
Article

A chemical–genetic interaction map of small
molecules using high-throughput imaging in
cancer cells
Marco Breinig1,2,†, Felix A Klein3,†, Wolfgang Huber3,* & Michael Boutros1,2,**

Abstract

Small molecules often affect multiple targets, elicit off-target
effects, and induce genotype-specific responses. Chemical genet-
ics, the mapping of the genotype dependence of a small mole-
cule’s effects across a broad spectrum of phenotypes can identify
novel mechanisms of action. It can also reveal unanticipated
effects and could thereby reduce high attrition rates of small
molecule development pipelines. Here, we used high-content
screening and image analysis to measure effects of 1,280 phar-
macologically active compounds on complex phenotypes in
isogenic cancer cell lines which harbor activating or inactivating
mutations in key oncogenic signaling pathways. Using multipara-
metric chemical–genetic interaction analysis, we observed pheno-
typic gene–drug interactions for more than 193 compounds, with
many affecting phenotypes other than cell growth. We created a
resource termed the Pharmacogenetic Phenome Compendium
(PGPC), which enables exploration of drug mode of action, detec-
tion of potential off-target effects, and the generation of
hypotheses on drug combinations and synergism. For example,
we demonstrate that MEK inhibitors amplify the viability effect
of the clinically used anti-alcoholism drug disulfiram and show
that the EGFR inhibitor tyrphostin AG555 has off-target activity
on the proteasome. Taken together, this study demonstrates how
combining multiparametric phenotyping in different genetic
backgrounds can be used to predict additional mechanisms of
action and to reposition clinically used drugs.
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Introduction

Target-centered high-throughput screening has been successful for

identifying inhibitory small molecules for drug development pipe-

lines. However, many drugs fail at later stages because of unin-

tended side effects or unfavorable toxicological profiles (Lord &

Ashworth, 2010; Bowes et al, 2012). These failures are a major

factor in the high total costs of drug development and increase the

societal burden in developing new and effective therapies. While an

initial focus on target activity often yields highly effective small

molecules, it may lead to lack of depth and resolution in the charac-

terization of potential polypharmacology (Hopkins, 2008). In addi-

tion, even in cases when the targets of a drug are well defined,

unanticipated dependencies on specific genetic backgrounds can

limit its application. This is particularly relevant in cancer, as cancer

cells harbor many somatic mutations (Al-Lazikani et al, 2012).

To decrease high attrition rates in drug development, it was

proposed to perform comprehensive pharmacological profiling early

in the drug development process (Bowes et al, 2012). Such

approaches, also termed “systems pharmacology”, attempt to inte-

grate the identification of a drug’s mode of action(s), its polyphar-

macology, and genotype dependencies (Sorger et al, 2011). With

few exceptions (Bodenmiller et al, 2012; Kleinstreuer et al, 2014),

scalable methods to this end have been rather difficult to imple-

ment. In addition to transcriptome profiling (Lamb et al, 2006; Iorio

et al, 2010), phenotypic profiling by cellular imaging has been

deployed as a strategy for delineating a compound’s mode of action

by comparing drug-specific phenotypic responses (Perlman et al,

2004; Young et al, 2008; Gustafsdottir et al, 2013).

Recently, cell-based viability screens have been used to gener-

ate large datasets by profiling up to 350 drugs against compendia

of cancer cell lines (Barretina et al, 2012; Garnett et al, 2012;

Basu et al, 2013). These and other studies (Torrance et al, 2001;

Muellner et al, 2011; Kittanakom et al, 2013) identified gene–drug

associations that may underlie genotype-dependent resistance and

sensitivity. So far, gene–drug interaction analyses were limited by
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their focus on cell proliferation and viability as a phenotypic

readout.

In this study, we profiled gene–drug interactions for more than

1,200 pharmacologically active compounds by high-throughput

imaging. Multivariate phenotypic responses of cancer cells were

measured in different isogenic genetic backgrounds. In total, we

measured 300,000 drug–gene–phenotype interactions to create a

resource termed the Pharmacogenetic Phenome Compendium

(PGPC). This resource unveiled genotype-specific drug responses

and predicted drug combinations in cancer cells. Exploring the

PGPC, we could see instances of pathway crosstalk, compound mode

of action, and off-target effects. We provide access to the pharmaco-

genetic phenotypes through an interactive webpage (http://dedom-

ena.embl.de/PGPC) and as a Bioconductor/R package.

Results

Detection of complex phenotypes across multiple drugs and
genetic backgrounds

We established a high-throughput method to quantitatively measure

genotype-dependent drug effects on cellular phenotypes using auto-

mated microscopy and image analysis (Fig 1A). We selected a panel

of 12 isogenic knockout cell lines with mutations in key oncogenic

signaling pathways (Fig EV1 and Materials and Methods): three

HCT116 colon cancer cell lines where the oncogenic mutation of

either CTNNB1 (b-catenin), KRAS, or PI3KCA (PI3K) was deleted,

leaving only the respective wild-type allele, as well as seven knock-

out cell lines for PTEN, AKT1, AKT1, and AKT2 together (AKT1/2),

MAP2K1 (MEK1), MAP2K2 (MEK2), TP53, and BAX and two

parental HCT116 cell lines (P1 and P2). HCT116 cells were chosen

as a model system since multiple well-characterized isogenic deriva-

tives are available (Torrance et al, 2001; Chan et al, 2002; Samuels

et al, 2005; Ericson et al, 2010), several of which have previously

been used for large-scale compound and RNA interference screens

(Torrance et al, 2001; Vizeacoumar et al, 2013).

HCT116 cells of the indicated genotype were seeded in 384-well

plates and compound screens were carried out. We chose a drug

library with 1,280 pharmacologically active compounds affecting a

broad spectrum of cellular processes and major drug target classes

(Table EV1) in order to obtain a comprehensive view of pheno-

typic–pharmacogenetic effects. Briefly, compounds were added at a

single concentration of 5 lM and, after 48 h, cells were stained for

DNA and actin to monitor nuclear and cellular phenotypes (Fig 1A).

Experiments were performed in two biological replicates, and a total

of 294,912 images were analyzed. Images that did not pass quality

control were excluded from further analysis (Appendix Fig S1). On

average, 7,000 cells were analyzed per well. Building upon a previ-

ously established automated image analysis pipeline (Pau et al,

2010), we extracted, for each well, 385 quantitative phenotypic

features of cellular morphology, including cell number as a measure

of overall cell proliferation and viability, resulting in more than

14,000,000 measurements. The reproducibility of phenotypic

features was high, with 310 features showing a correlation of > 0.7

(Spearman correlation coefficient) between biological replicates

(Fig 1B). To select the most informative and non-redundant pheno-

typic features, we employed a previously established stepwise selec-

tion procedure (Laufer et al, 2013). This resulted in a set of 20

features (Fig 1C, Appendix Fig S2), which we grouped into five

phenotypic categories. We visualized them by radar charts, which

we term phenoprints (Fig 1D).

