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Metabolic quantitative trait locus (QTL) studies have allowed us to better understand the genetic architecture underlying
naturally occurring plant metabolic variance. Here, we use two recombinant inbred line (RIL) populations to dissect the
genetic architecture of natural variation of 155 metabolites measured in the mature maize (Zea mays) kernel. Overall, linkage
mapping identified 882 metabolic QTLs in both RIL populations across two environments, with an average of 2.1 QTLs per
metabolite. A large number of metabolic QTLs (more than 65%) were identified with moderate effects (r2 = 2.1%–10%), while a
small portion (less than 35%) showed major effects (r2 . 10%). Epistatic interactions between these identified loci were detected
for more than 30% of metabolites (with the proportion of phenotypic variance ranging from 1.6% to 37.8%), implying that
genetic epistasis is not negligible in determining metabolic variation. In total, 57 QTLs were validated by our previous genome-
wide association study on the same metabolites that provided clues for exploring the underlying genes. A gene regulatory
network associated with the flavonoid metabolic pathway was constructed based on the transcriptional variations of 28,769
genes in kernels (15 d after pollination) of 368 maize inbred lines. A large number of genes (34 of 58) in this network overlapped
with previously defined genes controlled by maize PERICARP COLOR1, while three of them were identified here within QTL
intervals for multiple flavonoids. The deeply characterized RIL populations, elucidation of metabolic phenotypes, and
identification of candidate genes lay the foundation for maize quality improvement.

Knowledge concerning plant metabolism is impor-
tant for crop improvement as well as in exploring the
potential for enhancing the accumulation of high-value
products by metabolic engineering strategies. Recent
studies that utilized a wide range of techniques, in-
cluding biochemistry, informatics, genetics, and ge-
nomics, have boosted our understanding of the genetics
of plant metabolism (Luo, 2015). Metabolic quantitative
trait locus (QTL) studies that combined different tech-
niques have aided us to better understand the genetic
architecture underlying naturally occurring phenotypic

variance and promise to better facilitate future plant-
breeding strategies (Fernie and Schauer, 2009).

Maize (Zea mays) kernels make a very large contri-
bution to the diets of humans and animals. The chem-
ical composition and impact of genetic variation on the
metabolic diversity of maize kernels have been widely
studied (Chander et al., 2008c; Yan et al., 2010; Li et al.,
2013; Wen et al., 2014, 2015). The most important stor-
age chemical components in mature maize kernels are
starch (70%–75% of dry matter), protein (8%–10% of
dry matter), and oil (4%–5% of dry matter), and the
underlying genes and related pathways of these have
been well studied during the past two decades (Moose
et al., 2004; Fernie and Schauer, 2009; Li et al., 2013; Luo,
2015). Although only accumulating to low levels in
the maize kernel, many secondary metabolites, such as
carotenoids, tocopherols, and flavonoids, also hold great
economic and biological importance. Thus, studying the
chemical composition and uncovering the genetic con-
tribution to the natural variation of metabolite abun-
dance will enhance efforts in breeding highly nutritious
maize. Recently, we conducted a metabolome-based
genome-wide association study (GWAS) to identify
genes and genomic regions that control the metabolite
level in mature maize kernels (Wen et al., 2014). De-
spite the high resolution and precise mapping results
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obtained via GWAS, linkage analysis can provide
higher statistical power as well as complementary
evidence to GWAS in terms of validating and identi-
fying causal polymorphisms. Additionally, it is pos-
sible to detect the interaction between QTLs in linkage
populations, which was demonstrated previously to
be important in determining genetic and phenotypic
variation in Arabidopsis (Arabidopsis thaliana; Rowe
et al., 2008) and maize (Wen et al., 2015) metabolomes.
The identification of metabolic QTLs using experi-
mental populations such as recombinant inbred line
(RILs) and introgression lines is a powerful tool that
has been utilized in several plant species (Lisec et al.,
2008; Fernie and Klee, 2011; Gong et al., 2013; Alseekh
et al., 2015).
With the rapid development of next-generation

sequencing technology and high-density single-
nucleotide polymorphism (SNP) arrays, it is feasible
to easily construct ultra-high-density linkage maps and
thereby narrow QTLs down to smaller regions (Pan
et al., 2012). Here, we genotyped two RIL populations
(B73/By804 [BB; n = 197] and Zong3/Yu87-1 [ZY; n =
197]) with the commercial maize SNP50 array (Ganal
et al., 2011) and constructed a high-density bin map for
each population. Natural variations of 155 metabolites
measured from liquid chromatography-tandem mass
spectrometry (MS/MS)-based metabolite profiling in
mature maize kernels of the two RIL populations were
dissected, and QTL mapping was performed for each
metabolite. Moreover, a network-based analysis of
gene expression associated with the flavonoid path-
way was carried out in order to discover novel genes
and afford further cross-validation. The obtained re-
sults are discussed in the context both of contemporary
approaches to enhance genetic resolution in quantita-
tive trait analyses and of our current understanding of
the genetic architecture of metabolite accumulation in
maize.

RESULTS

High-Density Linkage Maps of Two RIL Populations

Two previously developed RIL populations (i.e. BB
andZY;Ma et al., 2007; Chander et al., 2008a) were used
in this study. These populations were subjected to
maize SNP50 array analyses (Ganal et al., 2011) as de-
tailed in “Materials and Methods,” and high-density
bin maps were subsequently constructed based on the
15,285 and 13,759 polymorphic SNP markers for the BB
and ZY populations, respectively. In brief, for the BB
and ZY populations, 2,496 and 3,071 recombinant bins
(a region in which no recombination was genotyped)
were distributed throughout the genome, and the ge-
netic linkage maps were 1,790.2 and 2,716 centimorgan
(cM) in length, respectively. The linkagemap information
of the two RILswas subsequently used for QTLmapping
and is available at http://github.com/panqingchun/
linkage_map.

