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Mechanisms and dynamics of AKAP79/150-orchestrated
multi-protein signalling complexes in brain and peripheral
nerve

Jie Zhang and Mark S. Shapiro
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Abstract A-kinase anchoring proteins (AKAPs) have emerged as a converging point of diverse
signals to achieve spatiotemporal resolution of directed cellular regulation. With the extensive
studies of AKAP79/150 in regulation of ion channel activity, the major questions to be posed centre
on the mechanism and functional role of synergistic regulation of ion channels by such signalling
proteins. In this review, we summarize recent discoveries of AKAP79/150-mediated modulation
of voltage-gated neuronal M-type (KCNQ, Kv7) K+ channels and L-type CaV1 Ca2+ channels,
on both short- and longer-term time scales, highlighting the dynamics of the macromolecular
signalling complexes in brain and peripheral nerve We also discuss several models for the possible
mechanisms of these multi-protein assemblies and how they serve the agenda of the neurons in
which they occur.
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dominant negative; IP3, inositol trisphosphate; L-channels, L-type Ca2+ channels; M-channels, KCNQ (M-type) K+

channels; NFAT, nuclear factor of activated T-cells; PIP2, phosphatidylinositol 4,5-bisphosphate; PKA, protein kinase
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Introduction

A-kinase anchoring proteins (AKAPs) are a diverse
scaffold protein family that orchestrates enzymes with
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their substrates into protein complexes, which ensures
specificity and optimal facilitation of signal trans-
duction (Bauman et al. 2006). Over 70 AKAPs have
been identified in different cell types. They all share
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the common ability to bind protein kinase A (PKA),
as well as roles in organizing multi-protein signalling
complexes in specific subcellular locations (Wong &
Scott, 2004). The well-studied isoforms AKAP79/150
(human AKAP79/rodent AKAP150) are widely expressed
in the nervous system, and regulate diverse neuronal ion
channels through phosphorylation or dephosphorylation
by signalling proteins such as PKA, PKC, calmodulin
(CaM), calcineurin (CaN), and phosphatidylinositol
4,5-bisphosphate (PIP2). The channels modulated include
AMPA-type glutamate receptors, the inwardly rectifying
potassium channel Kir 2.1, L-type Ca2+ channels
(L-channels), KCNQ (M-type) K+ channels, TRPV
cation channels, and various G protein-coupled receptors,
making it a point of convergence for integration of diverse
signals, as discussed in previous reviews (Wong & Scott,
2004; McConnachie et al. 2006; Esseltine & Scott, 2013).
In this mini-review, we focus on the novel discoveries
of AKAP79/150 in directing multi-protein signalling
complexes with reference to M-type (Kv7) K+ channels
and L-type (CaV1) Ca2+ channels, and the mechanisms
and dynamics of these complexes in the nervous system.

AKAP79/150 actions on M-type K+ channels: altered
PIP2 sensitivity, and effects on CaM interactions

Voltage-gated M-type (KCNQ, Kv7) K+ channels,
expressed in a wide variety of neurons, play critical roles
in modulation of excitability and action potential firing
(Brown & Adams, 1980; Constanti & Brown, 1981; Delmas
& Brown, 2005; Hernandez et al. 2008). Heteromers
of KCNQ2 and KCNQ3, which were identified from
an inherited human neonatal form of epilepsy called
benign familial neonatal convulsions, underlie neuro-
nal M-current. Given their critical role in regulation of
neuronal excitability, M-channels are closely regulated
by various neurotransmitters through three mechanisms
from four related second messenger signalling events
in neurons: First, M-channels are highly sensitive to
the binding of membrane PIP2; thus, depletion of
membrane [PIP2] or change in the PIP2 sensitivity of the
channels strongly depress M-current by reducing the open
probability of the channel (Suh & Hille, 2008; Logothetis
et al. 2010). Such unbinding of PIP2 comes from
stimulation of Gq/11-coupled neurotransmitter receptors
that activate phospholipase C (PLC), which hydrolyses
PIP2 to diacylglycerol (DAG) and inositol trisphosphate
(IP3). Secondly, DAG and IP3 generated by PIP2 break-
down potentially activate PKC and generate rises in
intracellular Ca2+ (Ca2+

