level and A> 0.4 for all voxels [Kor-
gaonkar et al., 2014]) were identified for each individual
RSN. Specifically, for the visual network, two endopheno-
typic clusters located at left inferior occipital gyrus and left
cuneus were found. Two clusters within the basal ganglia
network displayed the characteristics of an endophenotype,
with their peak voxels located at left amygdala and subcal-
losal gyrus, respectively. With respect to the sensorimotor
network, four endophenotypic clusters were located at the
right precentral gyrus, left postcentral gyrus, left precentral
gyrus, as well as left median cingulate and paracingulate
gyri, respectively. For the cerebellum network, two endo-
phenotypic clusters were identified at Cerebellum_8_R and
Cerebellum_9_L, respectively. Two endophenotypic clusters
within the auditory network were found at the left middle
temporal gyrus and right middle temporal gyrus, respec-
tively. In terms of the attention network, one cluster at the
opercular part of left inferior frontal gyrus exhibited the
characteristics of an endophenotype. One endophenotypic
cluster was found in the executive control network. The
peak voxel was located at the triangular part of the right
inferior frontal gyrus. For the default-mode network, two
endophenotypic clusters were identified, located at right
posterior cingulate gyrus and left fusiform gyrus,
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respectively. More detailed information of each endopheno-
typic cluster including the cluster size, peak A value, ana-
tomical location (in the definition of Automated Anatomical
Labeling [Tzourio-Mazoyer et al., 2002]) and MNI coordi-
nates, as well as P value is summarized in Table II. The
spatial maps of all these clusters were shown in Supporting
Information (Figure 1).

To highlight the differential contributions of the genetic
and environmental factors, the third row of each panel in

Figures 2 and 3 displays the thresholded A map (A> 0.4,
red) overlaid on the corresponding E map (blue) for each
RSN. The results again show that all RSNs were to a cer-
tain extent genetically heritable, but the voxel-wise herit-
ability considerably varied across different RSNs.

For the purpose of comparing the level of genetic con-
trol across RSNs, we examined the distribution of A values
for each RSN. Figure 4 displays the histograms of A values
from all voxels in individual RSNs. Kolmogorov–Smirnov
tests were applied to compare the distributions of A values
between every two RSNs. The P values of these compari-
sons were listed in Table III. The results indicate that, after
Bonferroni correction, the relative A value distributions
were significantly different across all RSNs except between
the auditory and attention networks, as well as between
the auditory and default-mode networks.

Figure 5 shows the portion of the voxels with A values
>0.4 for all eight RSNs. The data indicate larger portions
of voxels exhibiting relative strong genetic basis for the
visual, basal ganglia, sensorimotor networks than the
default-mode, executive control and attention networks.
Interestingly, visual, sensorimotor, and basal ganglia

TABLE I. Summary of subjects’ demographic

information

Zygosity

Number
of twin

pairs

Gender

Age
(mean 6 SD)

IQ
(mean 6 SD)

Number
of

males

Number
of

females

MZ 32 30 34 15.7 6 1.5 122.3 6 14.7a

DZ 24 22 26 16.0 6 1.5 125.0 6 14.6

aIQ scores of one MZ twin pair were not measured.

Figure 1.

The workflow of data analysis.
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Figure 2.

Genetic and environmental influences on the (a) visual network, (b) basal ganglia network, (c)

sensorimotor network, and (d) cerebellum network. First two rows: the additive genetic (A, first

row) and unique environmental (E, second row) maps. Third row: thresholded A map (A> 0.4,

red) overlaid on the corresponding E map (blue).
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networks all subserve sensory and motor functions,
whereas the default-mode, executive control and attention
networks are predominantly involved in cognitive func-

tions. This result suggests that sensory networks may be
under stronger genetic controls compared to cognitive
networks.

Figure 3.

Genetic and environmental influences on the (a) auditory network, (b) attention network, (c)

executive control network, and (d) default-mode network. First two rows: the additive genetic

(A, first row) and unique environmental (E, second row) maps. Third row: thresholded A map

(A> 0.4, red) overlaid on the corresponding E map (blue).
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DISCUSSION

In the present study, we quantitatively estimated the
genetic and environmental contributions to eight well-
organized RSNs in the human brain. The maps of genetic
(A) and environmental (E) factors were generated (Figs. 2
and 3) and endophenotypic clusters of voxels were identi-
fied for each individual RSN (Table II).

