
Period-doubling and period-tripling in growing bilayered 
systems

Silvia Buddaya, Ellen Kuhlb, and John W. Hutchinsonc,*

aDepartment of Mechanical Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, 
Germany

bDepartments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA 
94305, USA

cSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract

Growing layers on elastic substrates are capable of creating a wide variety of surface 

morphologies. Moderate growth generates a regular pattern of sinusoidal wrinkles with a 

homogeneous energy distribution. While the critical conditions for periodic wrinkling have been 

extensively studied, the rich pattern formation beyond this first instability point remains poorly 

understood. Here we show that upon continuing growth, the energy progressively localizes and 

new complex morphologies emerge. Previous studies have often overlooked these secondary 

bifurcations; they have focused on large stiffness ratios between layer and substrate, where 

primary instabilities occur early, long before secondary instabilities emerge. We demonstrate that 

secondary bifurcations are particularly critical in the low stiffness ratio regime, where the critical 

conditions for primary and secondary instabilities move closer together. Amongst all possible 

secondary bifurcations, the mode of period-doubling plays a central role - it is energetically 

favorable over all other modes. Yet, we can numerically suppress period-doubling, by choosing 

boundary conditions, which favor alternative higher order modes. Our results suggest that in the 

low stiffness regime, pattern formation is highly sensitive to small imperfections: surface 

morphologies emerge rapidly, change spontaneously, and quickly become immensely complex. 

This is a common paradigm in developmental biology. Our results have significantly applications 

in the morphogenesis of living systems where growth is progressive and stiffness ratios are low.
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1. Motivation

Growth-induced wrinkling instabilities are an important mechanism in the evolution and 

morphogenesis of living systems [26]. Typical examples range from undesired folding in 

asthmatic airways [28], via wrinkling in skin [9], to desired cortical folding in mammalian 
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brains [8, 31]. A growing layer, confined by a non-growing substrate with dissimilar 

material properties, eventually buckles into sinusoidal wrinkles with a well-defined 

wavelength [27]. Continued growth beyond the onset of primary wrinkling induces 

secondary bifurcations associated with advanced wrinkling modes of increasing complexity 

[2, 6]. This coordinated self-organizing mechanism creates a wide variety of surface patterns 

[20] and is an essential feature of life [14]. Understanding the critical conditions for these 

instabilities could allow us to control of surface pattern formation during organogenesis and 

manipulate congenital abnormalities.

Continuum approaches toward the formation of growth-induced instabilities in living 

systems typically adopt the concept of finite growth [32]. They couple growth and 

deformations at the kinematic level using the multiplicative decomposition of the 

deformation gradient into an elastic and a grown part [35]. In this description, confined 

growth induces residual stresses and triggers mechanical instabilities [17]. The resulting 

wrinkled state is permanent without any external impact [30]. Soft living materials are 

especially susceptible to surface buckling due to low elastic moduli and high stimulus-

sensitivity [26]. However, studying instabilities in living systems is challenging from a 

conceptual point of view: it requires nonlinear constitutive equations and low moduli ratios 

between layer and substrate.

Several mechanical models have contributed to understanding the critical conditions of 

instabilities and the corresponding wrinkling patterns. While early analytical investigations 

were restricted to linear elastic materials and primary wrinkling modes [1, 3], more recent 

studies consider nonlinear elastic material behavior [13, 29] and explain secondary 

bifurcations in weakly nonlinear confined systems [5, 36]. However, those studies do not 

consider growing materials and fail to provide profound insight into the wrinkle-to-fold 

transition and multiple bifurcations in highly nonlinear confined layers [30]. Growth induces 

a non-conventional buckling problem, in which the critical load is not applied directly, but 

arises from the interplay between growth and geometric constraints. This mechanism is 

conceptually similar to manufacturing processes including cooling or consolidation, in 

which the critical load results from secondary effects [15]. Understanding the highly 

nonlinear postbuckling behaviour and advanced wrinkling modes requires the application of 

nonlinear elasticity [10, 33]. Finite element modeling proves practical to further explore 

growth-induced folding instabilities [22]. Motivated by the clinical problem of mucosal 

folding during chronic airway wall remodeling [16], researchers have observed secondary 

folding phenomena in double-layered hollow cylindrical tubes [25]. Those numerical studies 

investigate stiffness ratios of layer to substrate greater than one hundred. In soft materials 

such as living tissue, elastomers, and gels, however, the stiffness ratio between the different 

layers is typically only moderate. The objective of this manuscript is to analyze the critical 

conditions of growth-induced primary and secondary instabilities for small stiffness ratios 

between layer and substrate. We illustrate the corresponding failure modes using combined 

analytical bifurcation analyses and computational modeling.