i ) from internal Ca2+ stores.
Third, Ca2+–CaM binds to and suppresses M-channels
(Gamper & Shapiro, 2003; Delmas & Brown, 2005).
Fourth, AKAP79/150 physically associates with KCNQ2-5
subtypes, recruiting PKC and facilitating subsequent
phosphorylation and enhancing suppression of KCNQ

channels (Hoshi et al. 2003; Bal et al. 2010; Zhang
et al. 2011). These related, but seemingly complex and
redundant, signalling pathways underlying M-channel
modulation made us inquire as to the physiological
function of AKAP-PKC on M-channels, synergistic with
PIP2 reduction and CaM action.

One attractive model that synergizes PIP2, Ca2+, CaM
and PKC actions involves allosteric effects of one signalling
molecule on the affinities of the others for KCNQ channels,
with the focus on AKAP79/150 (Kosenko et al. 2012;
Kosenko & Hoshi, 2013; Fig. 1). For the case of PKC,
association of apoCaM with the A and B helices of the
C-terminus of the channels is obligatory to maintain tonic
PIP2 affinity (Kosenko et al. 2012). AKAP79/150-mediated
PKC phosphorylation of KCNQ channels is suggested
to induce rearrangement of CaM on the C-terminus
of the channels, resulting in lowered PIP2 affinity and
sensitization to muscarinic depression of M-current. At
the same time, Ca2+ binding to CaM is suggested to
likewise induce a conformational change in CaM bound
to the channels, again reducing the channel–PIP2 affinity
(Kosenko & Hoshi, 2013). Such a conformational change is
consistent with the crystal structure of Ca2+–CaM bound
solely to the KCNQ channel B helix (Xu et al. 2013b),
whereas apoCaM likely cross-links the A and B helices
(Wen & Levitan, 2002; Yus-Najera et al. 2002; Gamper &
Shapiro, 2003; Xu et al. 2013b). Interestingly, the Hoshi
group has suggested that AKAP79/150 acts as an acceptor
for CaM dissociated from the channels after their PKC
phosphorylation or Ca2+

i increases (Kosenko et al. 2012;
Kosenko & Hoshi, 2013), a hypothesis that would seem
at odds with maintained CaM binding to the channels
regardless of Ca2+ binding (Bal et al. 2008).

We recently suggested a dual mode of mixed
convergence–competition model to explain AKAP79/150
involvement in M-current suppression by only one group
of neurotransmitter receptors that are localized away
from ER Ca2+ stores and do not induce IP3-mediated
Ca2+

i rises (Fig. 2A; Zhang et al. 2011). Our thinking is
based on the following observations: (1) these receptors
physically associate with AKAP79 (Hoshi et al. 2003;
Bal et al. 2010), (2) AKAP79/150 and CaM share over-
lapping binding sites on the C-terminus of KCNQ
channels, and Ca2+–CaM disrupts AKAP79/150-channel
interactions (Bal et al. 2010), and (3) over-expression of
WT, but not DN, CaM prevents AKAP79/150-mediated
channel sensitization (Bal et al. 2010). In this model,
rearrangement of CaM induced by Ca2+ binding pre-
vents AKAP79/150-mediated PKC phosphorylation by
interfering with the association of AKAP79/150 with
KCNQ complexes (Fig. 2B). Association of receptors with
those complexes is required to co-localize M-channels
with putative transient, local depletions of PIP2 and
activation of PKC that may be more physiologically
relevant (Fig. 2A). Thus, M-channels reduce their
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activity in response to two types of concurrently sensed
responses: either PIP2 depletion + AKAP79/150-mediated
PKC phosphorylation (Fig. 2A), or IP3-mediated Ca2+
release + Ca2+–CaM actions on M-channels (Fig. 2B).
Such convergent dual mechanisms may serve as a
coincidence-detector to fine tune the spatiotemporal
resolution of directed signals.

