
An Efficient Pattern Mining Approach for Event Detection in
Multivariate Temporal Data

Iyad Batal,
GE Global Research, iyad.batal@ge.com

Gregory Cooper,
Department of Biomedical Informatics, University of Pittsburgh, gfc@pitt.edu

Dmitriy Fradkin,
Siemens Corporate Research, dmitriy.fradkin@siemens.com

James Harrison,
Department of Public Health Sciences, University of Virginia, james.harrison@virginia.edu

Fabian Moerchen, and
Amazon, moerchen@amazon.com

Milos Hauskrecht
Department of Computer Science, University of Pittsburgh, milos@cs.pitt.edu

Abstract

This work proposes a pattern mining approach to learn event detection models from complex

multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern

mining, a novel approach for efficiently finding predictive patterns for event detection problems.

This approach first converts the time series data into time-interval sequences of temporal

abstractions. It then constructs more complex time-interval patterns backward in time using

temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework

for selecting a small set of predictive and non-spurious patterns. We apply our methods for

predicting adverse medical events in real-world clinical data. The results demonstrate the benefits

of our methods in learning accurate event detection models, which is a key step for developing

intelligent patient monitoring and decision support systems.

1 Introduction

Advances in data collection and data storage technologies have led to the emergence of

complex multivariate temporal datasets, where the data instances are traces of complex

behaviors characterized by time series of multiple variables. Designing algorithms capable

of analyzing and learning from such data is one of the most challenging topics of data

mining research.

HHS Public Access
Author manuscript
Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Knowl Inf Syst. 2016 January ; 46(1): 115–150. doi:10.1007/s10115-015-0819-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this work, we study the supervised learning task of event detection in multivariate

temporal data. In this task, the labels denote different events that are associated with specific

time points during the temporal instances. The goal is to learn how to accurately detect (in

time) the occurrence of these events for future instances (a monitoring task). This setting

appears in a wide range of applications, such as the detection of adverse medical events

(e.g., onsets of diseases or drug toxicity) in clinical data (Hauskrecht et al. 2010), the

detection of equipment malfunctions (Guttormsson et al. 1999), fraud detection (Srivastava

et al. 2008), environmental monitoring (Papadimitriou et al. 2005), intrusion detection

(Chandola et al. 2006) and others.

Given that the events are associated with specific time points during the instances, the

temporal observations that are close to the time of the event are typically the most important

for prediction. Consequently, the context for prediction is often local and affected by the

most recent behavior of the monitored instance. The focus of this paper is to develop a

temporal pattern mining method that takes into account the local nature of decisions for

monitoring and event detection problems.

We primarily focus on data in Electronic Health Record (EHR) systems. In this data, each

record (instance) consists of multiple time series of clinical variables collected for a specific

patient, such as laboratory test results and medication orders. The data also provide temporal

information about the incidence of several adverse medical events, such as diseases or drug

toxicities. The task is to learn how to predict these adverse medical events for future

patients. This is practically very useful for intelligent patient monitoring, outcome prediction

and clinical decision support.

Temporal modeling for EHR data is challenging because the data are multivariate and the

time series for clinical variables are irregularly sampled in time (measured asynchronously

at different time moments). Therefore, most existing times series classification methods

(Blasiak & Rangwala 2011, Vail et al. 2007), time series similarity measures (Yang &

Shahabi 2004, Ratanamahatana & Keogh 2005) and time series feature extraction methods

(Li et al. 2010, Batal & Hauskrecht 2009, Weng & Shen 2008) cannot be directly applied to

the raw EHR data.

In this paper, we present a pattern mining approach that can handle complex temporal data

such as EHR. The first step is to define a pattern language that can adequately represent the

temporal dimension of the data. To do this, we rely on temporal abstractions (Shahar 1997)

to convert time series variables into time-interval sequences of abstract states and on

Höppner’s representation of time-interval patterns (Höppner 2001, 2003) to define complex

temporal interactions among multiple states. For example, this allows us to express a

concept like “the administration of heparin precedes a decreasing trend in platelet counts”.

After defining the pattern language, we need to design an efficient algorithm for finding

useful patterns in time-interval (temporally abstracted) data. Unlike the existing methods

that mine all frequent time-interval patterns in an unsupervised setting (Wu & Chen 2007,

Winarko & Roddick 2007, Papapetrou et al. 2005, Sacchi et al. 2007, Moerchen 2006a,

Höppner 2001, Kam & Fu 2000), we are only interested in mining those patterns that are

Batal et al. Page 2

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

important for the event detection task (patterns that describe the temporal behavior that led

to the development of the event).