In Section 2, we establish an exact finite strain bifurcation analysis to establish the critical 

wrinkling condition for a bilayered system with a growing Neo-Hookean layer bonded to a 

non-growing infinitely deep Neo-Hookean substrate. In Section 3, we illustrate the 
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corresponding continuum model based on the theory of finite growth. In Section 4, we 

perform computational simulations to study the critical conditions for primary and 

secondary instabilities. We explore advanced post-bifurcation modes including period-

doubling and period-tripling. We illustrate how appropriate boundary conditions can drive 

the solution into different bifurcation modes and demonstrate that period-doubling is 

energetically favorable over period-tripling. Although our study focuses exclusively on 

growth-induced instabilities, we expect our results to be generally applicable to any 

compressed bilayered system with moderate stiffness ratios between layer and substrate.

2. Analytical Model

In this section, we discuss the general condition for the onset of wrinkling in a constrained 

bilayered system in which uniform growth occurs in the layer and no growth occurs in the 

infinitely deep substrate. We will later see that our results easily generalize to growing 

substrates. Both layer and substrate are Neo-Hookean elastic with ground state shear moduli 

μl and μs. We assume a Cartesian coordinate system {x1, x2, x3}, where x1 is the direction 

parallel to the layer-substrate interface, x2 is the thickness direction perpendicular to the 

interface, and x3 is the out-of-plane direction in which no variation occurs under plane strain 

conditions.

Initially, the layer grows under homogeneous conditions and introduces stretches λI in all I = 

1, 2, 3 directions. We assume a multiplicative decomposition of these total stretches λI into 

elastic contributions  and grown contributions ,

(1)

where the Jacobian J denotes the total volume change. Here, we have used the lateral 

boundary condition λ1 ≐ 1 and the plain strain condition λ3 ≐ 1, such that the total volume 

change is entirely attributed to changes in layer thickness J ≐ λ2. Figure 1 suggests that we 

can picture the growth stretches  as the stretches, which would occur if the growing layer 

was not attached to the elastic substrate. For example, we could consider two-dimensional 

in-plane growth in line with the plane strain condition,

(2)

or three-dimensional isotropic growth,

(3)

For now, we will consider general, arbitrary growth with the only constraint that  to 

ensure that the onset of wrinkling does not occur in the out-of-plane direction. We assume 

that the elastic deformation is incompressible, Je ≐ 1, and derive the elastic stretches , 

which give rise to the stresses in the growing layer,
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(4)

This implies that the total volume change is entirely caused by growth, J ≐ Jg = λ2. We 

denote the thickness of the layer prior to growth by T. If the layer were detached from 

substrate, its thickness would be . According to Figure 1, in the attached state, the 

grown layer thickness is

(5)

The analysis in the Appendix reveals that, for any combination of growth stretches, the 

critical growth condition for the onset wrinkling depends on only two characteristics: the 

elastic stretch ratio between thickness and wrinkle direction, , and the 

stiffness ratio between layer and substrate, μl/μs.

Figure 2 illustrates the critical elastic stretch ratios rw at the onset of wrinkling for varying 

stiffness ratios μl/μs. Associated with this critical growth condition is the wavelength of the 

critical sinusoidal mode. Figure 3 illustrates the critical condition (ntg)w, which defines the 

wavelength,λ/t = 2π/[rw(ntg)w], scaled by the current layer thickness t at the onset of 

wrinkling.

Included in Figures 2 and 3, as dashed curves, are the asymptotic results for layers satisfying 

μl/μs ≫ 1. The critical conditions for wrinkling of a growing, relatively stiff layer are

(6)

The comparison between solid curves of the exact solution and the dashed curves of the 

asymptotic solution suggests that the asymptotic solution generates significant errors in the 

low stiffness ratio regime for μl/μs < 10.