The present study is significant in several aspects. First,
compared to the ROI-based analysis used in previous
studies [Glahn et al., 2010; Korgaonkar et al., 2014], our
voxel-wise approach provides more detailed spatial infor-
mation regarding the genetic and environmental contribu-
tions to functional connectivity. Second, to our knowledge,
this is the first study that examined the genetic effects on
multiple RSNs including visual, basal ganglia, sensorimo-
tor, cerebellum, auditory, executive control and attention
networks. Considering the well-known brain functions
these RSNs are involved in, understanding the heritability
of RSNs will help establish a genetic basis underlying fun-
damental brain functions [Thompson et al., 2013]. Third,
since abnormal resting-state functional connectivity (RSFC)
is often associated with various neuropsychiatric and neu-
rologic disorders [Broyd et al., 2009; Cocchi et al., 2012;
Zalesky et al., 2012], endophenotypic clusters identified for
each RSN might help link genetic and systems-level circuit
abnormalities in brain diseases [Meyer-Lindenberg, 2009].
Fourth, given the increasing availability of animal RSFC
data [Liang et al., 2011; Liang et al., 2012a,b,,,; Lu et al.,
2012; Pawela et al., 2008; Sforazzini et al., 2014; Zhang
et al., 2010], similar analyses can be readily carried out in
animal studies. In combination with other well-established
preclinical tools, such studies will have great potentials to

shed light on the genetic and molecular mechanisms
underlying RSFC.

The significance of our findings also extends to clinical
settings in which reliably identifying endophenotypes
could help facilitate future studies aiming at improving
diagnoses and treatment of psychiatric disorders. Neuro-
psychiatric diseases are complex, making them particularly
difficult to diagnose and treat. Unlike in the simplistic case
of classic Mendelian inheritance, where a given genotype
leads to a definitive phenotype, neuropsychiatric diseases
are produced by a combination of genetic and environ-
mental factors that give rise to a diverse set of phenotypes.
This gap between genotype and phenotype has been
greatly reduced by the introduction of the
“endophenotype,” which is defined as an intermediate
phenotype that has a direct genetic linkage [Gottesman
and Gould, 2003]. Thus, establishing RSNs as an endophe-
notype might be a convenient approach to understanding
complex neuropsychiatric diseases because they more
directly relate to gene regulation and expression than the
larger overt phenotypes.

Establishing RSNs as an Endophenotype

Based on [Glahn et al., 2014; Gottesman and Gould,
2003], for a trait to be considered as an endophenotype, it
must be (1) reproducibly measurable, (2) associated with
the disease, (3) independent of clinical states, (4) present-
ing more in unaffected relatives than in the general popu-
lation, and (5) heritable. RSNs are known to meet the first
four criteria mentioned above. Specifically, RSNs are (1)
measurable with the use of rsfMRI and are generally
reproducible across healthy individuals [Beckmann et al.,

TABLE II. Summary of endophenotypic clusters for eight RSNs

RSN
Cluster

size (A> 0.4)
Peak A

value Peak A voxel location
Peak A voxel

MNI coordinates
Cluster
P value

Visual 797 0.74 Left inferior occipital gyrus 227 293 29 <0.00005
41 0.55 Left cuneus 29 296 21 0.023

Basal ganglia 262 0.69 Left amygdala 224 23 215 <0.00005
73 0.77 Subcallosal gyrus 18 6 215 <0.00005

Sensorimotor 573 0.83 Right precentral gyrus 63 6 24 <0.00005
220 0.74 Left precentral gyrus 227 218 72 <0.00005
207 0.79 Left postcentral gyrus 251 212 18 <0.00005

71 0.64 Left median cingulate and
paracingulate gyri

23 242 54 0.00015

Cerebellum 113 0.70 Cerebellum_8_R 33 263 254 <0.00005
77 0.72 Cerebellum_9_L 26 257 239 <0.00005