We explored these charts together with the original images to

assess their ability to report specific drug-induced morphological

changes. Treatment of the parental HCT116 cells with microtubule-

targeting compounds caused apoptosis (Fig 1F and G), and topoiso-

merase inhibitor treatment resulted in increased nuclear and cellular

size as compared to DMSO-treated cells (compare Fig 1E with Fig 1H

and I), a phenotype attributed to mitotic catastrophe (Maskey et al,

2013). Further examples of characteristic phenotypes included cell

death with aberrantly shaped nuclei and locally enhanced actin

intensity in the few remaining cells (ouabain, Fig 1J) as well as elon-

gated cells (rottlerin, Fig 1K). Overall, phenoprints served as

compact visualizations of drug-induced phenotypes. Drugs sharing

the same target resulted in similar phenotypes and had similar

phenoprints, as demonstrated by microtubule-targeting compounds

(Fig 1F and G), and topoisomerase inhibitors (Fig 1H and I).

Together, these results demonstrate that our assay and data

analysis pipeline produces quantitative multivariate feature vectors,

or phenotypic signatures, that capture compound-induced cellular

phenotypes.

Quantitative analysis of phenotypic chemical–
genetic interactions

To set a baseline for chemical–genetic interaction analysis, we first

determined the phenotypic signature of each of the 12 cell lines

without drug treatment (Fig EV2). For instance, in contrast to parental

▸Figure 1. Profiling chemical–genetic interactions using image-based cellular phenotyping.

A Schematic representation of the experimental approach.
B Correlation of phenotypic features between replicates. Features are ranked from left to right by the degree of their correlation. 310 features had a Pearson

correlation > 0.7.
C Feature selection by dimensionality reduction. Stepwise selection based on linear decomposition resulted in a set of the 20 most informative and non-redundant

phenotypic features.
D Phenoprinting. 20 selected features were visualized as “phenoprints”, that is, phenotypic drug response signatures. Features were grouped into five broad

phenotypic categories: cell number, DNA texture/intensity, nuclear shape, cell shape, and actin texture/intensity. Phenoprint of parental HCT116 cells (P1) treated
with DMSO (Colors: cyan, DNA; red, actin). Scale bar, 20 µm.

E–K Drug-induced phenotypic changes are captured by phenoprints. Parental HCT116 cells (P1) treated with bioactive compounds. Microtubule inhibitors induce
condensed nuclei and nuclear blebs (indicative of apoptotic cells), and topoisomerase inhibitors increase nuclear and cellular size (indicative of mitotic
catastrophe). Ouabain, a Na/K-pump inhibitor, induces cell death with a cellular morphology different from microtubule-targeting agents. Rottlerin, originally
classified as a PKC inhibitor, induces cell elongation captured by a distinct phenoprint. Scale bars, 20 lm.
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HCT116 cells (CTNNB1 mutant [mt], (HCT116 CTNNB1 wt +/mt +)),

CTNNB1 wild-type (wt) cells (HCT116 CTNNB1 wt +/mt �) showed

protrusions of the cell body, a morphology previously associated

with a mesenchymal-like phenotype (Caie et al, 2010; Sero et al,

2015), as well as an irregular nuclear shape (Fig 2A). Then looking

at drug-treated cells, we observed genotype-dependent and geno-

type-independent phenotypes: For example, etoposide increased

nuclear and cellular size in the parental and in the CTNNB1 wt cells,

and the phenoprints indicated largely comparable changes in shape.

In contrast, the spindle toxin colchicine induced an apoptosis

phenotype in parental HCT116 cells, whereas we observed increased

sizes for the CTNNB1 wt cells. Analogously, the histone methyl-

transferase inhibitor BIX01294 had a moderate impact on parental

HCT116 cells, but led to decreased cell size and altered nuclear

shape in CTNNB1 wt cells (Fig 2A).

Next, we calculated interaction coefficients (Horn et al, 2011;

Laufer et al, 2013) for each of the 1,280 compounds across the 20

features in all genotypes tested. Briefly, the approach accounts for

baseline genotype and drug effects with an ANOVA-type approach,

and the resulting interaction coefficients measure the difference

between the observed phenotype for a given drug–genotype combi-

nation and the expected phenotype if the drug and genotype effects

were combined independently (Materials and Methods). For

instance, a negative interaction coefficient for cell number signified

a genotype-specific growth defect. This approach allowed a

quantitative determination of a broad spectrum of phenotype-

specific interactions. For example, colchicine and BIX01294

treatment revealed interactions for multiple phenotypic features in

CTNNB1 wt cells, whereas we did not observe significant interac-

tions affecting cell number, that is, cell proliferation and viability

(FDR < 0.01, Fig 2B and Appendix Fig S3). This indicates that

gene–drug interactions for colchicine or BIX01294 were

specifically seen in cell morphology phenotypes, while effects on

cell number were independent of mutant versus wild-type CTNNB1

genotype.

Our analysis yielded a dataset, termed the Pharmacogenetic

Phenome Compendium (PGPC), comprising information on more

than 300,000 drug–gene–phenotype interactions. Across all 20

phenotypic features investigated, a total of 2,359 significant chemi-

cal–genetic interactions were observed (0.8% of all possible interac-

tions; FDR < 0.01). These interactions were associated with 193

compounds (15.1% of compounds tested; Appendix Fig S4). The

majority of chemical–genetic interactions did not significantly affect

cell growth. For example, 204 chemical–genetic interactions were

exclusively due to phenotypic features associated with nuclear

shape, whereas only 16 interactions were based on an analysis of

cell number (Fig 2C). Only 14 compounds (1.1% of compounds

tested) revealed significant interactions for cell number

(Appendix Fig S4). Together, these results show that our multipara-

metric approach provided increased coverage and sensitivity for

gene–drug interaction mapping.

Many compounds specifically interacted with few genotypes; for

instance, 90 of the 193 compounds had interactions with a single

genotype (Fig 2D). We also noted a trend toward higher number of

interactions involving cell lines in which the genotype itself had a

pronounced phenotypic effect, including cell number (e.g., CTNNB1

wt cells; Figs 2E and EV2 and Appendix Fig S5A and B). These find-

ings are reminiscent of results reported for genetic interactions in

yeast, where stronger effects of single gene deletions correlated with

a higher number of interactions (Costanzo et al, 2010). When focus-

ing on specific genotypes, we observed that MEK1 KO cells presented

more interactions compared to MEK2 KO (Fig 2E). Possible reasons

for this observation include different levels of expression of MEK1

and MEK2, and some degree of functional specialization between

MEK1 and MEK2 (Catalanotti et al, 2009; Scholl et al, 2009).

We further examined the similarity of cell lines by unsupervised

clustering of their interaction profiles and found that KRAS wt

(HCT116 KRAS wt +/mt �) and MEK1 KO cells grouped together

(Appendix Fig S5C). This finding is in agreement with a report

demonstrating that MEK1 and not MEK2 acts as the crucial modula-

tor in the RAS/MAPK signaling branch (Catalanotti et al, 2009).