In Figures 2 and 3, we have not analyzed stiffness ratios below μl/μs = 2 since wrinkling of 

the type analyzed here may not be the dominant mode in that regime. The wrinkles analyzed 

here have long wavelengths, which are significantly larger than the layer thickness. Included 

in Figure 2 are markers showing the condition for the onset of arbitrarily short-wavelength 

Biot surface wrinkles and arbitrarily small surface creases. The conditions for the onset of 

these modes can also be expressed as a critical conditions in terms of the elastic stretch ratio 

r. The Biot surface wrinkling condition is  [4], and the surface 

creasing condition is  [18, 19, 23].

Figure 2 confirms that the Biot condition is not met within the range of stiffness ratios 

considered here. However, the surface creasing condition is met prior to the condition for 

long-wavelength wrinkling for stiffness ratios μl/μs < 2.7. This implies that in this regime, 

small, finite strain creases are likely to form prior to wrinkling. Another possibility, 

however, is that long-wavelength folds may be unstable and imperfection-sensitive in this 
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regime, and thereby likely to appear at lower growth strains than predicted by the bifurcation 

analysis.

For growing layers, the stability and imperfection-sensitivity of the long-wavelength mode 

has not been analyzed, but such an analysis has been carried out for the closely related Neo-

Hookean bilayer problem where wrinkling is driven by the simultaneous compression of 

layer and substrate [21]. In that case, the long-wavelength mode becomes unstable and 

imperfection-sensitive in the range of μl/μs < 2.7. The above discussion suggests that modest 

stiffness contrasts in the range of μl/μs < 3, which are relevant for surface pattern formation 

due to differential growth in living systems [31], are likely to be complex and rich in 

phenomena.

Figure 4 illustrates two special cases of growth: two-dimensional in-plane growth with r = 

ϑ2 according to equations (2) and three-dimensional isotropic growth with r = ϑ3 according 

to equations (3). We can infer the corresponding wavelengths from Figure 3 using λ/t = 

2π/[rw(ntg)w]. Cases with  generate equibiaxial compression in the layer. 

Sinusoidal modes with the same critical wave-length exist at rw with wrinkle variations in 

any direction parallel to the interface. Any superposition of these modes is also a bifurcation 

mode.

The results in Figures 2 and 3 for a uniformly growing layer on a Neo-Hookean elastic 

substrate also apply for growing substrates as long as growth in the layer is greater. 

Specifically, with  now denoting uniform growth stretches in the layer and 

 denoting growth stretches in the substrate, let , and , 

such that . Figure 2 provides the critical value of r assuming 

. The critical wavelength is λ/t = 2π/[rw(ntg)w] where now 

 and (ntg)w follows from Figure 3. The current study is limited 

to wrinkling phenomena on flat substrates; on curved substrates, the analysis is conceptually 

similar but includes higher order correction terms. We have recently shown that curvature 

delays the onset of wrinkling and that flat regions tend to fold earlier than curved regions 

[16].

3. Continuum Model

To explore pattern evolution beyond the onset of folding, we model growth using the 

nonlinear field theories of mechanics supplemented by the theory of finite growth. This 

results in a set of five equations, which are the three-dimensional, finite deformation 

generalizations of the kinematic equation, the constitutive equation, the mechanical 

equilibrium equation, and the growth kinematics, and the growth kinetics, which define the 

evolution of growth. To characterize the kinematics of finite deformation, we introduce the 

deformation map φ, which maps points X from the ungrown configuration to their new 

positions x = φ (X, t) in the grown configuration. As the three-dimensional generalization of 

equations (1), we introduce the deformation gradient F = ∇Xφ, which we multiplicatively 

decompose into an elastic part Fe and a growth part Fg,
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(7)

A similar multiplicative decomposition holds for the Jacobian J = det (F), which we 

decompose into an elastic part Je and a growth part Jg. In analogy to equation (3), to define 

the growth kinematics, we assume that growth is purely isotropic, parameterized in terms of 

a single scalar-valued growth multiplier ϑ,

(8)

This implies that the grown volume Jg is identical to the growth multiplier to the power of 

the number of spatial dimensions ndim with ndim= 2 in the case of two-dimensional in-plane 

growth according to equations (2) and ndim= 3 in the case of three-dimensional isotropic 

growth according to equations (3). In analogy to equations (4), the elastic tensor Fe and its 

Jacobian Je simply follow by scaling the total deformation gradient F and its Jacobian J by 

the amount of growth ϑ,

(9)