Phenotypic Variation and Heritability of the Measured
Metabolic Traits

Both BB and ZY RIL populations were planted in two
independent environments (simply called experiments
1 and 2 here but described in detail in “Materials and
Methods”), and the kernel samples were harvested
from these four field experiments for metabolite pro-
filing. While 983 metabolic features were found in
previous association mapping studies (Wen et al.,
2014), only 184 of these were chemically annotated. Of
these 184 compounds, only 155 metabolites were found
in the mature kernels of both RIL populations. These
155 metabolites can be broadly classified into alkaloid,
amino acid, fatty acid, flavonoid, lysophosphatide, phe-
nolamide, and vitamin classes. Detailed information of
each metabolite is provided following recent metabolite
reporting recommendations (Fernie et al., 2011) in
Supplemental Table S1. Both RIL populations harbored
great diversity in terms of metabolite level, as indicated
by the distribution of the log value of fold changes
among the recombinant lines (Fig. 1; Supplemental
Table S2). In both RIL populations, more than half of
these metabolites have broad-sense heritability (H2)
greater than 0.3 and over 30% of metabolites have
H2 greater than 0.5 (Fig. 2). Among themetabolites with
H2 greater than 0.5, flavonoids, phenolamides, and
amino acids were dominant.

The Genetic Basis Underlying Metabolic Variation in the
Mature Maize Kernel

In the two experiments using the BB population, 211
and 219 QTLs were identified for 107 and 106 metab-
olites in experiments 1 and 2, respectively. Each QTL
could explain phenotypic variation ranging from 2.1%
to 76.8%, with a mean of 9.7%. Of the 86 metabolites for

Figure 1. Distribution of log-fold changes of metabolic traits measured
in two RIL populations. Box plots show the log-fold changes of all
metabolites among the BB and ZY RILs. Data from different environ-
ments (experiments) for each RIL population are shown.
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which we detected QTLs in both experiments, a total of
316 QTLs were detected, 38 of which were conserved in
both experiments. In the ZY population, 223 QTLs were
mapped for 105 metabolites in the first experiment,
while in the second experiment, 229 QTLs were detec-
ted for 103 metabolites (Table I). Forty-eight QTLs for
34 metabolites were conserved in both experiments.
Each QTL could explain between 2.8% and 51.6% of
phenotypic variation, with an average variation of
9.8%. The identified QTLs are evenly distributed across
the maize genome, and detailed information for the
QTL results, including confidence interval, logarithm of
odds (LOD) value, and explained phenotypic variation
(r2) of each QTL, is indicated in Supplemental Table S3.
Linkagemapping using both RIL populations indicated
that a large number of metabolic QTLs were identified
with moderate effects (72.4% of the mapped QTLs from
the BB population and 66.3% of the mapped QTLs from
the ZY population, with r2 ranging between 2.1% and
10%), while a relatively small portion showed major
effects (17.6% of the mapped QTLs from BB and 33.7%
of the mapped QTLs from ZY, with r2 greater than
10%).

We further investigated the pairwise epistatic inter-
actions between these identified QTLs for each meta-
bolic trait measured in each experiment. In the BB
population, epistatic interaction between QTLs was
found for 26.1% (31 of 119) and 28.7% (35 of 122) of all
the metabolic traits detected in experiments 1 and 2,
respectively. In the two experiments in the ZY popu-
lation, genetic epistasis could partly explain the phe-
notypic variation for 29.1% (37 of 127) and 30.1% (37 of
123) of all the identified metabolic traits, respectively.
The fraction of the phenotypic variation explained by
epistasis for each metabolic trait ranged from 1.6% to
37.8% and from 1.6% to 29.3% across the two experi-
ments of the BB and ZY populations, respectively.
Significant pairwise epistatic interactions (P , 0.05)
between QTLs and their explained phenotypic variances

are listed in Supplemental Table S4. A summary of QTL
identification and epistasis investigation for different
classes of metabolites is given in Figure 3. In each class,
more than one QTL was identified for the majority of
metabolites (greater than 65%) in both populations.
Interestingly, epistasis between the QTL for fatty acids
was not found in either population; however, epistatic
effects explained a considerable portion of the pheno-
typic variation of other metabolites, especially flavo-
noids (Fig. 3).

A QTL located on the short arm of chromosome
1 was identified for about 40% of the flavonoids iden-
tified in this study. This locus colocalized with the p
(pericarp color) locus on chromosome 1. The p locus is a
complex of duplicated MYB-homologous genes p1 and
p2 (Zhang et al., 2000). P1 encodes an R2R3-MYB
transcription factor in maize, and its main function is
to regulate flavonoid biosynthesis (flavonols and 3-
deoxyflavonoids) in a pathway that potentially com-
petes with the formation of anthocyanins. Another QTL
on chromosome 4 was also frequently identified for
flavonoids (mapped for 37.1% flavonoids), which
colocated with the known gene c2. C2 encodes the en-
zyme chalcone synthase, which is responsible for the
first dedicated step in the pathway (Wienand et al.,
1986). P1was only detected by QTL mapping using the
BB population, while c2 was only detected by QTL
mapping using the ZY population. The cob and peri-
carp color can serve as visible markers for the p1 locus,
since B73 (p1-wr) has white pericarp and red cob color
while By804 (p1-ww) has white pericarp and cob color.
The two parents of the ZY population (i.e. Zong3 and
Yu87-1) have an identical phenotype of red cob and
white pericarp. These facts also explain the mapping
results of p1 from two RIL populations. Other known
genes involved in flavonoid biosynthesiswere also found
within the QTL intervals for flavonoids. For instance,
a2 was identified to be associated with naringenin, api-
genin C-pentoside, and apigenin C-pentosyl-C-pentoside;
b1 and c1 were found within the QTL for apigenin
C-pentoside; pr1 was within the QTL for chrysoeriol
di-C-hexoside; and r1 was colocated with the QTL for
4-coumaric acid. Significant epistatic interactions be-
tween QTLs for flavonoids were frequently identified
(Supplemental Tables S3 and S4). Interestingly, significant

Figure 2. Distribution of the heritability of metabolic traits. The vertical
bars show the proportion of metabolic traits that were detected in both
experiments of each RIL population.