Crucial questions arising from the two models are (1)
whether CaM constitutively binds to KCNQ channels in
native neurons, (2) whether CaM–KCNQ association is
obligatory for channel activity, and (3) whether expression
of functional channels or Ca2+

i -sensing is the more
critical role of CaM. At this moment, it is hard to answer
question (3), but biochemical studies pointing out both a

Figure 1. Model of 3-step rearrangement of AKAP–KCNQ channel complex
See Kosenko et al. (2012) and Kosenko & Hoshi (2013). AKAP79/150 organizes a signalling complex at the
carboxyl terminus of KCNQ channels, including PKC and CaM. Stable KCNQ–CaM association is required for
maintaining tonic PIP2 affinity. Stimulation of Gq/11-coupled muscarinic receptors depletes PIP2 and activates
AKAP79/150-anchored PKC, which phosphorylates KCNQ subunits near the CaM binding sites of KCNQ channels.
PKC phosphorylation, or Ca2+

i signals, triggers CaM conformational changes and/or dissociation from the cyto-
plasmic tail of KCNQ channels, resulting in lowered PIP2 affinity and suppressed channel activity. AKAP79/150 may
act as an acceptor to bind to dissociated CaM. Thus, together with PIP2 depletion, receptor stimulation suppresses
KCNQ channel activity by inducing CaM rearrangement and dissociation from the channel complex. Note that the
depression of M-current by reducing channel opening is schematically indicated here by a squeezing together of
the two halves of the channel, and a thinning of the directional arrow of potassium flux. See the text for issues
concerning this model.

Figure 2. Modified concurrent dual mode of KCNQ channel inhibition
In this model, phosphorylation of KCNQ channels functions to reduce their PIP2 affinity, priming them to small
changes in PIP2 abundance induced by physiological stimulation of receptors. A, activation of receptors that
are part of AKAP79150–KCNQ complexes rapidly depletes PIP2 and activates AKAP79/150-anchored PKC, which
phosphorylates KCNQ subunits near the CaM binding site on the B helix, altering the configuration of CaM
and KCNQ channels. KCNQ channels thus sense both PIP2 depletion and phosphorylation-mediated PIP2-affinity
reduction. B, activation of receptors located close to IP3 receptors, but outside of the AKAP–KCNQ complexes,
induces intracellular Ca2+ rises and Ca2+ binding to CaM, which undergoes a conformational change on the
overlapping binding sites with AKAP150 on the carboxy-terminus of KCNQ channels. This induces a lowered
interaction between KCNQ and AKAP79/150, thus preventing PKC phosphorylation.
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changed conformation and affinity of the CaM–KCNQ
complex after Ca2+ binds (Black & Persechini, 2011;
Wang et al. 2013; Alaimo et al. 2014) suggest it is likely
that these two mechanisms are not exclusive. Recently,
it has been shown that the N-lobe of apoCaM binds to
helix B due to its greater affinity, whereas the C-lobe
moves from helix A to helix B upon Ca2+ binding
(Alaimo et al. 2014). Our current thinking has thus
been modified accordingly (Fig. 2): (1) cross-linking of
apoCaM with helices A and B is important to maintain
their helical structure, which we suppose is critical
to stabilize channel interactions with PIP2; (2) PKC
phosphorylation on helix B (Fig. 2A) weakens the inter-
action between helix B and the N-lobe of CaM, resulting
in reduced PIP2 affinity and suppressed M-current
(consistent with both models), and (3) maximal Ca2+
binding to CaM (Fig. 2B) induces the C-lobe to move
from helix A to helix B and a subsequent conformational
change of both CaM and KCNQ channels which causes
reduced PIP2 affinity, weaker AKAP79/150 association
with (and perhaps AKAP79/150 dissociation from) the
channel complex and prevention of PKC phosphorylation
(Fig. 2B). Further direct biochemical analysis in native
neurons of KCNQ channels, AKAP79/150 and CaM
would be very helpful, and direct observation of native
KCNQ channel–AKAP150–CaM dynamics upon receptor
stimulation would be exciting.