We also observed more interactions for AKT1/2 double KO cells

compared with AKT1 KO alone (Fig 2E). This is likely due to func-

tional redundancy, consistent with studies that demonstrated that

neither AKT1 nor AKT2 KO affected cell growth in HCT116 cells,

whereas simultaneous AKT1/2 KO reduced proliferation and

impaired metastasis formation (Ericson et al, 2010). Together, these

results demonstrate that quantitative multi-phenotype chemical–

genetic interaction profiles convey biologically relevant information.

A phenotypic chemical–genetic interaction map

To obtain a global overview of associations between signaling path-

way states, related genes, and phenotypic drug effects, we created a

▸Figure 2. Quantitative analysis of phenotypic chemical–genetic interactions.

A Drugs induce either convergent or divergent phenotypic alterations depending on genetic backgrounds as revealed by visual inspection. Phenotypes for parental
HCT116 cells (P1; CTNNB1 mutant (mut); HCT116 CTNNB1 wt +/mt +) and CTNNB1 wild-type (wt) (HCT116 CTNNB1 wt +/mt �) cells, that is, HCT116 cells with a knockout of
the mutant allele, differ under control conditions (DMSO). Treatment with etoposide induces an increase in nuclear and cell size in both genetic backgrounds.
Colchicine induces apoptosis in parental HCT116 cells and an increase in nuclear and cell size in CTNNB1 wt (HCT116 CTNNB1 wt +/mt �) cells. BIX01294 moderately
affects phenotypic features in parental cells, but induces cell condensation in CTNNB1 wt (HCT116 CTNNB1 wt +/mt �) cells. Colchicine and BIX01294 reduce cell number
independent of genotype. Colors: cyan, DNA; red, actin. Scale bars, 20 lm.

B Quantitative analysis of chemical–genetic interactions across multiple phenotypic features. Chemical–genetic interactions were calculated for all 20 phenotypic
features as described. Colchicine and BIX01294 display multiple interactions in CTNNB1 wt (HCT116 CTNNB1 wt +/mt �) cells. Interactions are scaled to range of 0 to 1.
*FDR < 0.01, highlighted in red.

C Overlap of chemical–genetic interactions between phenotypic categories. Zero values have been omitted for better readability.
D Specificity and pleiotropy of gene–drug interactions. The fraction of genetic backgrounds is shown for which compounds reveal at least one significant interaction

(FDR < 0.01).
E Number of interactions per genetic backgrounds. Different genotypes reveal varying numbers of interactions across the 20 phenotypic features investigated

(FDR < 0.01).
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map of gene–drug interactions (Fig 3). Among others, we observed

interactions between the PI3K inhibitor wortmannin and KRAS wt

(HCT116 KRAS wt +/mt �) cells, suggesting a higher dependence on

PI3K signaling of KRAS wt cells as compared to KRAS mt parental

HCT116 cells (HCT116 KRAS wt +/mt +). Interactions between KRAS

and PI3K have previously been reported in HCT116 cells (Torrance

et al, 2001; Vizeacoumar et al, 2013). Moreover, we discovered

interactions between two casein kinase 2 (CK2) inhibitors and

PI3KCA wt (HCT116 PI3KCA wt +/mt �), but not PTEN KO and AKT1/2

KO cells. Mechanistically, CK2 has been demonstrated to inhibit

PTEN and directly activate AKT; both events trigger PI3K/AKT path-

way activity (Torres & Pulido, 2001; Di Maira et al, 2005). Our find-

ings are consistent with these observations and suggest that CK2

does not compensate perturbations at the hierarchical level of AKT,

but can compensate perturbations at the level of PI3K and

potentially also upstream of PI3K, that is, at the level of receptor

tyrosine kinases. The latter hypothesis is in agreement with a recent

finding that demonstrated synergism for the combinatorial pharma-

ceutical inhibition of CK2 and EGFR (Bliesath et al, 2012). Our

map further revealed interactions between a MNK1 inhibitor

and both PI3KCA wt (HCT116 PI3KCA wt +/mt �) and KRAS wt

(HCT116 KRAS wt +/mt �) cells, suggesting that RAS/MAPK and PI3K

signaling converge at the level of this kinase. MNK1 is a down-

stream factor of RAS/MAPK signaling involved in translational

control via regulation of eIF4E (Wang et al, 2007). In support of this

interpretation, a link between PI3K/mTOR and MAPK/MNK1

signaling to eIF4E phosphorylation has been demonstrated (Wang

et al, 2007).

Together, these results indicate that phenotypic chemical–genetic

interaction maps can be used to investigate crosstalk between
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Figure 3. Multiparametric chemical–genetic interaction map of colon cancer cells.
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signaling pathways and to derive insights how drugs perturb genetic

networks.

Extrapolating drug–gene interactions to drug–drug combinations

We next asked whether the drug–gene interaction map could be used

to predict effective drug–drug combinations. We reasoned that if a

drug’s effect is particularly strong in a genetic background with

diminished activity of a certain pathway or process, such an effect

might also be achieved in other backgrounds by use of a relevant

chemical inhibitor. Focusing on drug effects affecting cell growth, we

first set our attention on bendamustine, a DNA-alkylating agent

approved for the treatment of chronic lymphocytic leukemia (CLL)

that does not have cross-resistance with standard alkylating agents

(Keating et al, 2008). Bendamustine markedly reduced cell number

specifically in AKT1/2 double KO cells (Fig 4A, Appendix Figs S6

and S7A). We therefore tested the combination of bendamustine with

small molecule AKT inhibitors and observed that while AKT inhibi-

tion alone had a negligible effect on viability of the parental HCT116

cells, in combination with bendamustine the effect was significantly

stronger than the bendamustine single-agent treatment (Fig 4B). This

synergy was specific for AKT inhibition, as the combination of bend-

amustine with MEK inhibitors did not elicit stronger effects

compared with either single-agent treatment (Fig EV3A and B).

A second instance involved the aldehyde dehydrogenase inhi-

bitor disulfiram, a drug used for the treatment of alcoholism

(Lövborg et al, 2006). Disulfiram showed a synthetic lethal interac-

tion with MEK1 KO cells (Fig 4C, Appendix Figs S6 and S7B). There-

fore, we hypothesized that an analogous synergy could exist

between disulfiram and MEK inhibitors. The combination of disulfi-

ram and MEK inhibitors resulted in significantly stronger viability

reduction compared to disulfiram alone, while MEK inhibitors alone

had no detectable effect (Fig 4D). Both drug combinations (ben-

damustine with AKT inhibitors, and disulfiram with MEK inhibitors)

were also effective in a second colon cancer cell line (DLD-1;

Fig EV3C–H).

Overall, these results demonstrate that such chemical–genetic

resources can be used to derive specific predictions of synergism for

drug combinations.