Table I. Summary of QTL mapping for metabolic traits measured in
two RIL populations

Population

No. of

Metabolic Traitsa
No. of QTLs

(Mean)b
No. of QTLs

(Range)

BBE1 107 (119) 2.0 1–6
BBE2 106 (122) 2.1 1–5
ZYE1 105 (127) 2.2 1–7
ZYE2 103 (123) 2.2 1–5

aNumber of metabolic traits that have at least one QTL identified in
this study; the number in parentheses represents all the metabolic traits
detected in this study. bAverage number of QTLs identified for each
metabolite.
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epistatic interactions between p1 and other QTLs were
often observed. The fact that p1 has been identified as a
major regulator for a set of genes involved in flavonoid
biosynthesis could be one of the reasons, as the tran-
scriptional factor and enzyme interaction can generate
this observed genetic epistasis (Grotewold et al., 1998;
Kliebenstein, 2009; Morohashi et al., 2012). QTLs
containing another R2R3-MYB transcription factor, c1,
were also involved in significant epistatic interactions
with other QTLs for flavonoids. For example, three
QTLs that colocated with a2, b1, and c1 were identified
as associated with apigenin C-pentoside, and the QTL
containing c1 was in significant epistatic interaction
with both of the other two QTLs (Supplemental Tables
S3 and S4). Although c1 is not expected to directly
control flavones (e.g. apigenin derivatives), the com-
pounds known to be controlled by c1might compete for
naringenin and other pathway intermediates for the
formation of flavones. These significant epistatic inter-
actions between QTLs may also be due to the known
gene interactions, since extensive genetic andmolecular
studies have demonstrated that the c1 gene requires a
member of the basic helix-loop-helix-containing R or B
gene family to activate the transcription of anthocyanin
biosynthetic genes such as a2 (Hernandez et al., 2004).

Cross-Validation of Metabolic QTLs and Identification of
Candidate Genes

The high-density linkage map generated and utilized
in this study helped narrow most of the identified
QTLs down to small regions (Supplemental Table S3).
Between-RIL population cross-validation of the QTLs
facilitates candidate gene selection and will aid in the
identification of functional genetic variants. Thirty-two
QTLs for 32 metabolites were consistently identified
using BB and ZY populations (Supplemental Table S3).
Significant SNP metabolic trait associations identified
in our previous GWAS on maize kernels offered an-
other resource for cross-validating the present mapping
results. In total, 57 QTLs overlapped with loci signifi-
cantly associated with the same metabolic traits detected
in our previous GWAS (Wen et al., 2014; Supplemental
Table S3). QTLs that were either consistently identified
in both experiments for the same metabolite or cross-
validated in different mapping populations or by differ-
entmapping approacheswill be preferentially selected for
future in-depth analysis.

For each QTL identified in this study, candidate
genes within the peak bin were annotated and are listed
in Supplemental Table S5, providing a database for

Figure 3. Schematic representation of QTL iden-
tification for metabolic traits measured in BB (A)
and ZY (B) RIL populations across different envi-
ronments. The blue bars represent the proportion
of metabolic traits that have at least one QTL
identified; the red bars represent the proportion of
metabolic traits for which epistatic effects were
identified.
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further study on specific metabolites of interest. Taking
advantage of the mapping results, information on ge-
nome annotation, and prior knowledge of related
metabolic pathways to first distill the most likely genes
from the candidate list could be feasible and helpful for
revealing the casual genes of the identified QTLs for the
metabolites of interest (Wen et al., 2015). Here, we
summarize a list of candidate genes for metabolic QTLs
that were repeatedly identified or cross-validated using
different populations and approaches in Table II. The 35
genes listed in Table II are locatedwithin 27 QTLs for 24
metabolites, which are regarded as candidates with
high possibility to underlie the identified QTLs. For
each gene, the corresponding metabolic trait, physical
position in the maize genome, annotation of gene
function, and information regarding cross-validation
are indicated (Table II; Supplemental Table S5).

Among these 35 genes, several are well characterized
in maize. For example, bx1 (benzoxazinless1), which en-
codes an indole-3-glycerol phosphate lyase, was within
a QTL for the level of 2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one (DIMBOA), and this QTL was iden-
tified in both experiments in the ZY population (Table
II). DIMBOA is the main benzoxazinoid in maize that
confers resistance to herbivores and microbes, and bx1
is a signature gene in the DIMBOA biosynthetic path-
way (Meihls et al., 2013; Zheng et al., 2015).

Except for the genes of known function, most can-
didate genes listed in Table II have a putative function
that connects directly to the corresponding metabolite
or pathway. For example, a candidate gene annotated
as Met g-lyase was associated with the level of Met, as
indicated by linkage mapping using both BB and ZY
populations; genes annotated as aromatic-L-amino
acid decarboxylase were candidates for the content of
tryptamine and another Trp metabolite in maize ker-
nels based on linkage mapping in the BB population
and the GWAS result. We also found a couple of can-
didate genes for the level ofmultipleflavonoids, although
a large number of genes have already been identified
for the flavonoid biosynthetic pathway. For instance, a
gene encoding a putative O-methyltransferase (OMT)
in maize was found by both linkage mapping in the BB
population and GWAS for methoxylated flavonoid-3-
O-hexoside and methoxylated flavonoid di-O-hexoside
(Table II). The gene is an ortholog of AtOMT1 in
Arabidopsis, which encodes a flavonol 39-O-methyl-
transferease, as indicated by Muzac et al. (2000). Pro-
ducts of other candidate genes for the identified
flavonoids here include a putative flavonol-3-O-
glucosyltransferase for vitexin content and a putative
anthocyanidin or leucoanthocyanidin reductase for the
level of tricin derivative (Table II).