AKAP79/150 interactions on L-type Ca2+ channels:
priming by PKA and Ca2+ sensing by CaN

Another ion channel family whose activity is under
close regulation is voltage-gated Ca2+channels (VGCCs),
especially L-type (CaV1) channels which are critical
for synaptic plasticity, axon growth and neuronal

development. In the hippocampus, AKAP79/150 bound
to the modified leucine zipper (LZ) motif of the
distal C-terminus of CaV1.2 channels anchors PKA to
phosphorylate and up-regulate channel activity, whereas
the Ca2+–CaM-regulated phosphatase, calcineurin (CaN),
which is also recruited by AKAP79/150, counter-
balances PKA actions, serving as an activity-dependent
negative feedback mechanism (Hall et al. 2007;
Oliveria et al. 2007). Moreover, AKAP79/150 intimately
regulates gene transcription via Ca2+–CaN, inducing
CaN-mediated NFAT (nuclear factor of activated T-cells)
dephosphorylation and translocation to the nucleus,
where NFAT interacts with regulatory elements of
NFAT-sensitive genes (Graef et al. 1999, 2003; Hudry
et al. 2012; Wu et al. 2012; Murphy et al. 2014). We
have recently identified similar L-channel–AKAP–CaN
protein complexes in sympathetic ganglia that initiate
NFAT signalling to up-regulate M-channel expression,
serving as a longer-term feedback mechanism to counter
increased neuronal hyperexcitability (Zhang & Shapiro,
2012). We suggest that upregulating M-channels is a
critical ‘anti-epileptogenic’ mechanism in brain regions
such as the hippocampus to prevent development of
epilepsy. Unlike in hippocampus, the L-channel–NFAT
pathway is slightly more complex in sympathetic neurons,
in which L-channels underlie less than 15% of the total
Ca2+ current, revealing both N- and L-type Ca2+ channel
activity to be necessary for NFAT activation (Zhang &
Shapiro, 2012). We have suggested a dual requirement
model in these cells: L-channels serve as the critical
initiating ‘sensor’ of activity and depolarization, and an
elevated microdomain Ca2+

i signal, which activates only
AKAP–L-channel complex-bound CaN, despite the high
abundance of CaN in neurons. Upon Ca2+ binding,
CaN rapidly dissociates from AKAP79/150 complexes
to dephosphorylate NFAT, because CaN affinity for

Figure 3. Model of putative
AKAP79/150-orchestrated
multi-channel protein complexes
AKAP79/150 expresses as a homodimer,
and each protomer of AKAP79/150 binds
to one PKA molecule, and could physically
couple two distinct ion channel complexes
together to form one large
macro-molecular super-complex, such as
containing the M-channel and L-channel
we illustrate here. In this large
multi-channel protein complex, channels
are also likely to be functionally linked by
AKAP79/150 (Dixon et al. 2012), via direct
coupling of their gating, indirect coupling
via Ca2+ or changes in [PIP2], or more
slowly via transcriptional regulation.
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AKAP79/150 is relatively low (KD � 0.5 μM; Li et al. 2012).
However, globally elevated [Ca2+]i (mostly mediated
by N-type Ca2+ channels in peripheral ganglia) is also
required to keep CaN–NFAT activated during its import
into the nucleus, This global Ca2+

i elevation could
probably come from various sources, not specifically from
N-channels (Zhang & Shapiro, 2012).

Besides M-channels, large-conductance Ca2+-activated
BKCa channels have been discovered as a downstream
target of AKAP-organized transcriptional signalling
(Zhang & Shapiro, 2012; Nystoriak et al. 2014). In arterial
myocytes, the same L-channel–AKAP–CaN complex
as described above mediates down-regulation of BKCa

channel β1 subunits, contributing to BKCa channel
remodelling and enhanced vasoconstriction during type
II diabetes mellitus (Nystoriak et al. 2014). The critical
questions are (1) whether NFATs pre-associate with the
AKAP79/150–CaN–L-channel complex at the membrane
and (2) whether CaN stays associated with NFAT during
its import into the nucleus, perhaps thus explaining
its delayed time to be transported into the nuclear
compartment.