Phenotype-based similarity clustering of drug interaction profiles
aids compound characterization

Next, we analyzed the similarity of interaction profiles by unsuper-

vised clustering, using one minus the correlation coefficient of drug

profiles as a measure of dissimilarity. This analysis revealed several

tight clusters of drugs with known shared mode of action (Fig 5A

and Appendix Fig S8). To further dissect these results, we visualized

the chemical similarities between compounds by their Tanimoto

distances (Fig 5A, in orange). This showed that our phenotypic

interaction data-driven clusters could in some cases be explained by

chemical similarity, whereas in other cases, chemically distinct

compounds shared high interaction profile similarity (see Table EV2

for detailed information related to highlighted clusters C1–C18 and

compounds).

For example, cluster C1 contained compounds that target tubulin,

including taxol, vincristine, and nocodazole; these compounds do

not share a high degree of chemical similarity. Similarly, the MEK

inhibitors PD98059 and U0126 are not highly structurally related but

clustered tightly (C2, including a spike-in control). We also found

clusters with structural and functional similarity (C3–C5). Examples

include the p38 inhibitors PD169316 and SB202190 (C3), and the

synthetic glucocorticoids betamethasone and beclomethasone (C4).

There were also instances of structurally highly related compounds

with different bioactivities (arrows, off-diagonal). For example, the

two cytosine analogues 5-azacytidine and ara-c did not directly

cluster together (arrow 1), consistent with the fact that only

5-azacytidine inhibits DNA methyltransferases (Christman, 2002).

The map also included divergent associations for compounds

that are annotated to interfere with the same biological process

(C6–C10). For example, we observed a cluster including two DNA-

alkylating agents (C9), whereas the DNA-alkylating agent benda-

mustine (C10) did not reveal a similar profile and instead shared a

signature with pifithrin-l, which interferes with p53 (Strom et al,

2006). Our observation is in accordance with a previously suggested

different mode of action of bendamustine compared with other

DNA-alkylating agents (Leoni et al, 2008).

The map contained several instances of clusters of compounds

that target different effector molecules in connected biological

processes (C11–C16). For example, C16 included inhibitors of folate

metabolism, the DNA methyltransferase inhibitor 5-azacytidine, and

the iron chelator phenanthroline. Associations between iron and

folate metabolism have been reported (Oppenheim et al, 2000), and

folate metabolism is linked to DNA methylation (Crider et al, 2012).

The map further allowed us to infer primary mode of action and

off-target effects of compounds (C17, C18 see below). For example,

C17 clustered the anti-helmitic compound niclosamide, which

uncouples oxidative phosphorylation (Weinbach & Garbus, 1969;

MacDonald et al, 2006), and rottlerin, a compound thought to target

PKC. This result is in accordance with the finding that rottlerin

uncouples oxidative phosphorylation and supports the view that the

classification of rottlerin as a PKCd inhibitor is incorrect (Soltoff,

2001).

While in some instances the correlation of drug profiles was a

result of coordinated subtle covariation across multiple cell lines and

phenotypes, in other cases it appeared to be driven by the similarity

of distinctive phenotypes of individual isogenic cell lines. For exam-

ple, and as already introduced above, the CK2 inhibitors DMAT and

TBBz (Fig 5A, C5) affected nuclear shape features specifically in cells

with only the wild-type copy of PI3KCA (HCT116 PI3KCA wt +/mt �)
(Appendix Fig S9 and Fig 3), whereas the compounds ARP101 and

YC-1 in C15 affected distinct phenotypic features in cells with only

the wild-type copies of CTNNB1 (HCT116 CTNNB1 wt +/mt �) and

PI3KCA (HCT116 PI3KCA wt +/mt �) (Appendix Fig S9). Further,

compounds in C18 had distinctive interactions with MEK1 KO cells

(HCT116 MAP2K1 �/�) (Appendix Fig S9 and Fig 3).

Together, these findings demonstrate that phenotypic chemical–

genetic interaction profiles provide a rich resource for the character-

ization of compounds with a broad spectrum of bioactivities.

Integrating pharmacogenetic and phenotypic information
increases sensitivity

We asked to what extent there is a benefit from using multiparamet-

ric phenotyping on multiple genetic backgrounds compared to either

approach alone, that is, using multiparametric phenotyping of drugs
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Figure 4. Extrapolating drug–gene interactions to drug–drug combinations.

A Bendamustine interaction spectrum. Bendamustine revealed chemical–genetic interactions across multiple phenotypic features including reduced cell number,
specifically in AKT1/2 double KO (HCT116 AKT1 �/�; AKT2 �/�) cells. Interactions are scaled from 0 to 1. *FDR < 0.01, highlighted in red.

B The combination of bendamustine with Akt inhibitors (AKTi VIII or MK2206) resulted in significantly stronger viability reduction compared with either drug alone.
C Disulfiram interaction spectrum. Disulfiram revealed chemical–genetic interactions across multiple phenotypic features including reduced cell number, specifically in

MEK1 KO (HCT116 MAP2K1 �/�) cells. Interactions are scaled from 0 to 1. *FDR < 0.01, highlighted in red.
D The combination of disulfiram and MEK1/2 inhibitors (U0126 or PD98.059) resulted in significantly stronger viability reduction compared with either drug alone.

Data information: Genotypes: HCT116 P1 and P2: HCT116 CTNNB1 wt +/mt +; KRAS wt +/mt +; PI3KCA wt +/mt +; PI3KCA wt: HCT116 PI3KCA wt +/mt �; AKT1: HCT116 AKT1 �/�; AKT1/2:
HCT116 AKT1 �/�; AKT2 �/�; PTEN: HCT116 PTEN �/�; KRAS wt: HCT116 KRAS wt +/mt �; MEK1: HCT116 MAP2K1 �/�; MEK2: HCT116 MAP2K2 �/�; CTNNB1 wt: HCT116 CTNNB1 wt +/mt �;
P53: HCT116 TP53 �/�; BAX: HCT116 BAX �/�. Error bars, means � s.e.m. n ≥ 3 of at least three independent experiments that determined cell viability using the CellTiterGlo
assay. BI significance is shown, *P < 0.05.
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on a single cell line or drug–gene interactions using only a viability

phenotype, that is, cell number. We evaluated the distribution of

correlation coefficients of all drug interaction profiles for each of

these alternatives. The integrated approach—combining multipara-

metric phenotypes with pharmacogenetic interaction mapping—

provided better resolution for compound classification compared to

either individual approach (Appendix Fig S10). There were

instances in which drug–gene interactions using only a viability

phenotype, grouped together related compounds, including micro-

tubule inhibitors such as vinblastine and nocodazole (Appendix Fig

S10, genotypes). Likewise, there were instances in which pheno-

typic profiling of drugs using solely the parental HCT116 cell line

grouped together related compounds, including the MEK inhibitors

PD98059 and U0126 (Appendix Fig S10, multiparametric pheno-

types). However, associations between other compounds, including

the structurally highly related glucocorticoids betamethasone and

beclomethasone (Fig 5A, C4), were only revealed by the combined

approach (Appendix Fig S10, genotypes and multiparametric

phenotypes).