Two other genes with unknown function are listed in
Table II, which were identified by both GWAS and
linkage mapping. The gene corresponding to the peak
of the GWAS signal was usually selected if there was no
legitimate candidate within that locus. Functional an-
notation of the gene may ultimately be updated in this
case; however, this will necessitate further molecular

and biochemical validation, as suggested by Wen et al.
(2014).

Regulatory Network of Genes Associated with the
Flavonoid Metabolic Pathway

Here, we employed an expression quantitative trait
locus (eQTL)- and quantitative genome-wide associa-
tion study (qGWAS)-based network analysis (see
“Materials and Methods”) to search for additional
genes that may underlie the identified natural variation
of metabolic traits. Flavonoids are plant-specialized
metabolites that play important roles in terms of plant
growth and development, such as male fertility, UV
light protection, and insect pest resistance (Grotewold,
2006; Falcone Ferreyra et al., 2012; Saito et al., 2013;
Nakabayashi et al., 2014). Many genes in the flavonol
and anthocyanin biosynthetic pathway have been
identified and characterized in maize based on genetic
and molecular studies of a wide spectrum of mutants
(Dooner et al., 1991; Koes et al., 2005). These genes in-
clude enzymes, regulatory genes, and transporters
(Grotewold et al., 1994; Koes et al., 2005). Expression of
15 of these genes (a1, a2, b1, bz1, bz2, c1, c2, chi1, chi3, f3h,
pr1, pac1, mrpa3, r1, and whp1) with known functions
was detected inmaize kernels at 15 d after pollination of
368 inbred lines according to a previous RNA se-
quencing study (Fu et al., 2013; Supplemental Table S6).
A primary network between all the expressed genes
and the 15 genes based on a relationship of transcrip-
tional regulation (revealed by eQTL analysis) or
coexpression (revealed by qGWAS) was constructed that
contains a total of 58 genes (Fig. 4). Twelve of these 15
genes were present in the primary network, and addi-
tionally, five of them formed a subnetwork consisting
of a1 (GRMZM2G026930), c2 (GRMZM2G422750), chi1
(GRMZM2G155329), pr1 (GRMZM2G025832), andwhp1
(GRMZM2G151227). Two genes (GRMZM2G119186
and GRMZM2G058292) had connectivity with only
one node (gene). C2 (GRMZM2G422750) was connected
with more nodes than the other 11 genes, indicating its
involvement in a larger regulatory network (Fig. 4).

Gene Ontology (GO) term analysis revealed that
genes related to lipid biosynthetic and metabolic
process and oxidation reduction process were signifi-
cantly enriched among the 58 genes (Supplemental Table
S7). Similar enrichment results were observed when
these 12 known flavonoid-related genes were removed
in the GO term analysis (Supplemental Table S8). This
result coupled with findings from several previous
studies may suggest cross talk between the lipid and
flavonoid metabolism potentially driven by the fact that
acetyl-CoA can act as a substrate for both pathways
(Okazaki et al., 2009; Morohashi et al., 2012).

We additionally constructed a secondary network
based on the primary network using the same eQTL-
and qGWAS-based method. A total of 190 genes were
present in the secondary network; the new genes found
on top of the genes from the primary network are
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Table II. Summary of candidate genes of metabolic QTLs repeatedly identified or cross-validated using different populations and approaches

Metabolic Trait Candidate Gene Gene Interval Annotation Cross-Validation

bp
L-Pipecolate GRMZM2G139852 chr1:24225117-24229054 Unknown ZYE1, ZYE2, GWAS
L-Met GRMZM2G450498 chr1:223161919-223165331 Met g-lyase BBE1, BBE2, ZYE1
4-Coumaric acid r1 chr10:138462252-138471072 Basic helix-loop-helix

DNA-binding
BBE1, ZYE1, ZYE2

Dicoumaroylputrescine GRMZM2G311059 chr10:139838952-139839963 R2R3-MYB domain protein BBE1, BBE2, ZYE2
LPC(1-acyl 16:1)-2 GRMZM2G121783 chr8:171204852-171206144 RNase III ZYE1, GWAS
Phenolamides GRMZM2G011655 chr6:55648330-55654264 Terpenoid synthase ZYE2, GWAS
LPC(1-acyl 18:1) GRMZM5G864771 chr6:166954568-166958991 Triglyceride lipase BBE1, ZYE2

GRMZM2G156620 chr6:165800173-165802545 b-Ketoacyl-acyl-carrier
protein synthaseI

BBE1, ZYE2

Triornicin GRMZM2G154687 chr6:165626650-165628898 Triacylglycerol lipase,
class 3

BBE1, ZYE2, GWAS

Tryptamine GRMZM2G021277 chr10:82848693-82850823 Aromatic-L-amino acid
decarboxylase

BBE2, GWAS

GRMZM2G021388 chr10:82837506-82839784 Aromatic-L-amino acid
decarboxylase

BBE2, GWAS

L-Carnitine GRMZM5G808017 chr2:193648937-193649473 Palmitoyl-CoA hydrolase,
acyl-CoA hydrolysis