We introduce a Neo-Hookean free energy function parameterized exclusively in terms of the 

elastic tensor Fe and its Jacobian Je,

(10)

where λ and μ are the Lamé constants. This implies that only the elastic part of the 

deformation generates stress. Following standard arguments of thermodynamics, the Piola 

stress P follows as energetically conjugate to the deformation gradient F,

(11)

The Piola stress enters the standard balance of linear momentum, the equation of mechanical 

equilibrium. In the absence of inertia terms and volume forces, the balance of linear 

momentum reduces to the vanishing divergence of the Piola stress,

(12)

In contrast to the analytical model, now we are not only interested in the critical condition at 

which growth occurs. Rather, we want to explore the evolution of surface patterns beyond 

the onset of folding for ϑ > ϑcrit. It thus remains to define the kinetics of growth, the 

equation that characterizes the evolution of growth in time. For simplicity, we assume that 

growth is purely morphogenetic, independent of mechanical stress or strain, characterized 

exclusively by the linear growth rate g,
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(13)

In the following examples, we consider a growing layer, gl > 0, on a Neo-Hookean elastic 

substrate, gs = 0. We solve the nonlinear set of equations within a finite element framework 

implemented in Matlab [29], and represent growth as a scalar-valued internal variable ϑ at 

the integration point level [7].

4. Computational Model

For the following examples, we consider a periodic, two-dimensional plane strain domain, 

which consists of a growing layer on a Neo-Hookean elastic substrate. The domain width W 

is constant; the domain height H and layer thickness T evolve as growth progresses. For the 

growing layer, we assume Lamé constants of λl = 34.2 kPa and μl = 3.3 kPa [8] and allow it 

to grow linearly in time. For the elastic substrate, we assume Lamé constants of λs = μs/μl λl 

and μs where μl/μs denotes the stiffness contrast between layer and substrate. Here we focus 

on the range of stiffness contrasts between 2 ≤ μl/μs ≤ 12 to mimic instability phenomena in 

living matter.

We adopt plain strain conditions and apply periodic boundary conditions on the left and 

right boundaries. We constrain the bottom nodes orthogonal to the boundary, but allow them 

to slide freely along the edge. To mimic an infinitely thick substrate, we select a specimen 

height that is significantly larger than the expected wavelength, H ≫ λ. We estimate the 

wavelength λ numerically in a preliminary simulation with a large domain width, W ≫ λ. 

For all following simulations, we explore two different domain widths, W = 2 λ and W = 3 λ. 

We discretize the growing layer with 4 and the Neo-Hookean elastic substrate with 48 bi-

linear quadrilateral elements along the height H and with 64 to 128 elements along the width 

W depending on the estimated wavelength λ. To trigger instabilities in this homogeneous 

setup, we apply a small kinematic imperfection inside a vertical band in the center of the 

substrate and confirm numerically that both the wavelength λ and the amplitude A are 

insensitive to this imperfection. To accurately capture the onset of the bifurcation, we adopt 

an adaptive time stepping scheme, in which we adjust the time step size based on 

convergence of the global Newton Raphson iteration [24].

4.1. Emerging instability patterns of primary and secondary bifurcations

To explore the morphogenesis of primary and secondary bifurcations, we analyze the 

instability pattern of a progressively growing layer on a Neo-Hookean elastic substrate. We 

compare two different widths, W = 2 λ and W = 3 λ, of the periodic simulation domain to 

drive the solution into two distinct instability patterns: period-doubling and period-tripling.

Figure 5 illustrates the instability patterns of primary and secondary bifurcations, which 

emerge for domain widths of W = 2 λ and W = 3 λ at a stiffness contrast of μl/μs = 3. The 

color code reflects the normal compressive stress in the growing layer, with blue indicating 

low and red indicating high levels of compression. Once the compressive stress reaches a 

critical primary bifurcation point, the layer wrinkles into a periodic sinusoidal pattern to 

release the growth-induced residual stress, first row. Further growth triggers symmetry 
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breaking into a non-symmetric wrinkling mode with sharper valleys and smoother ridges, 

second row. With continuing growth, the stresses in the growing layer reach a critical 

secondary bifurcation point and advanced wrinkling modes emerge, third row. These 