Auditory 38 0.65 Left middle temporal gyrus 251 215 26 0.0048
31 0.60 Right middle temporal gyrus 51 239 3 0.021

Attention 65 0.61 Opercular part of left inferior
frontal gyrus

254 12 6 0.00005

Executive control 47 0.70 Triangular part of right inferior
frontal gyrus

48 27 24 0.00075

Default mode 338 0.79 Right posterior cingulate gyrus 6 239 15 <0.00005
38 0.75 Left fusiform gyrus 236 236 221 0.0183
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2005; Damoiseaux et al., 2006; Smith et al., 2009; Zuo et al.,
2010]; (2) alterations in RSNs have been tightly associated
with various psychiatric and neurological disorders
[Anand et al., 2005; Carter et al., 2012; Greicius et al., 2007,
2004; Hunter et al., 2012; Kennedy et al., 2006; Lowe et al.,
2002; Lustig et al., 2003; Mayer et al., 2011; Tian et al.,
2006; van Meer et al., 2012; Whitfield-Gabrieli et al., 2009];
(3) as RSNs represent intrinsic neural network organiza-
tion, they manifest in patients (and healthy subjects) inde-
pendent of clinical states; and (4) abnormality of RSNs has
been identified in unaffected relatives of schizophrenia
and other mental disorders [Meda et al., 2012].

Therefore, to fully establish RSNs as an endophenotype,
we need to understand the genetic influences and herit-
ability of RSNs [Gottesman and Gould, 2003]. The litera-
ture studies have shown that the default-mode network is
heritable [Glahn et al., 2010; Korgaonkar et al., 2014]. In
the present study, we examined the genetic basis of other

RSNs, and the results showed that all RSNs were to a cer-
tain extent genetically heritable. Consistent with this
notion, it has been shown that certain genotypes are asso-
ciated with the functional connectivity within RSNs. For
instance, one study compared low and high activity of
monoamine oxidase A (MAOA) genotype and found that
individuals with high levels of MAOA had increased func-
tional connectivity within the posterior cingulate of the
default-mode network [Clemens et al., 2014]. Interestingly,
the same brain region exhibited the highest heritability in
the default-mode network as revealed in the present study
and the literature [Glahn et al., 2010]. In addition, another
study demonstrated that the APOE genotype, a major
genetic risk factor for Alzheimer’s disease, influences func-
tional connectivity of the lingual gyrus within the visual
network [Trachtenberg et al., 2012]. In our study, the right
lingual gyrus also displayed high heritability in the visual
network (MNI coordinates: (12, 257, 26), A 5 0.67, inside

Figure 4.

The histograms of A values of all RSNs. Dashed line indicates A 5 0.4. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE III. P values of Kolmogorov–Smirnov tests for examining the difference in the A value distributions between

each two RSNs

RSN Auditory Basal ganglia Cerebellum Default mode Executive Sensorimotor Visual

Attention 5.3 E202 4.2 E265 3.1 E205 1.4 E211 1.2 E209 1.5 E2112 1.3 E2244
Auditory 2.3 E234 3.7 E205 3.7 E203 4.9 E212 4.0 E239 5.7 E295
Basal ganglia 6.6 E238 1.2 E233 3.1 E264 2.0 E206 8.9 E214
Cerebellum 2.9 E207 1.6 E212 3.8 E253 2.6 E2130
Default mode 5.1 E220 7.7 E256 1.5 E2150
Executive 8.0 E289 7.3 E2162
Sensorimotor 2.6 E239
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the cluster with the peak voxel at the left inferior occipital
gyrus). This result may suggest a possible association
between the APOE genotype and Alzheimer’s disease that
manifests via the endophenotype of RSFC in lingual gyrus.
This hypothesis can be further tested using molecular
genetic methods in future investigations. Taken together,
given the significant genetic heritability and other features
aforementioned for all RSNs, we believe RSNs can be
established as an endophenotype.