BBE1, BBE2,
ZYE1, ZYE2

GRMZM5G860226 chr2:193644136-193645990 Palmitoyl-CoA hydrolase,
acyl-CoA hydrolysis

BBE1, BBE2,
ZYE1, ZYE2

GRMZM2G395244 chr2:217644444-217647139 EF-Hand1,
calcium-binding site

ZYE1, ZYE2, GWAS

N-Acetyldopamine bx1 chr4:3256234-3258478 Indole-3-glycerol
phosphate lyase

ZYE1, ZYE2

DIMBOA bx1 chr4:3256234-3258478 Indole-3-glycerol
phosphate lyase

ZYE1, ZYE2

Acetylintermedine GRMZM2G032962 chr1:277141292-277151152 Chaperone DnaJ domain
superfamily protein

BBE1, BBE2, ZYE2

GRMZM2G031138 chr1:278022167-278026951 UDP-glucuronosyl/
UDP-glucosyltransferase

BBE1, BBE2, ZYE2

GRMZM2G174570 chr8:21445191-21449321 Glutathione
metabolism-like domain

ZYE1, ZYE2, GWAS

GRMZM2G371276 chr8:21295629-21296981 Calmodulin-dependent
protein kinases

ZYE1, ZYE2, GWAS

Trp metabolite GRMZM2G021277 chr10:82848693-82850823 Aromatic-L-amino acid
decarboxylase

BBE2, GWAS

GRMZM2G021388 chr10:82837506-82839784 Aromatic-L-amino acid
decarboxylase

BBE2, GWAS

Caffeic acid derivative GRMZM2G177412 chr10:144614306-144619343 Shikimate dehydrogenase BBE1, ZYE1
Thiamin GRMZM2G112956 chr4:156756845-156760798 NADH dehydrogenase

(ubiquinone)
BBE1, ZYE1

N-Coumaroyl-spermidine
derivative

GRMZM2G066049 chr10:1087065-1088682 Agmatine coumaroyltransferase BBE2, GWAS

GRMZM2G066142 chr10:1084103-1085734 Agmatine coumaroyltransferase BBE2, GWAS
Vitexin GRMZM2G043295 chr9:130524722-130526606 Flavanol-3-O-glucosyltransferase ZYE1, GWAS
Apigenin

C-pentosyl-C-pentoside
GRMZM2G059590 chr8:153858072-153864534 Unknown BBE1, GWAS

Tricin derivative GRMZM2G097841 chr10:143746242-143748475 Anthocyanidin reductase BBE1, BBE2, GWAS
GRMZM2G097854 chr10:143738314-143740641 Leucoanthocyanidin reductase BBE1, BBE2, GWAS
GRMZM2G431504 chr10:143752078-143754011 Leucoanthocyanidin reductase BBE1, BBE2, GWAS

Chrysoeriol
O-rhamnosyl-O-hexoside

p1 chr1:48117497-48128047 A-type R2R3-MYB protein BBE1, BBE2, GWAS

N-Feruloylagmatine GRMZM5G836567 chr10:137286273-137294014 Spc97/Spc98 family
of spindle pole body
component

BBE1, ZYE2, GWAS

Methoxylated flavonoid
3-O-hexoside

GRMZM2G104710 chr10:1919386-1920869 O-Methyltransferase
family protein

BBE1, BBE2, GWAS

Methoxylated flavonoid
di-O-hexoside

GRMZM2G104710 chr10:1919386-1920869 O-Methyltransferase
family protein

BBE1, BBE2, GWAS
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demarcated as gray nodes in Supplemental Figure S1.
The eight subnetworks were expanded but without
links between them. Likewise, GO term enrichment
analysis was performed on these new genes. However,
no significant enrichment was identified in specific bi-
ological process, cellular organization, or molecular
function (Supplemental Fig. S2).

The primary network provided us a relatively short
list of candidate genes for the flavonoid biosynthetic
pathway. Notably, a large number of genes identified in
this primary network overlapped with the genes found
previously by Morohashi et al. (2012). Specifically, the
expression of 34 of these 58 geneswasmodulated by P1,
as indicated by RNA sequencing of P1-rr and P1-ww
developing pericarps and silks. Moreover, 13 of the 34
genes were identified as putative direct targets of P1
by chromatin immunoprecipitation sequencing anal-
ysis, which included four known flavonoid pathway
genes (a1, c2, whp1, and mrpa3). Of the remaining
nine genes, two putative UDP-glycosyltransferases
(GRMZM2G162755 and GRMZM2G063550) and a
putative Rha synthase (GRMZM2G031311) were high-
lighted by Morohashi et al. (2012) for their possible in-
volvement in the flavonoid biosynthetic pathway. Except

for the 12 genes of known function, seven genes in the
primary network were regarded to have a direct or
strong relevance to the flavonoid pathway based on
their functional annotations (Fig. 4). Recent studies
have examined and updated the functions of two
(GRMZM2G167336 and GRMZM2G162783) of these
seven genes (Morohashi et al., 2012; Falcone Ferreyra
et al., 2013). By transformingWAT11 yeast (Saccharomyces
cerevisiae) cells using empty vector and vectors har-
boring the open reading frame of GRMZM2G167336,
Morohashi et al. (2012) identified that this gene pro-
duct has F2H activity (i.e. is capable of converting
naringenin or eriodictyol into the corresponding 2-
hydroxyflavanones). The UDP-dependent glycosyl-
transferase (UGT708A6) encoded by GRMZM2G162783
is a bifunctional enzyme with the ability to form both
C-glycoside and O-glycoside derivatives, as confirmed
by both in vivo bioconversion assays and in vitro
assays (Falcone Ferreyra et al., 2013). Among the
remaining five genes, three (GRMZM2G180283,
GRMZM2G162755, and GRMZM2G063550) belong
to the UDP-glycosyltransferase1 family (Supplemental
Fig. S3). These three genes alongwithGRMZM2G162783
(UGT708A6)were highly up-regulated inP1-rr compared