To measure assay performance, we assembled prior information

about target selectivity for the pharmacologically active compounds

in the screened library (Table EV1) and grouped the 193 compounds

that had interactions into the classes “shared selectivity” or “no

shared selectivity”. Then, we assessed how well the different

approaches separated these classes (Materials and Methods). Inte-

gration of phenotypic profiling and pharmacogenetic analyses was

superior in predicting shared target selectivity than either individual

approach (Fig 5B and C). We further used information about chemi-

cal similarity as determined by Tanimoto distances to group drugs

into the classes “shared chemical structure” or “different chemical

structure” and analyzed how well the different approaches sepa-

rated these classes (Materials and Methods). Again, the combined

strategy revealed better performance (Appendix Fig S11).

Collectively, these results underline the added value of integrat-

ing multiparametric phenotypic profiling and pharmacogenetic

interaction mapping for compound classification.

Off-target activity of the EGFR inhibitor tyrphostin AG555

The phenotypic chemical–genetic matrix suggested unexpected rela-

tionships that we next confirmed by additional experiments. For

example, we observed surprisingly similar interaction profiles for

the ALDH inhibitor disulfiram, the EGFR inhibitor tyrphostin

AG555, the chymotrypsin inhibitor ZPCK, and the NF-jB inhibitor

CAPE (Fig 5A C18 and Fig 6A). Mechanistically, NF-jB activity is

known to be tightly regulated by proteasomal degradation of IjB

and the proteasome’s chymotrypsin-like activity (Kisselev et al,

2012) might explain the functional similarity of ZPCK and CAPE.

Additionally, disulfiram was previously shown to impair protea-

some function (Lövborg et al, 2006). Therefore, we tested whether

all compounds in cluster C18, including the EGFR inhibitor

tyrphostin AG555, might indeed affect proteasome activity.

To this end, we measured the chymotrypsin-like, trypsin-like,

and caspase-like proteasome activities in HCT116 cells treated with

disulfiram, ZPCK, tyrphostin AG555, or CAPE. As shown in Fig 6B,

these experiments showed significant inhibition of proteasome

activities by all four compounds, although weaker than the effect

induced by the well-established proteasome inhibitors MG132 and

bortezomib. Moreover, we observed that tyrphostin AG555

increased the abundance of ubiquitinylated proteins (Appendix Fig

S12). In contrast, two structurally different EGFR inhibitors that

were included in our screened compound library, AG1478 and

DAPH, did not impair proteasome function, suggesting that the

effects of compounds in cluster C18 were not mediated by EGFR

inhibition (Fig 6B). These findings identify proteasome inhibition as

a previously unrecognized off-target activity of the EGFR inhibitor

tyrphostin AG555.

Discussion

How to integrate the search for off-target activities and genotype-

specific effects early in drug development pipelines has remained a

largely unresolved issue. Here, we established a chemical–genetic

interaction and phenotypic profiling approach to provide multiple

layers of quantitative information based on an integrated and stan-

dardized screening procedure. Quantitative mapping of chemical–

genetic interactions across complex phenotypes improves

compound classification and we demonstrate that a rich set of infor-

mation can be obtained by monitoring phenotypes beyond cell

viability, as interactions observed for cell proliferation are only one

dimension of the wider range of nonlinear combinatorial effects

between compounds and genetic variants. Our experiments reveal

the advantages and prospects of multiparametric interaction analy-

ses both at large scale and for specific examples. The methods

described here can be adapted and applied to query phenotypic–

pharmacogenetic interactions in additional cell lines from various

lineages. Finally, we provide a searchable resource for 1,280 phar-

macologically active compounds that can serve as a template for

larger sets of molecule collections.

Drug development suffers from high attrition rates as critical

information about a drug’s mode of action and off-target effects is

◀ Figure 5. Clustering of phenotypic chemical–genetic interactions.

A Unsupervised clustering based on the correlation of compound interaction profiles of all 12 genetic backgrounds for 20 phenotypic features (upper left; similarity of
multiparametric interaction profiles; color scale: white to blue). Structural similarity of compounds (lower right; color scale: white to orange). Color coding of cluster
tree visualizes automated cluster analysis using a 0.6 height cutoff for the cluster tree and the inclusion of > 2 and < 10 drugs per cluster. See text and Table EV2 for
details.

B Interaction profile correlation from the integrated approach is better at predicting compounds’ shared target selectivity, as indicated by the shift of the empirical
cumulative density functions (ECDF) for shared targets (red curve) compared to non-shared targets (blue curve) in the three panels: Genotypes: data only on cell
number using 12 genetic backgrounds; Multiparametric phenotypes: data using image-based 20 phenotypic features of one genetic background (parental HCT116;
P1); Genotypes and multiparametric phenotypes: interaction profiles derived from both 12 genetic backgrounds and image-based 20 phenotypic features.

C Resolution index, ΔAUC, displays the performance by which each strategy separated drugs that share/do not share target selectivity (see text and Materials and
Methods for details).
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often learned too late. Comprehensive drug characterization early

on in the development process should reduce expensive failure of

drugs in late stages. New information-rich, robust, and scalable

screening approaches should simultaneously provide information

about drug mode of action and polypharmacology, off-target effects,

and how drugs affect complex cellular networks by gene–drug inter-

actions (Sorger et al, 2011). Interaction maps of compounds as

described here could fill the gap between target-oriented small mole-

cule design and the characterization of polypharmacological drugs

and might provide important information at crucial decision points.

The resource we describe here enabled us to map gene–drug

interactions associated with cancer-relevant pathway activation

states and cellular networks. Using interaction network analysis

pioneered in model organisms (Costanzo et al, 2010), we were able

to predict synergism for specific combinations of drugs on the basis

of genetic knowledge. For such analysis, the use of genetically engi-

neered isogenic cell lines can be advantageous over cancer cell line

compendia. First, drug sensitivity or resistance can be correlated

with multiple features co-occurring in the same cell line (Garnett

et al, 2012), making it challenging to directly identify causal gene–

drug interactions. A second point is made by our discovery of the

synthetic lethal interaction between the alkylating agent bendamus-

tine and the double AKT1/2 KO genetic background, which is unli-

kely to occur naturally in cancer cell lines or primary cells. Based on

this finding, we were able to predict and validate synergism of bend-

amustine and AKT inhibitors in colon cancer cells, shortcutting a

potentially more complex combinatorial drug screen. Bendamustine

has clinical activity in numerous cancer types (Keating et al, 2008)

and AKT inhibitors have recently entered clinical trials including a

study investigating the combination of bendamustine with MK2206

and rituximab in CLL patients (NCT01369849). Based on the

hypothesis that bendamustine and AKT inhibition affect cancer

growth via different mechanisms, synergism between bendamustine

and MK2206 has recently been tested and demonstrated in patient-

derived CLL cells (Ding et al, 2013). Our results provide an unbi-

ased foundation for the combination of these agents in colon cancer

cells. We further used our gene–drug interaction data to demon-

strate the efficacy of combining disulfiram with MEK inhibitors.