secondary instability patterns are sensitive to the domain width: A width of W = 2 λ favors 

period-doubling, left column; a width of W = 3 λ favors period-tripling, occurring slightly 

later, right column. Secondary instability patterns alternate between growing and decaying 

valleys with progressively increasing and decreasing amplitudes. As growth continues, 

contact zones emerge along the neighboring edges of a growing valley, while decaying 

valleys have almost entirely flattened out, fourth row. As the left and right close-ups of 

growing and decaying valleys indicate, amplitude growth increases the stress in the layer, 

while amplitude decay decreases the stress. In summary, this example suggests that 

instabilities emerge according to a distinct time line with a primary bifurcation point of 

periodic wrinkling followed by a secondary bifurcation point of period-doubling. With the 

choice of appropriate boundary conditions, we can suppress the mode of period-doubling 

and drive the solution into a later secondary bifurcation of period-tripling [34].

Figure 6 summarizes the final configurations at the formation of contact between two 

neighboring edges of a growing valley for period-doubling, period-tripling, period-

quadrupling, period-quintrupling. Increasing the width of the simulation domain by 

multiples of the wavelength, W = 2λ, 3λ, 4λ, 5λ drives the numerical solution into different 

secondary bifurcation modes, from row 3 to row 6. While the modes of period-doubling in 

row 3 and period-tripling in row 4 display two distinct amplitudes, one increasing and one 

decreasing, the modes of period-quadrupling in row 5 and period-quintupling in row 6 

display three distinct amplitudes, one increasing, one decreasing, and one in between.

4.2. Pitchfork bifurcations of period-doubling and period-tripling

The previous analysis suggests a characteristic time line for emerging instabilities of 

primary and secondary bifurcations. To investigate this time line more closely, we monitor 

the temporal evolution of the folding amplitude for two different stiffness contrasts, μl/μs = 5 

and μl/μs = 8.

Figure 7 illustrates the emerging folding amplitudes for progressive growth. At the first 

instability point ϑw, the initially flat growing layer wrinkles into a sinusoidal pattern to 

partially release residual stresses and the amplitudes begin to grow uniformly. Once growth 

reaches the second instability point ϑpd, a second instability mode of period-doubling 

occurs. Every second amplitude accelerates to grow, while those in between decay. 

Choosing the domain width to W = 3 λ instead of W = 2 λ suppresses the period-doubling 

mode and triggers a different secondary instability pattern, period-tripling. The solution 

passes the point of period-doubling ϑpd without undergoing a bifurcation. Further growth 

triggers the advanced mode of period-tripling at a later secondary bifurcation point ϑpt. This 

indicates that period-doubling is energetically favorable over period-tripling. Yet, we can 

suppress the period-doubling mode numerically by choosing the domain size such that 

periodicity favors the mode of period-tripling. The direct comparison of the pitchfork 

bifurcations for two different stiffness contrasts, μ1/μs = 5 and μ1/μs = 8, suggests that the 
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distance between primary and secondary bifurcations increases with increasing stiffness 

contrast.

4.3. Stiffness sensitivity of primary and secondary bifurcations

The previous example suggests that the evolution of primary and secondary bifurcations is 

highly sensitive to the stiffness contrast between layer and substrate. To explore this 

sensitivity further, we systematically vary the stiffness contrast between 3 ≤ μ1/μs ≤12. For 

each stiffness contrast, we numerically identify the critical growth multiplier at the onset of 

periodic wrinkling ϑw, at the onset of period-doubling ϑpd, and the onset of period-tripling 

ϑpt using an accompanying eigenvalue analysis: The smallest eigenvalue of the system 

decreases progressively until it reaches a first minimum close to zero, which we define as 

the primary instability point; then, the smallest eigenvalue increases, but soon decreases 

again towards a second minimum, which we define as second instability point.

Figure 8 illustrates the critical growth of periodic wrinkling ϑw, period-doubling ϑpd, and 

period-tripling ϑpt for varying stiffness contrasts μ1/μs. In analogy to the analytical estimates 

in Figure 4, the primary critical condition for periodic wrinkling ϑw decreases 

asymptotically as the stiffness contrast μ1/μs increases. The secondary critical condition for 

both period-doubling ϑpd and period-tripling ϑpt seems only marginally sensitive to the 

stiffness contrast. This implies that for increasing stiffness contrasts, the secondary 

bifurcation points ϑpd and ϑpt move further away from the primary bifurcation point ϑw. 