To achieve this goal, we propose Recent Temporal Pattern (RTP) mining, a novel approach

that mines frequent time-interval patterns backward in time starting from patterns related to

the most recent observations, which we argue are typically the most important for

prediction. Applying this technique, temporal patterns that extend far into the past are likely

to have low support in the data and hence would not be considered for prediction.

Incorporating the concept of recency in temporal pattern mining is a new research direction

that, to the best of our knowledge, has not been previously explored in the pattern mining

literature.

In addition, we present the concept of Minimal Predictive Recent Temporal Patterns

(MPRTP), a pattern selection technique for choosing a small set of predictive and non-

redundant RTPs. MPRTP applies Bayesian inference to evaluate the predictiveness of each

RTP. Moreover, it considers the structure of patterns to ensure that every RTP in the result is

significantly more predictive than all of its simplifications, which we demonstrate can

eliminate a lot of spurious and redundant RTPs.

We test and demonstrate the usefulness of our methods on two real-world EHR datasets. The

first dataset is a large-scale data that contains health records for 13,558 diabetic patients.

The task is predict and diagnose various types of disorders that are frequently associated

with diabetes, such as cardiological, renal or neurological disorders. The second dataset

contains records of post cardiac surgical patients (Hauskrecht et al. 2010, 2012) and the task

is to predict patients who are at risk of developing Heparin Induced Thrombocytopenia

(HIT), a life threatening condition that may develop in patients treated with heparin.

Our main contributions are summarized as follows:

– We propose recent temporal pattern (RTP) mining to find predictive time-

interval patterns for event detection problems.

– We present an algorithm that mines frequent RTPs backward in time and show

that it is much more scalable than mining all frequent time-interval patterns.

– We propose the concept of minimal predictive recent temporal patterns

(MPRTP) for selecting predictive and non-spurious patterns.

– We present a mining algorithm which integrates MPRTP evaluation with

frequent RTP mining and applies efficient pruning techniques to speed up the

mining.

– We apply our methods to two real-world clinical datasets and show that they are

able to efficiently find useful patterns for detecting adverse medical events.

Furthermore, we show that the mined patterns are easy to interpret by domain

experts, which is beneficial for knowledge discovery purposes.

Batal et al. Page 3

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Roadmap

The rest of the paper is organized as follows. Section 2 outlines related research. Section 3

describes the background on temporal abstraction and temporal patterns for time-interval

data. Section 4 describes the recent temporal patterns (RTPs) framework and explains our

algorithm for mining frequent RTPs. Section 5 describes the minimal predictive recent

temporal patterns (MPRTPs) framework and explains our mining algorithm. Section 6

presents the experimental evaluation. Finally, Section 7 concludes the paper.

2 Related Research

This paper studies the problem of mining predictive time-interval patterns (defined over

temporal abstractions) for event detection. The problem of mining time-interval patterns is a

relatively young research field. Most of the techniques extend methods for mining sequential

patterns (time-point patterns) (Agrawal & Srikant 1995, Zaki 2001, Pei et al. 2001, Yan et

al. 2003) to deal with the more complex case of time-interval data1.

In (Allen 1984), Allen formalized a logic on time intervals by specifying 13 possible

temporal relations and showing their completeness. These relations are shown in Figure 1.

Allen’s temporal relations have been used by the majority of research on mining time-

interval data (Kam & Fu 2000, Höppner 2001, Papapetrou et al. 2005, Winarko & Roddick

2007, Patel et al. 2008a, Moskovitch & Shahar 2009).

Kam and Fu (Kam & Fu 2000) were the first to propose using Allen’s relations for defining

time-interval patterns (patterns consisting of multiple states). However, their representation

was shown to be ambiguous (the same situation in the data can be described using several

different patterns). Höppner (Höppner 2001) was the first to propose a non-ambiguous

representation of time-interval patterns. The idea is to represent the pattern in the normalized

form and to explicitly specify the temporal relations between all pairs of states. Höppner’s

representation has been later used by several research papers (Papapetrou et al. 2005,

Winarko & Roddick 2007, Moskovitch & Shahar 2009), and we adopt it as well in our work.