Disulfiram is well established for the treatment of alcoholism, and

in conjunction with previous findings (Lövborg et al, 2006), our

data suggest that disulfiram’s proteasome inhibitory capacity could

be repurposed for anticancer treatment. We further note that the

compounds we observed to impair proteasome function (Fig 5A C18

and Fig 6A) primarily interacted with MEK1 KO cells (Fig 3), which

might indicate that the combination of MEK inhibitors with

compounds that impair proteasome activity could generally be

effective.

Although we initially focused the analysis of drug synergism on

the simple phenotypic effect of compounds on cell growth, we antic-

ipate that the integrated phenotypic–pharmacogenetic approach

could in the future also be used to predict drug combinations effec-

tive on other processes relevant to cancer. More research is needed

for a fair assessment of prediction performance, since parameters

such as prediction sensitivity and specificity need to be calibrated

depending on a drug’s single-agent activity, polypharmacology, and

its interaction “promiscuity” (Cokol et al, 2011).
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Figure 6. The EGFR inhibitor tyrphostin AG555 off-targets proteasome function.

A Chemical structures for compounds in cluster C18.
B The EGFR inhibitor tyrphostin AG555 impairs proteasome function. Chymotrypsin-like (CT-L), trypsin-like (T-L), and caspase-like (C-L) activities were measured in

HCT116 cells 24 h after addition of the indicated compounds observed in cluster C18 at a concentration of 5 lM. The proteasome inhibitors MG132 and bortezomib
served as positive controls. The EGFR inhibitors AG1478 and DAPH are shown as additional controls. Proteasome activity was normalized to DMSO control and
corrected for cell viability effects measured using CellTiterGlo. DMSO control determines 0% normalized proteasome inhibition (NPI). Error bars, means � s.e.m. n ≥ 5
of five independent experiments. Asterisk (*) indicates P < 0.05 in one sample one-sided t-test against NPI = 0.
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Our data provide evidence that the integration of phenotypic pro-

filing, which allows monitoring of diverse biological processes

including shape changes, mitosis, or apoptosis (Perlman et al, 2004;

Young et al, 2008; Fuchs et al, 2010), and pharmacogenetic interac-

tion mapping using isogenic cell lines can characterize drug mode of

action and off-target effects at high resolution. Using “guilt-by-

association” approaches, which have successfully been employed to

infer mechanistic insights for drug action (Perlman et al, 2004;

Lamb et al, 2006; Parsons et al, 2006) or to map connected biologi-

cal processes (Costanzo et al, 2010), we predicted associations

between drugs and biological pathways. By the same approach, we

identified a previously unrecognized off-target effect for the EGFR

inhibitor tyrphostin AG555 and demonstrated that this compound

impairs proteasome function.

Several extensions of the phenotypic–pharmacogenetic screening

assay presented here will be desirable. For example, the resolution

of the data would benefit from using multiple doses of each drug

(Perlman et al, 2004), and their scope could be extended by includ-

ing larger compound libraries with novel targets. Likewise, a

broader set of genetic backgrounds could be used, an aim that now

appears quite tractable with isogenic cell lines through use of

CRISRP/Cas9 technology (Sander & Joung, 2014). Moreover, the use

of additional markers of cellular components for high-content imag-

ing could further increase the phenotypic search space for interac-

tions relevant to an even broader range of biological processes. For

example, Gustafsdottir et al developed a multiplexing protocol that

allows for the detection of seven distinct cell components using six

stains and imaging five channels (Gustafsdottir et al, 2013).

The results of this study are provided as a resource we termed

Pharmacogenetic Phenome Compendium (PGPC). The PGPC has

been built using standardized, scalable experimental, and computa-

tional methods. The PGPC enables users to search for connected

biological processes perturbed by drugs, to investigate pathway

crosstalk, and to identify genotype-specific drug responses. It can

further be used to predict unexpected effects of drug combinations,

compound mode of action, and potential off-target effects. The

PGPC is provided for download in toto as a data package from

www.bioconductor.org, including all raw data and analyses. The

entirety of pharmacogenetic phenotypes observed in our experiment

can be examined by querying the original images via an accompany-

ing database (http://dedomena.embl.de/PGPC).

Overall, we expect that a systematic survey of relationships

between pharmacology, phenotype, and genotype and the integra-

tion of emerging pharmacogenetic and phenotypic resources (Young

et al, 2008; Barretina et al, 2012; Garnett et al, 2012; Basu et al,

2013; Kleinstreuer et al, 2014) and complementary strategies such

as transcription profiling as a means to infer drug mode of action

(Lamb et al, 2006) will accelerate the development of quantitative

systems pharmacology to deliver efficient genotype-stratified

therapeutics and better understanding of side effects.

Materials and Methods

Cell lines and cell culture

Parental HCT116 cells (HCT116, P1) were obtained from ATCC. The

second parental HCT116 cell line (HCT116, P2) and all isogenic

HCT116 cell lines were obtained from Horizon Discovery Ltd. The

isogenic cell lines comprised following genotypes: parental HCT116

cell lines (P1 and P2, HCT116 CTNNB1 wt +/mt +; KRAS wt +/mt +;

PI3KCA wt +/mt +); CTNNB1 wt where the oncogenic mutation of

CTNNB1 (b-catenin) was deleted leaving only the respective wild-

type allele (HCT116 CTNNB1 wt +/mt �); KRAS wt where the oncogenic

mutation of KRAS was deleted leaving only the respective wild-type

allele (HCT116 KRAS wt +/mt �); PI3KCA wt where the oncogenic

mutation of PI3KCA was deleted leaving only the respective wild-

type allele (HCT116 PI3KCA wt +/mt �); PTEN KO (HCT116 PTEN �/�);
AKT1 KO (HCT116 AKT1 �/�); AKT1 KO and AKT2 KO (AKT1/2

KO, HCT116 AKT1 �/�; AKT2 �/�); MAP2K1 KO (MEK1 KO, HCT116
MAP2K1 �/�), MAP2K2 KO (MEK2 KO, HCT116 MAP2K2 �/�), TP53

KO (P53 KO, HCT116 TP53 �/�); and BAX KO (HCT116 BAX �/�).
All cell lines were authenticated using SNP profiling (Multiplex-

ion). HCT116 cells were propagated in McCoy’s 5a modified

medium (Life Technologies) supplemented with 10% FBS

(Biochrom) and 1% penicillin/streptomycin (P/S) at 37°C and 5%

CO2. Sub-cultivation was performed every 4 days at a ratio of 1:10 –

1:20. DLD-1 cells were obtained from ATCC and propagated in

Dulbecco’s modified Eagle medium (DMEM) (Life Technologies)

supplemented with 10% FBS (Biochrom) and 1% P/S at 37°C and

5% CO2. Sub-cultivation was performed every 4 days at a ratio of

1:10 – 1:20.