Figure 4. Primary regulatory network of genes associatedwith the flavonoid biosynthetic pathway. Yellowcircles represent the 12
genes of known function associated with flavonoids. Blue nodes represent newly identified genes, including genes involved in
flavonoid biosynthesis (squares) based on functional annotation. Relationships between genes are indicated by blue arrows
(revealed by eQTL analysis) or red lines (revealed by qGWAS).
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with P1-ww pericarps, and all of them contain the
plant secondary product glycosyltransferase motif
with 10 conserved amino acids proposed to be involved
in the interaction with the UDP-sugar molecule
(Morohashi et al., 2012; Falcone Ferreyra et al., 2013).
GRMZM2G162755 is orthologous to the rice (Oryza sativa)
gene flavonoid-C-6-glucosyltransferase (Os06g18010),
which was characterized by Brazier-Hicks et al. (2009;
Supplemental Fig. S3).
The candidate glycosyltransferases in the flavonoid

biosynthesis identified in this study are in line with
previous findings, which together provided a strong
foundation to support further investigation of the next
step in the pathway. One of the remaining two genes
(GRMZM2G175076; annotated as a putative chalcone-
flavanone isomerase, orthologous to Arabidopsis CHI-
like; Tohge et al., 2013) is homologous to themaize gene
chi1 (chalcone-flavonone isomerase; with identity of 34%),
which converts chalcone to naringenin (Dong et al.,
2001). In addition, the expression of this putative chi
(GRMZM2G175076) in pericarp at 25 d after pollination
was controlled by P1, as indicated by Morohashi et al.
(2012). The other gene (GRMZM2G054013) is ortholo-
gous to a well-characterized gene in Arabidopsis (4cl3;
with identity of 56%), which encodes 4-coumarate-
CoA-ligase3. 4CL3 is involved in the last step of the
general phenylpropanoid pathway and transcription-
ally regulated by a flavonoid MYB transcription factor
in Arabidopsis and tomato (Solanum lycopersicum). Ex-
pression of this putative 4cl3 (GRMZM2G054013) in
silk was also controlled by P1 (Morohashi et al., 2012).
Notably, three of these seven genes were also identified
within the QTL intervals of flavonoids identified in this
study. For instance, GRMZM2G054013 (annotated as
4-coumarate-CoA-ligase3) was found in the peak bin
of a QTL for tricin O-rhamnosyl-O-hexoside. Both
GRMZM2G162755 and GRMZM2G063550 belong to
UDP-glycosyltransferase gene family 1, and they were
identified in the peak bin of aQTL interval forC-pentosyl-
apigeninO-caffeoylhexoside and apigenin di-C-hexoside,
respectively (Supplemental Table S5). Genetic and/or
transcriptional network analyses in this study identified
various candidate genes and provided certain evidence
for their possible function in the pathway, which can
lead to a more complete understanding of flavonoid
biosynthesis. Further molecular and biochemical stud-
ies are required to fully understand how these newly
identified genes are involved in the flavonoid pathway.

DISCUSSION

There are more and more forward genetic studies on
a broad range of metabolic traits in plants, including
major crops such as maize and rice (Keurentjes et al.,
2006; Lisec et al., 2008; Rowe et al., 2008; Riedelsheimer
et al., 2012; Gong et al., 2013; Sauvage et al., 2014;
Alseekh et al., 2015; Zhang et al., 2015). In most cases,
the effects of these QTLs are modest. In this study,
several hundred metabolic QTLs were identified and

the effects of both single locus and pairwise epistatic
interactions on the metabolic variation were assessed.
The effect size of each individual QTL was generally
modest (r2 , 10%); however, a reasonable metabolite
QTL (17.6% for BB and 33.7% for ZY) was of major ef-
fect (r2 . 10%). Epistasis was identified for more than
30% of metabolites here, implying that it might also
play broad and important roles in determining meta-
bolic variation. The influence of epistasis in shaping the
metabolic variation, however, was already highlighted
in previous studies (Rowe et al., 2008; Gong et al., 2013;
Wen et al., 2015).

Maize is a widely grown cereal crop mainly for food
and feed; thus, increasing its yield while providing
added nutritional value is becoming ever more impor-
tant. Many metabolites detected in this study have
important roles as nutrients. For instance, flavones have
potent antiinflammatory and anticarcinogenic activi-
ties (Falcone Ferreyra et al., 2013; Casas et al., 2014).
Obtaining the genetic architecture and regulatory net-
work information for the target nutritional metabolites
here is a crucial step toward a sustainable strategy of
maize grain quality improvement (Martin et al., 2011;
Fitzpatrick et al., 2012). Furthermore, the deeply char-
acterized RIL populations used here are attractive re-
sources not only for powerful and high-resolution
genetic analysis of maize traits but also for providing
valuable plant materials and genes for better nutritional
maize breeding. Moreover, major QTLs or genes af-
fecting carotenoids, tocopherols, and fatty acids have
already been mapped and cloned in the BB population,
and some have been used directly for breeding prac-
tices (Chander et al., 2008a, 2008b; Yan et al., 2010; Yang
et al., 2010; Chai et al., 2012; Li et al., 2013). For example,
the gene crtRB1 (b-carotene hydroxylase 1), which was
a major QTL in the BB population, explaining about
16% of variation of the provitamin A content in mature
maize kernel, has been widely used for maize provita-
min A biofortification in order to take up the global
challenge of vitamin A deficiency (Yan et al., 2010).
Another major QTL in the BB population, DGAT1
(DiacylglycerolO-acyltransferase 1), could increase about
20% of the relative total oil content in a regular maize
line by marker-assisted backcross selection (Chai et al.,
2012).