Moerchen (Moerchen 2006a) proposed the time series knowledge representation (TSKR) as

an alternative to using Allen’s relations. TSKR is based on the concept of cords, which

describe coincidence of several states. Another representation appeared in (Wu & Chen

2007), where a time-interval pattern is represented as a sequence of the boundaries of its

states. Although this representation is conceptually different from Höppner’s representation,

it can be shown that there is a one-to-one correspondence between them.

The related work on mining time-interval patterns (Kam & Fu 2000, Höppner 2001,

Papapetrou et al. 2005, Moerchen 2006a, Sacchi et al. 2007, Winarko & Roddick 2007, Wu

& Chen 2007, Moskovitch & Shahar 2009) have been mostly applied in an unsupervised

setting for mining all frequent patterns. On the other hand, our work studies the supervised

event detection task for mining the most predictive patterns, which we achieve by

incorporating the concept of recency in the mining process.

1Sequential pattern mining is a special case of time-interval pattern mining, in which all intervals are simply time points with zero
durations.

Batal et al. Page 4

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 Preliminaries and Definitions

In this section, we describe temporal abstraction and define temporal patterns for time-

interval data. For temporal abstraction, we use trend and value abstractions. For the pattern

language, we use Höppner’s representation of time-interval patterns (Höppner 2001, 2003)

with a simplified set of Allen’s temporal relations.

3.1 Temporal Abstraction

Temporal abstraction takes a numeric time series (e.g., series of creatinine values) and

produces a sequence of abstractions 〈v1[s1, e1], …, vn[sn, en]〉, where vi ∈ Σ is an abstraction

that holds from time si to time ei and Σ is the abstraction alphabet (a finite set of permitted

abstractions).

In our work, we use two types of temporal abstractions:

1. Trend abstractions segment the time series based on its local trends. We use the

following abstractions: Decreasing (D), Steady (S) and Increasing (I), i.e., Σ = {D,

S, I}. We obtain these abstractions by applying the sliding window segmentation

method (Keogh et al. 1993) and labeling the states according to the slopes of the

fitted segments. For more information about trend segmentation, see (Keogh et al.

1993).

2. Value abstractions segment the time series based on its values. We use the

following abstractions: Very Low (VL), low (L), Normal (N), High (H) and Very

High (VH), i.e., Σ = {VL, L, N, H, VH}. We obtain these abstractions using the

10th, 25th, 75th and 90th percentiles on the lab values. That is, a value below the

10th percentile is very low (VL), a value between the 10th and 25th percentiles is

low (L), and so on.

Figure 2 shows the trend and value abstractions on a time series of creatinine values.

3.2 Multivariate State Sequences

Let a state be an abstraction value for a specific variable. We denote a state S by a pair (F,

V), where F is a temporal variable (e.g., creatinine) and V ∈ Σ is an abstraction value. Let a

state interval be a state that holds during an interval. We denote a state interval E by a 4-

tuple (F, V, s, e), where F is a temporal variable, V ∈ Σ is an abstraction value, and s and e

are the start time and end time (respectively) of the state interval (E․s ≤ E․e)2. For example,

assuming the time granularity is days, state interval (glucose, H, 5, 10) represents high

glucose values from day 5 to day 10.

After abstracting all time series variables, each multivariate time series instance in the data

becomes a multivariate state sequence.

Definition 1—A Multivariate State Sequence (MSS) is represented as a series of state

intervals that are ordered according to their start times3:

2If E․s = E․e, state interval E corresponds to a time point.

Batal et al. Page 5

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that we do not require Ei․e to be less than Ei+1․s because the state intervals are

obtained from different temporal variables and their intervals may overlap. Let Z․end denote

the end time of the MSS.

Example 1: Figure 3 shows an MSS (Z) with three temporal variables: creatinine (C),

glucose (G) and BUN (Blood Urea Nitrogen) (B), where the variables are abstracted using

value abstractions: Σ = {VL, L, N, H, VH}. Assuming the time granularity is days, this MSS

represents 24 days of the patient’s record (Z․end=24). For instance, we can see that

creatinine values are normal from day 2 until day 14, then become high from day 15 until

day 24. We represent this MSS as follows: 〈 E1 = (G, H, 1, 5), E2 = (C, N, 2, 14), E3 = (B, N,

4, 20), E4 = (G, N, 6, 9), E5 = (G, H, 10, 13), E6 = (C, H, 15, 24), E7 = (G, VH, 16, 23) 〉.