Critical growth for period-doubling ϑpd, with a mean of 1.56 ± 0.03, is consistently lower 

than critical growth for for period-tripling ϑpt, with a mean of 1.64 ± 0.03. This supports the 

findings from our previous example that period-doubling occurs earlier than period-tripling 

and seems to be the energetically favorable mode.

4.4. Stiffness sensitivity of folding amplitude during period-doubling

Our previous examples suggest that the growing and decaying amplitudes during secondary 

bifurcation are highly sensitive to the stiffness contrast between layer and substrate. To 

explore this sensitivity further, we systematically vary the stiffness contrast between 4 ≤ 

μ1/μs ≤ 12 in increments of Δμ1/μs = 2. For each stiffness contrast, we illustrate the emerging 

secondary instability mode and analyze the evolution of the amplitude ratio, the relation 

between growing and decaying amplitudes A1/A2, beyond the secondary bifurcation point 

Δϑ = ϑ − ϑpd.

Figure 9 illustrates the stiffness sensitivity of the folding amplitude for period-doubling. 

With increasing stiffness contrast of μ1/μs = 4, 6, 8, 10, 12, the amplitude ratio of growing 

and decaying amplitudes decreases, from top to bottom. For μ1/μs = 4, the decaying 

amplitude has almost entirely flattened out while for μ1/μs = 12, it is still markedly present. 

With increasing stiffness contrast, both the maximum amplitude and the wavelength 

increase.

Figure 10 shows the evolution of the amplitude ratio A1/A2 for progressive growth after the 

onset of period-doubling for the range of stiffness contrasts 4 ≤ μ1/μs ≤ 12. With increasing 
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stiffness contrast, the slope of the curves decreases. This implies that the amplitudes grow 

and decay slower and the pitchfork narrows.

5. Concluding Remarks

Growing layers on elastic substrates can create a rich set of surface morphologies beyond 

the commonly studied primary instability: moderate growth creates symmetric, sinusoidal 

wrinkling patterns; further growth triggers symmetry breaking into non-symmetric patterns 

with sharp valleys and smooth ridges; and continuing growth initiates secondary bifurcations 

with alternating increasing and decreasing amplitudes. Here we have studied the emergence 

of surface morphologies upon progressive growth for low stiffness ratios between layer and 

substrate. Our simulations reveal that the critical amount of growth required for primary 

surface wrinkling increases exponentially as the stiffness ratio decreases, while the critical 

growth for secondary instabilities remains almost constant. This suggests that in the low 

stiffness ratio regime, the conditions for primary and secondary bifurcations move closer 

together and secondary folding becomes progressively more common. Most existing studies 

focus on large stiffness ratios and naturally overlook these secondary phenomena because 

they occur significantly later than classical periodic wrinkling. Yet, in living systems, in 

particular during organogenesis when new systems form, stiffness contrasts are low and 

these phenomena are critical. Our results suggest that for low stiffness ratios, emergent 

morphologies are highly sensitive to small imperfections: surface morphologies emerge 

rapidly, change spontaneously, and quickly become immensely complex. This is a common 

paradigm in developmental biology. Understanding emerging higher order bifurcations in 

layered structures could have significantly applications in the morphogenesis of living 

systems where growth is progressive and stiffness ratios are low.
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A. Appendix: Analytical Model

In what follows, we summarize the bifurcation analysis of a Neo-Hookean bilayer with 

uniform growth in the layer and no growth in the infinitely deep substrate. We construct the 

governing equations of the bifurcation problem from exact solutions for increments of 

displacements and stresses in a uniformly stretched layer [11]. Imagine the two layers are 

detached from one another. The Cartesian coordinates {x1, x2, x3} label material points in 

the unstressed layer at the current state of growth with x1 parallel to the interface in the 

direction of the wrinkle variation, x2 perpendicular to the interface, and x3 in the out-of-

plane direction, for which we assume a plane strain state. The displacement increments 

associated with the bifurcation mode are u1 and u2, while u3 ≐ 0. The layer grows uniformly 

denoted by the growth stretches , and . There is no growth in the infinitely deep 

substrate. In the unattached state the layer is grown but stress free. Reattaching the grown 

layer to the ungrown substrate requires stress-generating elastic stretches in the layer,