Our QTL analysis demonstrated that the p locus as a
regulator explained a great proportion of phenotypic
variation for a large amount of flavonoids. In addition,
significant epistatic interactions between p1 and other
QTLs were observed frequently. Epistatic interactions
between p and structural genes within the flavonoid
pathway (e.g. a1 and c2) were also found previously by
Szalma et al. (2005). These findings suggest that either
further functional investigation of the flavonoid struc-
tural genes or pyramiding favorable alleles in maize
improvement will require careful genetic interaction
analysis and examination of the p genotype. The mo-
lecular mechanisms that underlie genetic interactions
remain an open question. However, there is a long way
to go fromQTL-QTL interaction to gene-gene interaction,
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although our results here provide some useful informa-
tion for further elaboration of the genetic and molecular
mechanisms. Causal gene identification is ultimately the
key step in this process. The maize flavonoid pathway
provides a wonderful system for studying gene inter-
action and regulatory mechanisms, owing to its exten-
sive characterization at the genetic, biochemical, and
molecular levels (Koes et al., 2005). We found several
QTL-QTL interactions in this study that could be
explained by the known physical interactions between
the underlying genes. Regulatory or enzymatic inter-
actions can generate genetic epistasis through func-
tional epistasis, as indicated by previous studies (Byrne
et al., 1998; McMullen et al., 1998; Kliebenstein, 2009).
However, it remains challenging to determine and
validate the biologically important interactions that
are indicated by statistical analysis. For large-scale
metabolomics studies, the evidence of genetic inter-
action can also be used to aid in network generation and
extension, as demonstrated by Rowe et al. (2008).

The biochemical nature of metabolic traits and the
relatively large amount of prior knowledge facilitate
the dissection of the molecular basis of metabolic vari-
ation. Improving the resolution of QTL mapping can
definitely enhance the efficiency of causal gene identi-
fication, which also benefits from combining different
forward genetic approaches such as combining linkage
with genome-wide association mapping, as illustrated
in this study. The eQTL- and qGWAS-based gene ex-
pression network analysis identified novel genes asso-
ciated with the flavonoid pathway, whose role could be
rationalized with regard to their functional annotation.
Compared with the more routine coexpression analy-
sis, the eQTL and qGWASmethod is considerablymore
stringent and, as such, can highly reduce false-positive
findings, especially in the primary network. The sec-
ondary network could also be considered, but the effect
of the newly identified genes may not be as large as that
of the genes in the primary network. This result of the
network analysis, which is based on transcriptional
data, offered another source for cross-validation. Comb-
ing quantitative genetics approaches and transcriptional
network analysis, as shown in this study, represents an
alternative route to dissect the genetic basis of metabolic
traits and, as such, an effective strategy to prioritize can-
didate genes prior to embarking on laborious transgenic
validations. The deeply characterized RIL populations,
elucidation of metabolic phenotypes, and identification
of QTLs as well as novel candidate genes lay the foun-
dation for maize quality improvement.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Two RIL populations of maize (Zea mays), BB (Chander et al., 2008a) and ZY
(Ma et al., 2007), were used for linkage analysis in this study. The 197 BB RIL
lines were planted in Hainan (Sanya; E 109°519, N 18°259) in 2010 (experiment
1 BBE1) and Henan (Zhengzhou; E 113°429, N 34°449) in 2011 (experiment
2 BBE2). The 197 RILs from the ZY cross were planted in Yunnan (Kunming;
E 102°309, N 24°259; experiment 1 ZYE1) and Henan (Zhengzhou; E 113°429,

N 34°449; experiment 2 ZYE2) in 2011. All lines were self-pollinated, and
ears of each plot were hand harvested after maturity, air dried, and shelled.
For each line, ears from five plants were harvested at the same maturity and
bulked.

Sample Preparation and Metabolite Profiling

We carried out metabolic profiling on mature maize kernels from lines of the
two RIL populations. For each line, 12 well-grown kernels were randomly se-
lected from five plants and bulked for grinding. The kernels were ground using a
mixermill (MM400;Retsch)with zirconia beads for 2min at 30Hz. Thepowder of
each genotype was partitioned into two sample sets and stored at 280°C until
required for extraction. Samples were extracted following the procedures de-
scribed in detail in our previous study (Wen et al., 2014) before analysis using a
liquid chromatography-electrospray ionization (ESI)-MS/MS system. The me-
tabolite annotation and quantification were performed as described previously
(Wen et al., 2014). Briefly, an tandemmass spectral tag (MS2T) library containing
983 (almost) nonredundant metabolite signals was constructed for mature maize
kernels. An accurate mass of 245 of Q1 was obtained on the basis of the fact that
similar fragmentation patterns were obtained between ESI-quadrupole trap-MS/
MS and ESI-quadrupole-quadrupole-time-of-flight-MS/MS. The MS2T library
was annotated based on the fragmentation pattern (delivered by ESI-quadrupole
trap-MS/MS and/or the accurate mass-to-charge ratio value delivered by ESI-
quadrupole-quadrupole-time-of-flight-MS/MS) and the retention time of each
metabolite. By comparing the mass-to-charge ratio values, the retention times,
and the fragmentation patterns with the authentic standards, 43metabolites were
identified, including amino acids, flavonoids, lysophosphatidylcholine and fatty
acids, and some phytohormones (Supplemental Table S1). For the metabolites
that could not be identified by available standards, peaks in the MS2T library,
especially the peaks that have similar fragmentation patterns to the metabolites
identified by authentic standards, were used to query the MS/MS spectral data
taken from the literature or to search the databases (MassBank, KNApSAcK,
HMDB, MoTo DB, and METLIN). Best matches were then searched in the Dic-
tionary of Natural Products and the Kyoto Encyclopedia of Genes and Genomes
for possible structures. In total, 155 metabolites were identified in the samples
harvested from two experiments of both populations. A scheduled multiple re-
action monitoring method was used for the quantification of metabolites (Dresen
et al., 2010). The metabolite intensities of each line measured from two experi-
ments of both BB and ZY populations are shown in Supplemental Table S2. The
fold changewas calculated as the ratio of themaximum intensity to theminimum
intensity for each metabolite across all the lines. H2 was calculated using the
equation H2 = Vg/Vg + Ve + Ver (Holland et al., 2003).