Different Genetic Influences Across RSNs

An interesting observation of the present study is that
the genetic influences appear to be stronger on sensory
networks like the visual, sensorimotor and basal ganglia
networks, reflected by larger ratios of voxels with high A
values (Fig. 5), than cognition-related networks such as
default-model, executive control and attention networks.
We conjecture that this difference may be related to differ-
ent developmental trajectories for these two types of net-
works. It has been well-established that the development
of sensory functions is completed at very early ages. For
example, the critical period for proper neural development
of vision in the cortex is the first year after birth [Antonini
and Stryker, 1993; Wiesel and Hubel, 1963]. Meanwhile,
the development of cognitive functions and related neural
networks is long lasting throughout the entire adolescent
period and into early adulthood [Fair et al., 2008]. We
speculate that the protracted development of cognitive
functions allows the environment to shape cognitive net-
works to a greater degree than sensory networks, which
reach maturity at early ages. Ultimately, these findings
may reflect a general principle of neural development in
which phylogenetically “newer” brain functions, such as
cognition, are associated with functional networks that

have longer developmental trajectories. Moreover, the tim-
ing of the development of functional networks may be a
reflection of the biological demand for that brain function.
As described above, brain regions associated with vision
mature faster than those related to cognitive functions,
and one could argue that the ability to see is more vital to
our survival than the ability to make decisions. Therefore,
a stronger genetic control on the development of sensory
networks might play an important evolutionary role. Nota-
bly, an exception to this notion was the auditory network.
For unknown reasons, the genetic contribution to the audi-
tory cortex was relatively low, even though it is also a
major sensory network and matures early in life.

An alternative explanation to less genetic influences on
cognitive RSNs relative to sensory RSNs is the age group
of the twin sample used in the present study. It has been
reported that the genetic influences over cognition
increases with age from born to adulthood [Briley and
Tucker-Drob, 2013]. Therefore, given that the twin sample
recruited in the present study is relatively young (age: 12–
19), it is likely that the heritability of cognitive RSNs has
not yet reached a maximum.

Technical Considerations and Potential

Limitations

There are a few limitations in the present study. First,
although motion-related variances were considered in
model fitting, other imaging-associated variances were not
taken into account and could be a confounding factor to
our results. To thoroughly evaluate all imaging-associated
variances, a test-retest study will be needed, which is
unfortunately not pragmatic. Nonetheless, we believe it is
unlikely that other imaging-related variances could signifi-
cantly affect the final results for two reasons. First, we
found that the motion-related variance, which typically
represent a large portion of imaging-associated variance,
minimally contributed to A and E maps for all RSNs. In
Supporting Information (Figure 2) we, respectively, com-
pared the A and E maps between the cases with and with-
out considering motion-related variances in two example
(visual and default-mode) networks. For both networks,
the spatial patterns of A and E maps were virtually identi-
cal between the two cases, suggesting that the motion var-
iance had little effect on the relative A and E contributions
to these two RSNs. The same result was observed in all
other RSNs. Second, the ICA approach applied in the pres-
ent study made the functional connectivity of RSNs “not
significantly affected by structured noise over a relatively
large range,” as suggested by a study comparing ICA and
seed-based correlational analysis [Ma et al., 2007]. As a
result, the imaging-related variance unlikely represented a
major source of variance in our data, and thus will not sig-
nificantly affect the final results.

Another limitation of the present study is that the
threshold of heritability in the definition of endophenotype

Figure 5.

The ratio of the number of voxels with A> 0.4 for all RSNs.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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is somewhat arbitrary. Considering that there is no con-
sensus on the degree of the genetic contribution (i.e., A
value) when defining an endophenotype, we used the
threshold of A value based on a previous publication [Kor-
gaonkar et al., 2014]. A similar degree of heritability has
also been used to define endophenotypes in others studies.
For instance, using a twin design Chen and Li showed
that the additive genetic factor accounted for 31% (i.e.,
A 5 0.31) of variance in the endophenotype of adolescent
dysfunctional attitude [Chen and Li, 2014]. In another
study using a mother-offspring design, the heritability of
delusional-like experiences was estimated to be 0.35
(standard error 0.04), and these experiences were consid-
ered to represent a quantitative endophenotype for genetic
studies of common mental disorders [Varghese et al.,
2013]. Therefore, the degree of heritability chosen in the
presented study should provide a reasonable threshold for
defining endophenotype. Importantly, the genetic contri-
butions in all clusters reported were statistically signifi-
cant, confirming meaningful heritability of these
endophenotypes.