(A.1)

where  follows from the elastic incompressibility condition, 

. The thickness of the growing layer in the fictitious, unattached state is 

 and the current thickness in the grown, attached state is tg = λ2 T, where T is the 

initial thickness prior to growth. In the Neo-Hookean layer with ground state shear modulus 
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μl, separated solutions to the field equations for the incremental problem exist with 

displacement increments,

(A.2)

with coefficients

(A.3)

Here, , denotes the ratio between the elastic stretches in thickness and 

wrinkle direction under the assumption that r ≠ 1. The current stretch state enters (A.3) only 

through this ratio r. The solution holds for any wave number n. We can express the 

associated nominal stress increments,

(A.4)

with the following coefficients, defined as force per undeformed area,

(A.5)

This Lagrangian formulation, which employs the components of the second Piola-Kirchhoff 

stress, is similar to the stability analysis of wrinkling of a homogeneous half-space [4, 11, 

12]. To express the coefficients [c3, c4] in terms of [ c1, c2 ] we enforce the traction free 

condition, [N21, N22] = [0,0] on x2 = tg, in the layer with 0 ≤ x2 ≤ tg, in the unstressed state at 

the current state of growth,

(A.6)

with

(A.

7)

We can then solve for the interface tractions [N21, N22] on x2 = 0+ in terms of the 

coefficients [c1, c2],
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(A.8)

with

(A.9)

Next, solve for the interface displacements [U1, U2] on x2 = 0+ in terms of the coefficients 

[c1, c2] using equations (A.3) and (A.6) with (A.7),

(A.10)

with

(A.11)

By equations (A.8) to (A.11), the increments of nominal tractions and displacements on the 

bottom of the layer, x2 = 0+, which has a traction-free top surface, are related by

(A.12)

Now we consider the semi-infinite substrate which is unstressed in the reference state with 

no growth. We denote all substrate quantities by an overbar and introduce its Cartesian 

coordinates as {x̄1, x̄2, x̄3}. In analogy to equations (A.2) and (A.4), substrate displacements 

and nominal tractions associated with the bifurcation solution have the form,

(A.13)

and

(A.14)

The solution for the unstressed infinitely deep substrate provides the following connection 

between its variables on its top surface,
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(A.15)

where μs denotes the ground state shear modulus of the substrate. Continuity of 

displacement increments and nominal tractions across the layer-substrate interface requires 

that

(A.16)

and

(A.17)

The factor  in equation (A.17) accounts for the fact that the nominal stress increments 

in the two layers are defined relative to different interface areas. Displacement continuity 

(A.16) across the interface requires that

(A.18)

such that  and . Traction continuity (A.17) across the interface together 

with equations (A.12) and (A.15) requires that

(A.19)

where I is the identity matrix. The eigenvalue problem, which governs the bifurcation is |M 

| ≐ 0. Significantly, M depends only on the stretch ratio , the stiffness ratio μ1/μs, 

and the thickness-scaled wave number ntg.

We interpret r as the eigenvalue associated with growth, and denote the critical eigenvalue, 

i.e., the smallest value associated with the onset of wrinkling, by rw. This critical value 

follows from minimizing r over all values of ntg. Consequently, rw, and with it the 

associated minimizing value of (ntg)w, depend only on the stiffness ratio between layer and 

substrate μ1/μs. This implies that the curves in Figures 2 and 3 apply to all uniform growth 

conditions in the layer governed by , and , as long as . To generate the solid 

curves in Figures 2 and 3, we solved the eigenvalue problem (A.19) numerically. The 

critical wavelength with respect to the current state is
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(A.20)

where λ/tg denotes the dimensionless wavelength normalized by the thickness of the 

fictitious unattached grown layer, , and λ/t denotes the dimensionless wavelength 

normalized by the current thickness of the grown layer at the onset of the bifurcation, 

.
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Figure 1. 
Analytical model for growing layer on elastic substrate. In the initial, ungrown 

configuration, the layer has a width W and a thickness T. If the layer were unattached, it 

would undergo unconstrained growth towards a new width  and thickness . 