Genotyping and Construction of a High-Density Bin Map

Both RIL populations have been genotyped using the IlluminaMaizeSNP50
BeadChip, which contains 56,110 SNPs (Ganal et al., 2011). SNPs with both
missing rate and heterozygosity of less than 10% for the RIL populations were
used to construct the genetic linkage map. We developed an economic go-
wrong method integrating the Carthagene software (de Givry et al., 2005) to
construct the genetic linkage map for both RIL populations. Detailed infor-
mation of the method for constructing the linkage map can be accessed at
http://github.com/panqingchun/linkage_map.

QTL Mapping and Epistasis Analysis

Amap containing 2,496 and 3,071 recombinant bins was constructed for BB
and ZY RILs, respectively. Composite interval mapping implemented in Win-
dows QTL Cartographer version 2.5 was used for QTL identification (Zeng
et al., 1999; Wang et al., 2006). Zmap (model 6) with a 10-cM window and a
walking speed of 0.5 cM was used. To determine a threshold for significant
QTLs, 500 permutations (P = 0.05) were used for each metabolite identified in
both RIL populations. The bins were clearly defined, and a uniform LOD value
was assigned for each bin. The confidence interval for eachQTLwas assigned as
a 2 LOD drop from the peak. Detailed information, including location, confi-
dence interval, and r2 (explained phenotypic variance) of each QTL for each
trait, is shown in Supplemental Table S2.

The pairwise additive-by-additive epistatic interactions for all identified
QTLs of each metabolite were determined by two-way ANOVA (using P ,
0.05 as a significant threshold; Yu et al., 1997). The proportion of variance
explained by epistasis was tested by comparing the residual of the full model
containing all single-locus effects and two-locus interaction effects with that
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of the reduced model containing just all single-locus effects but excluding
two-locus interaction effects.

Candidate Gene Identification

Candidate genes associated with the corresponding metabolic trait were
searchedwithin the confidence interval for eachQTL.We found annotated gene
models within the confidence interval according to the 5b filtered set (ftp://ftp.
gramene.org/pub/gramene/maizesequence.org/release-5b/filtered-set/).

Construction of the Regulatory Network for a Metabolic
Pathway Based on eQTL and qGWAS Methodologies

Genes of known function that are associated with specific metabolic path-
wayswere selected.Using theflavonoidpathwayas anexample in this study,we
used 15 genes with well-known functions in this pathway as bait and identified
genes with regulatory relationships with these genes. For the primary network,
genes that met one of the following criteria were included: first, the expression
levels of genes that were significantly associatedwith genetic variations in these
15 genes using eQTL analysis or vice versa; and second, expression levels of
genes that were significantly associated with expression variation of these 15
genes using qGWAS or vice versa. Expression data of 28,769 genes were used
based on our previous RNA sequencing analysis on maize kernels at 15 d after
pollination (Fu et al., 2013). For eQTL mapping, the expression level of each
gene was considered as a trait to associate with 0.56 million genome-wide SNP
markers based on a natural population containing 368 maize inbred lines (Fu
et al., 2013; Wen et al., 2014). The qGWAS method integrated the expression
data of two genes in a regressionmodel accounting for the population structure.
The same population (i.e. natural maize population containing 368 maize in-
bred lines) was used for qGWAS. Based on the genes in the primary network, a
secondary network was constructed using the same eQTL and qGWAS criteria.
The genes associated directly with the 15 candidates are named as first rank,
while second rank genes are those that were linked to the first rank. Cytoscape
(Shannon et al., 2003) was used to display the network, and GO enrichment
analyses were performed using the agriGO toolkit (Du et al., 2010), with a false
discovery rate of 0.05 or less being applied as a threshold.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers AFW85719.1 (UGT1, GRMZM2G063550),
NP_001132650.2 (UGT708A6, GRMZM2G162783), NP_001147999.1 (UGT1,
GRMZM2G162755), XP_008660140.1 (F2H, GRMZM2G167336), XP_008667488.1
(UGT1, GRMZM2G180283), NP_001151452.1 (CHI, GRMZM2G175076), and
AFW63473.1 (4CL3, GRMZM2G054013).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Secondary regulatory network associated with
flavonoid biosynthesis.

Supplemental Figure S2. Gene Ontology enrichment analysis of the newly
found genes in the secondary network.

Supplemental Figure S3. Phylogenetic analysis of candidate genes belong-
ing to the UGT1 family.

Supplemental Table S1. Detailed information of 155 metabolites detected
in this study.

Supplemental Table S2. Metabolite intensities of each line in both BB and
ZY populations.

Supplemental Table S3. Detailed information of all the identified QTLs.

Supplemental Table S4. Significant pair-wise epistatic interactions.

Supplemental Table S5. Candidate genes and their detailed information
for each QTL.

Supplemental Table S6. Expression level of 15 known flavonoid pathway
genes in the 368 inbred lines.

Supplemental Table S7. Gene Ontology enrichment analysis on all the 58
genes in the primary network.

Supplemental Table S8. Gene Ontology enrichment analysis on the newly
found 46 genes in the primary network.
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