Compound treatment

Prior to screening, we prepared serial dilutions of the LOPAC

compound library (Sigma) in RPMI medium (Life Technologies) to

provide a final stock concentration of 50 lM. Taxol/paclitaxel,

vinblastine, and U0126, as well as DMSO (all from Sigma) were

included as additional spike-in controls present on all plates. A list

of all compounds included in this library is provided with the R/

Bioconductor package PGPC and Table EV1. We seeded 1,250 cells

in 45 ll McCoy’s medium into each well of 384-well clear-bottom

microscopy plates (BD Biosciences) and incubated for 1 day at

37°C. 5 ll of compound solution was added using a Beckman

Biomek FX robot with 384-well tip head to yield a final concentra-

tion of 5 lM and 0.1% DMSO. Cells were cultured for 2 days at

37°C before analysis. For screening, a single drug concentration of

5 lM was used.

Cell staining and imaging

Cell staining was performed using a Biomek FX robot with a 384-

well tip head. Cells were fixed and permeabilized with 5%

paraformaldehyde (Sigma) and 0.2% Triton X-100 (Sigma) for

~60 min at room temperature. Nuclei and actin were stained with

2 lg/ml Hoechst 33342 (Invitrogen) and 75 ng/ml phalloidin

labeled with tetramethylrhodamine isothiocyanate (Sigma) for

~60 min at room temperature. Cells were washed four times with

PBS (Invitrogen), and 0.05% sodium azide (Sigma) was added for

storage. Plates were sealed with aluminum seals (Corning) and

stored until imaged at 4°C while protected from light. Fluorescence

images were acquired with an InCell Analyzer 2000 (GE Health-

care) at 10× magnification. Each well was fully covered by four

images in each of the two color channels, resulting in ~295,000

images.
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Image processing and feature extraction

Images were obtained as 16-bit TIFF images with a size of 2,048

pixels × 2,048 pixels. We adapted intensity correction, image

segmentation, and feature extraction methods from previous studies,

based on the R package EBImage (Pau et al, 2010). To remove biases

due to lower illumination intensity at the image border, 150 pixels

were cropped on each side. Nuclei were segmented by adaptive

thresholding of the Hoechst channel images with a window size of 10

by 10 pixels. The number of segmented nuclei was used as a proxy

for cell count. Using the segmented nuclei as seeds, a cell segmenta-

tion mask was generated by extending the nuclei segmentation into a

threshold mask of the actin channel using a Voronoi-based propaga-

tion algorithm. Parameter and method settings are documented in

the PGPC vignette. Briefly, the detected nuclei were used as seeds

and expanded into masks of the cytoplasm for each cell. Morphologi-

cal and texture features were extracted from the images using the

segmentation masks. In total, we extracted, for each well, 385 quanti-

tative phenotypic features (Table EV3). The data were transformed

using a generalized logarithm transformation (Huber et al, 2002).

Selection of non-redundant features

To select informative, non-redundant features, a stepwise dimen-

sionality reduction and selection algorithm was employed (Laufer

et al, 2013). Starting with cell number as an initial feature, this iter-

ative approach fits each feature by a linear model using the selected

features as predictors. The correlations between the model residuals

of each replicate were used as a surrogate for the novel information

that the feature contains. The feature with the highest correlation of

the model residuals is selected next. This process continues until the

percentage of positive model residual correlations over all features

is smaller than 50%.

The final set of 20 phenotypic features was grouped into five

categories. The category “DNA texture/intensity” includes intensity-

and texture-related features computed from the Hoechst staining

image, such as Haralick texture features. The “nuclear shape” group

includes size- and shape-related features computed from the

Hoechst channel, including eccentricity and nuclear radius. The

“cell shape” group includes size- and shape-related features and the

“actin texture/intensity” group includes intensity- and texture-

related features extracted from the actin channel. The 20 phenotypic

features were visualized by radar charts, which we termed pheno-

prints. Here, the radial distance is proportional to the variable

shown. Using cell number as an example, higher distance from the

origin corresponds to higher cell number.

Quantification of chemical–genetic interactions

The data of each feature were modeled using a multiplicative model

as previously described (Laufer et al, 2013) and robust L1 regres-

sion to estimate the effects of the cell line and compound treatment

using the medpolish function of the statistics package R (http://

www.r-project.org). In this iterative approach row and column

medians are subtracted alternately until the change in S, the sum of

absolute residuals, divided by S, falls below the defined threshold of

0.0001. The final row and column values describe the compound

and cell line effect, respectively. The residuals, either having a

positive or a negative value, represent the interaction coefficients.

This process was performed for each replicate and each feature indi-

vidually. To account for the different proliferation rates of isogenic

cell lines, the cell number values on the generalized logarithmic

scale were normalized using the range defined by the median of the

negative control values (1) and values of the compound taxol (0)

for each cell line. Values below 0 and above 1 are possible. To

detect significant interactions, the values of replicates were used to

perform a moderated t-test against the null hypothesis l = 0 using

the implementation of the lmFit and eBayes functions of the limma

R package (Smyth, 2004) on the interaction matrix of each feature.

P-values were adjusted for multiple testing by controlling for the

false discovery rate (FDR) using the method of Benjamini and

Hochberg (1995) as previously described for the quantification of

gene–gene interactions (Laufer et al, 2013). Significant interactions

were selected by using a cutoff of 0.01 (FDR) on the adjusted P-values.

To predict compound mode of action, we performed hierarchical

clustering with the complete linkage rule (Fig 5A). As measure of

dissimilarity, we used 1 � cor(x, y), where x and y are the inter-

action profiles for two compounds and cor is the Pearson correlation

coefficient.

Phenotypic chemical–genetic interaction map

We used Cytoscape version 2.8. (Shannon et al, 2003) to plot the

phenotypic chemical–genetic interaction map of a filtered dataset.

Briefly, we removed controls and considered only those compounds

that had interactions with a maximum of three out of twelve genetic

backgrounds tested. We further only considered compounds that

affected more than one phenotypic feature. Due to these filtering

steps, five of the twelve genetic backgrounds tested (both parental

HCT116 lines, BAX, AKT1, and MEK2 KO cells) are not included in

the map. A data file to produce the Cytoscape map is included in the

R/Bioconductor package PGPC.

Resolution index (ΔAUC)

To quantify the gain of information using the high-content pheno-

typic chemo-genomic approach over a high-content phenotypic (sin-

gle cell line) or pharmacogenetic (just cell number in all cell lines)

approach, we computed the resolution index ΔAUC as follows. First,

the correlation of compound profiles was calculated using all

features and all cell lines (genotypes and multiparametric pheno-

types), all 20 selected phenotypic features of the parental HCT116

cell line P1 (multiparametric phenotypes), and just the cell number

feature of all cell lines (genotypes). Second, the annotated target

selectivity (Table EV1) was used to classify compound pairs into the

“shared selectivity” or “no shared selectivity” class depending on

whether compounds share the same target based on annotation.