An additional layer of flexibility and complexity
of AKAP signalling pathways comes from the recent
discovery of the regulatory property of AKAP15,
which binds competitively to the same LZ motif on
the distal C-terminal domain of CaV1.2 channels as
does AKAP79/150 and also seems to mediate PKA
phosphorylation on L-channels (Fuller et al. 2014).
AKAP15 and AKAP79/150 actions were shown to
have different effects, dependent on their differential
associations with regulatory proteins, notably CaN
(Fuller et al. 2014). However, previous studies involving
AKAP79/150 knockdown or knockouts that disrupt
L-channel–AKAP–PKA–CaN complexes prevented speci-
fic PKA-, or CaN-mediated effects on L-channel
function. Exciting studies from new transgenic mice
with a specific deletion of the PKA binding segment
or the CaN-binding PXIXIT motif on AKAP150,
AKAP150�PKA or AKAP150�PIX, allow more specific
probing of the physiological roles of AKAP-anchored
PKA or CaN on L-channels. Surprisingly, removal of PKA
from the CaV1.2–AKAP150 complex not only reduced
basal L-channel phosphorylation and L-current density,
but also impaired CaN-mediated NFAT activation and
translocation to the nucleus (Dittmer et al. 2014; Murphy
et al. 2014).

Interplay between AKAP79/150 anchored ion
channels in super multi-channel complexes

Whether AKAP79/150-anchored proteins are physically
coupled as larger super-complexes is an intriguing
question to investigate, especially involving distinct ion

channel complexes that shape neuronal activity (Fig. 3).
The gating of individual CaV1.2 channels seems to be
coupled (Navedo et al. 2010), probably via physical
protein–protein interactions of CaV1.2 channels with
one another at their carboxyl-tails by AKAP79/150
(Cheng et al. 2011), resulting in amplification of Ca2+
influx and increased excitation–contraction coupling
in ventricular myocytes (Dixon et al. 2012). Recent
structural and biochemical studies also suggest such
a possibility, as AKAP79/150 is reported to express
as homodimers coupled with a PKA homodimer and
two CaN heterodimers (Gold et al. 2011). Since each
AKAP79/150 protomer in such putative homodimers
binds one PKA (Gold et al. 2011), they could also
physically couple two distinct ion channel complexes
to form one macro-molecular multi-channel complex.
Recent use of super-resolution fluorescence imaging
offering nanometer scale resolution has successfully
revealed the molecular architecture of synapses, including
organization of protein components of the pre-
synaptic active zone and the postsynaptic density
(Dani et al. 2010), and of actin–sepctrin–Na+ channels
organization in axons (Xu et al. 2012, 2013a). The
next important step would be to elucidate the detailed
mechanism of these actions in different excitable
cells.

Conclusions

AKAP79/ is particularly crucial in its ability to form focally
compartmentalized multi-protein signalling complexes
in localized neuron structures, such as regulating pre-
and postsynaptic plasticity (Sanderson & Dell’Acqua,
2011; Sanderson et al. 2012). Local perturbations of
neuronal ion channel function by disrupted AKAP79/150
signalling complexes modulate synaptic transmission,
and have been suggested to play a role in seizures,
mental retardation, Alzheimer’s disease and schizophrenia
(Sanderson & Dell’Acqua, 2011; Esseltine & Scott, 2013).
In this mini-review, we summarize the dual fast and slow
regulation of ion channel activity by AKAP-organized
protein complexes which includes rapidly altering the
activity of ion channels already functioning in the
membrane, and more slowly altering the population
of expressed channels by transcriptional regulation in
the nucleus, dependent on the activity of VGCCs.
The highly dynamic feature of AKAP79/150 complexes
upon neuronal stimulation suggests their novel ability
to further fine tune the spatiotemporal resolution of
localized signals. We also suggest that AKAP79/150
probably clusters together different ion channels that
functionally interact, as a mechanism of feed-back
inhibition, amplification or focusing of neuronal
signals.
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