Reattaching the layer to the ungrown elastic substrate requires elastic stretches to bring the 

layer to its final width  and thickness . Here w ≐ W, such that 

λ1 ≐ 1. Positive growth  thus induces compression . Beyond a critical 

amount of growth, the compressive energy in the layer exceeds a critical value and the layer 

buckles.
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Figure 2. 
Condition for the onset of wrinkling of a growing layer on an elastic substrate with varying 

stiffness ratio μl/μs. Uniform growth in the layer drives periodic wrinkling, where rw is the 

critical value of the single growth parameter, . The solid curve is based 

on the exact analysis and the dashed curve is the asymptotic result from equation (6.1) for 

large values of μl/μs.
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Figure 3. 
Dimensionless critical wave number of the sinusoidal mode associated with the condition 

for the onset of period wrinkling in Figure 2. The solid curve is based on the exact analysis 

outlined in the Appendix and the dashed curve is the asymptotic result from equation (6.2) 

for large values of μl/μs.
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Figure 4. 
Critical conditions for onset of wrinkling for two-dimensional in-plane growth and three-

dimensional isotropic growth for varying stiffness ratio μl/μs. The critical growth to induce 

periodic surface wrinkling decreases with increasing stiffness ratio.
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Figure 5. 
Emerging instability patterns of primary and secondary bifurcations: Moderate growth 

beyond the first instability point creates symmetric, sinusoidal wrinkling patterns, which are 

similar for period-doubling and -tripling (first row). Further growth triggers symmetry 

breaking into non-symmetric wrinkling patterns with sharper valleys and smoother ridges 

(second row). Continuing growth beyond a second instability point initiates period-doubling 

and period-tripling with alternating increasing and decreasing amplitudes (third row). As 

growth continues, contact zones emerge along two neighboring edges of a growing valley, 

while decaying valleys have almost entirely flattened out (fourth row). The close-ups of 

each snapshot highlight increasing (left) and decreasing (right) amplitudes.
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Figure 6. 
Emerging instability patterns of primary and secondary bifurcations: Symmetric sinusoidal 

wrinkling, non-symmetric periodic wrinkling, period-doubling, period-tripling, period-

quadrupling, period-quintrupling (from top to bottom).
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Figure 7. 
Pitchfork bifurcations of period-doubling and period-tripling for stiffness contrasts of μl/μs = 

5 and μl/μs = 8. Initially, the growing layer is flat and the amplitudes are zero. At first 

instability point ϑw, all amplitudes begin to grow simultaneously. For the case of period-

doubling (red curves), at the second instability point ϑpd, a pitchfork bifurcation occurs: 

every second amplitude grows and those in between decay. For the case of period-tripling 

(blue curves), ϑpd is passed without bifurcation. Further growth initiates period-tripling at 

the secondary bifurcation point ϑpt: every third amplitudes grows and those in between 

decay. The time between primary and secondary bifurcation increases with increasing 

stiffness contrast μl/μs.
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Figure 8. 
Stiffness sensitivity of primary and secondary bifurcations. The primary critical condition 

for periodic wrinkling ϑw (orange) decreases asymptotically with increasing stiffness 

contrast μ1/μs. The secondary critical condition for period-doubling ϑpd (red) and period-

tripling ϑpt (blue) is only marginally sensitive to the stiffness contrast. The critical growth 

for period-doubling ϑpd is lower than the critical growth for period-tripling ϑpt, which 

suggests that period-doubling is energetically favorable over period-tripling. For increasing 

stiffness contrasts, the primary and secondary bifurcation point move further apart.
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Figure 9. 
Stiffness sensitivity of folding amplitude for period-doubling. With increasing stiffness 

contrast of μ1/μs = 4, 6, 8, 10, 12 (from top to bottom), the amplitude ratio of growing and 

decaying amplitudes decreases. For μ1/μs = 4 (top), the decaying amplitude has almost 

entirely flattened out while for μ1/μs = 12 (bottom), it is still markedly present. With 

increasing stiffness contrast, both the maximum amplitude and the wavelength increase 

(from top to bottom).
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Figure 10. 
Stiffness sensitivity of folding amplitude for period-doubling. At the onset of period-

doubling ϑpd, every second amplitude A1 grows while every other amplitude A2 decays. This 

implies that the amplitude ratio A1/A2 increases progressively with Δϑ beyond the secondary 

bifurcation point. For increasing stiffness contrasts μ1/μs, the amplitude ratio A1/A2 

decreases (see Figure 9).
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