Chemical similarity was used to classify compound pairs into the

“similar structure” or “different structure” class. For this, we used

the distance matrix calculated from the compound sdf files using the

ChemmineR package (Cao et al, 2008). Compounds were classified

as “similar structure” if their structural distance as defined by the

Tanimoto distance calculated by ChemmineR was below 0.6. For

both approaches, the empirical cumulative distribution function

(ECDF) of the compound profile correlations between compound

pairs was calculated separately for each of the two classes. The
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resolution index is defined as the difference of the area under the

curve (ΔAUC) between the two classes for each approach.

Analysis of drug combination data

We measured the impact on cell viability of pairwise compound

combinations using fixed-dose ratio concentration kinetics and

employed the CellTiterGlo assay (Promega) to determine cell prolif-

eration and viability independently from cell number. Compounds

were combined at a concentration of 20 mM each in a pairwise fash-

ion and diluted in a 1:2 series to cover 10 concentrations. MK2206

was obtained from Santa Cruz Biotechnology. AKTi VIII was

obtained from VWR International. Bendamustine, disulfiram,

U0126, and PD98,059 were obtained from Sigma. Compounds were

spotted in 384-well plates (Greiner) and were then diluted in RPMI

using a Biomek FX robot. Briefly, HCT116 and DLD-1 cells were

seeded at a concentration of 1,000 cells in 45 ll McCoy’s medium

into each well of 384-well plate (Greiner) and incubated for 1 day

at 37°C. 5 ll of compounds was then added to cells as described

before to cover a concentration range of 10–0.0195 lM. Following

compound administration, cells were incubated for 3 days at 37°C

and cell viability was measured via the CellTiterGlo assay

(Promega) using a Mithras LB940 plate reader (Berthold Technolo-

gies). Data were analyzed using cellHTS2 (Pelz et al, 2010).

As compound effects E, we used 1 � NPI, which is the normal-

ized percentage inhibition obtained from the CellTiterGlo assay data

by subtracting the value of each measurement from the average of

the intensities on the plate positive controls and dividing the result

by the difference between the means of the measurements on the

positive and the negative controls on the plate. The raw plate reader

values were logarithm-transformed before these calculations.

We quantified the unexpectedness of the effect of a compound

pair by a non-interacting model (Bliss independence, BI) as previ-

ously used for large-scale compound synergism screens (Tan et al,

2012). In the BI model, the combined effect of the compound combi-

nation A and B is given by EAB = EA + EB � EA:B, where EA and EB
are the single compound effects at the same dose as in the combina-

tion and EA:B is the interaction term, which is zero for non-inter-

acting compounds. For each concentration, we used at least 10

measurements of EAB and 20 measurements each of EA and EB. We

estimated the interaction effect EA:B by inserting the means of the

measurements and solving the equation for EA:B. To test it against

the null hypothesis EA:B = 0, we employed Student’s t-test.

Cell-based proteasome activity assay

Compounds to be tested were spotted into 384-well plates (Greiner)

at a concentration of 50 lM. ZPCK, disulfiram, CAPE, tyrphostin

AG555, AG1478, and DAPH were obtained from Sigma. Bortezomib

was obtained from NEB and MG132 was obtained from Merck

Bioscience. HCT116 cells were seeded at a concentration of 3,000

cells in 45 ll McCoy’s medium into each well of 384-well plate

(Greiner) and incubated for 1 day at 37°C. Following compound

administration at a final concentration of 5 lM and 0.1% DMSO,

cells were incubated for 24 h at 37°C and the chymotrypsin-like,

trypsin-like, and caspase-like proteasome activities were measured

using the Proteasome-GloTM Cell-Based Assay Kit according to the

manufacturer’s instructions (Promega) using a Mithras LB940 plate

reader (Berthold Technologies). To account for compound effects on

cell proliferation, cell viability was measured via the CellTiterGlo

assay (Promega). The data are normalized to the viability control

CTG-assay wells on each plate (CTG was set to 1 on each plate).

Based upon values corrected for cell viability, we calculated protea-

some activity compared with the DMSO controls of the correspond-

ing wells on each plate. The proteasome activity for DMSO was set

to 1 for each assay. The inhibition was calculated relative to this

value. Proteasome inhibition is then defined by 100*(1 � (PT/PC)/

(VT/VC)), where PT is the respective proteasome activity for each

drug treatment, PC is the respective proteasome activity for control

(DMSO) treatment, VT is the respective cell viability for each drug

treatment, and CV is the cell viability for control (DMSO) treatment.

Consequently, DMSO control determines 0% normalized protea-

some inhibition. We performed a t-test comparing values for the

compounds against the null hypothesis of zero effect.

Western blotting

HCT116 cells were seeded at a concentration of one million cells in

2 ml McCoy’s medium in each well of a 6-well plate. The next day,

compounds were added in 2 ml fresh medium at a final concentra-

tion of 5 lM and 0.1% DMSO and cells were incubated for 24 h.

ZPCK, disulfiram, CAPE, tyrphostin AG555, AG1478, and DAPH

were obtained from Sigma. Bortezomib was obtained from NEB and

MG132 was obtained from Merck Bioscience. Cells were harvested

in lysis buffer and prepared for Western blotting as previously

described (Kranz & Boutros, 2014). Protein concentration was

measured using the BCA protein assay kit (Pierce, Thermo Scien-

tific). Twenty microgram samples were supplemented with

5× Laemmli buffer and heated for 5 min at 96°C. Cell lysates were

separated on 4–12% NuPAGE Bis/TRIS gels (Life Technologies) and

transferred to Immobilon PVDF membranes (Millipore, Merck

Biosciences). Antibodies used were anti-ubiquitin (clone P4D1, Cell

Signaling; 1:1,000), anti-b-actin (Abcam; 1:20,000), and HRP-

conjugated anti-mouse IgG2b (Southern Biotechnology; 1:10,000).

Data availability

Complementary views on the data are available through the

following avenues. The image data files are available from the

BioStudies database at the European Bioinformatics Institute (EMBL-

EBI) under the accession S-BSMS-PGPC1 (http://wwwdev.ebi.ac.uk/

biostudies/studies/S-BSMS-PGPC1). An interactive front-end for

exploration of the images is provided by the IDR database (http://

dx.doi.org/10.17867/10000101). On www.bioconductor.org, the

package PGPC provides an executable document with the code that

was used for the analysis reported in the paper, as well as inter-

mediate data types, such as the numeric features (https://bioconduc-

tor.org/packages/devel/data/experiment/html/PGPC.html, see Code

EV1). The authors are hosting an interactive webpage to browse

images and interaction profiles at http://dedomena.embl.de/PGPC.

Expanded View for this article is available online.
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