In the present study, we dropped the full ACE model
and adopted the AE model because of the insignificance of
the common environmental (i.e., C) factor. Although insig-
nificant effects from the C factor to RSNs have been
reported in almost all previous studies using the same
model [Blokland et al., 2011; Fornito et al., 2011; Korgaon-
kar et al., 2014; van den Heuvel et al., 2013], it has to be
noted that the effects of the C factor may still be significant
in studies with much larger statistical power. Neale and
Cardon found that to be 80% sure about the common envi-
ronmental factor accounting for 20% of the total variance,
692 twin pairs for each twin type (DZ or MZ) are required
[Neale and Cardon, 1992]. Due to the moderate sample
size of imaging genetics studies, the undetected effects of
the C factor may be due to the lack of sufficient statistical
power. In addition, like the most majority of these previ-
ous studies, we used the likelihood ratio test for selecting
between the full ACE model and reduced models [Couvy-
Duchesne et al., 2014; Dominicus et al., 2006; Korgaonkar
et al., 2014; Neale and Cardon, 1992]. It needs to be kept
in mind that alternative statistical approaches are also
available and might provide advantages over the likeli-
hood ratio test. For instance, nonparametric permutation
approaches can establish the exact empirical null distribu-
tions of A, C, and E factors, particularly under the circum-
stance that the sample size is not very large.

Also due to the moderate sample size of the present
study, we included both DZ same-sex and DZ opposite-
sex twins in the analysis. While there was no significant
difference in the number of males and females in the DZ
group, it is possible that opposite-sex twin pairs can
decrease the DZ correlation, thereby “artificially” increas-
ing heritability. To address this issue, we calculated intra-
class voxelwise correlations for MZ, DZ same-sex (12
pairs), and DZ opposite-sex (12 pairs) groups, as well as

the differences in mean, variance, and covariance of z-
scores between DZ same-sex twins and DZ opposite-sex
twins for each ICA component in two RSNs that were
under the strongest genetic control (i.e., visual and basal
ganglia networks, Supporting Information Figure 3). The
data show that the corresponding correlation maps
between DZ same-sex and DZ opposite-sex groups were
overall comparable. In addition, means, variances, and
covariances can generally be equated between DZ same-
sex and DZ opposite-sex groups, as reflected from the his-
tograms of voxelwise difference between DZ same-sex and
DZ opposite-sex twins for each nonartifactual ICA compo-
nent in the two RSNs. Virtually all histograms show distri-
butions with centers at zero. Based on this result, we
believe that although including DZ opposite-sex twin pairs
may affect the estimation of heritability, this influence
should be minimal. We will further investigate this issue
with a larger sample size.

Nonstationarity could be another potential limitation in
the present study. Nonstationarity due to local smoothness
variation of noise requires a stringent cluster-forming
threshold and high spatial smoothing to control for false
positive rates [Silver et al., 2011]. The measurements of
resting-state activity are unavoidably to include a few non-
stationary components resulting from motion and physio-
logical noise and, therefore, may affect the genetic analysis
in the present study. However, because the group ICA
approach is able to recover stationary sources even when
nonstationary sources are present in the data, as suggested
by previous studies [Calhoun et al., 2001a], the potential
effects of nonstationarity should be minimized in the pres-
ent study. Indeed, all ICA components used for the genetic
analysis in the present study were consistent with the liter-
ature [Allen et al., 2011] owing to the template-matching
method applied [Greicius et al., 2004] and the well-
recognized templates used [Allen et al., 2011], suggesting
that these ICA components were dominated by stationary
sources. Therefore, the effects of nonstationarity on the
genetic analysis should be minimal.

Conclusions

In conclusion, the present study has mapped the genetic
and environmental influences on functional brain net-
works, and has identified specific endophenotypic clusters
for individual RSNs. Our findings suggest that part of the
human functional connectome is shaped by genetic con-
straints and the genetic control is heterogeneous across
different RSNs. This study may be useful for determining
the genetic basis of the human functional connectome.
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