3.3 Temporal Relations

Most of Allen’s relations require equality of one or two of the intervals boundaries. That is,

there is only a slight difference between overlaps, is-finished-by, contains, starts and equals

relations (see Figure 1). Using all Allen’s relations can be problematic when the time

information in the data is noisy (not very precise), which is the case for EHR data. The

reason is that this leads to the problem of pattern fragmentation (Moerchen 2006b), which

means that we obtain many different temporal patterns that describe a very similar concept

in the data. Furthermore, if we use all Allen’s relations, the search space of temporal

patterns becomes extremely large.

To alleviate the above mentioned problems, we opt to use only two temporal relations,

namely before (b) and co-occurs (c), which we define as follows: Given two state intervals

Ei and Ej:

– Ei is before Ej, denoted as b(Ei, Ej), if Ei․e < Ej․s (Ei finishes before Ej starts),

which is the same as Allen’s before.

– Eico-occurs with Ej, denoted as c(Ei, Ej), if Ei․s ≤ Ej․s ≤ Ei․e (Ei starts before Ej

and there is a nonempty time period where both Ei and Ej occur). Note that this

relation covers the following Allen’s relations: meets, overlaps, is-finished-by,

contains, starts and equals (see Figure 1).

3.4 Temporal Patterns

In order to define temporal patterns for abstracted time-interval data (time-interval patterns),

we combine basic states (abstractions for specific variables) using temporal relations. We

adopt Höppner’s representation of time-interval patterns (Höppner 2001), where the

permitted temporal relations are either before (b) or co-occurs (c) (defined above). From

hereafter, we use the terms “temporal pattern” and “time-interval pattern” interchangeably.

3If two state intervals have the same start time, we sort them by their end time. If they also have the same end time, we sort them by
lexical order of their variable names (as proposed by (Höppner 2003)).

Batal et al. Page 6

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 2—A temporal pattern is defined as P = (〈S1, …, Sk〉, R) where Si is the ith

state of the pattern and R is an upper triangular matrix that defines the temporal relations

between each state and all of its following states:

i ∈ {1, …, k−1} ∧ j ∈ {i+1, …, k} : Ri,j ∈ {b, c} specifies the relation between Si and Sj.

The size of a temporal pattern P is the number of states it contains. If P contains k states, we

say that P is a k-pattern. Hence, a single state is a 1-pattern (a singleton). When a pattern

contains only 2 states: (〈S1, S2〉, R1,2), we sometimes write it simply as S1 R1,2 S2 because it

is easier to read.

Figure 4 shows a graphical representation of a 4-pattern with states: S1 = (F1, B), S2 = (F3,

A), S3 = (F2, C), and S4 = (F3, B). These states are abstractions of temporal variables F1, F2

and F3 using abstraction alphabet Σ = {A, B, C} (the abstractions in Σ can be trend

abstractions, value abstractions or any other type). The half matrix on the right represents

the temporal relations between every state and the states that follow it. For example, R2,3 = c
means that the second state S2 = (F3, A) co-occurs with the third state S3 = (F2, C).

Definition 3—Given an MSS Z = 〈 E1, E2, …, El 〉 and a temporal pattern P = (〈S1, …, Sk〉,

R), we say that Z contains P, denoted as P ∈ Z, if there is an injective mapping π that

matches every state Si in P to a state interval Eπ(i) in Z such that:

The definition says that checking whether an MSS contains a k-pattern requires: 1) matching

all k states of the pattern and 2) checking that all k(k−1)/2 temporal relations are satisfied.

Example 2: Let Z be the MSS (abstracted EHR) in Figure 3 and let P be temporal pattern

〈 (G, H), (C, N), (G, VH) 〉, R1,2 = c, R1,3 = b, R2,3 = b) (i.e., Glucose=High co-occurs with

Creatinine=Normal and both of them are before Glucose=Very High). P is contained in Z (P

∈ Z) because every state of P can be matched with a state interval in Z and these state

intervals satisfy all the relations specified by P.

4 Mining Recent Temporal Patterns

In this section, we first introduce the concept of recent temporal patterns (RTPs) and

illustrate their properties. After that, we describe an efficient algorithm for mining frequent

RTPs.

4.1 Recent Temporal Patterns

In this work, we study the problem of mining predictive temporal patterns for event

detection. In this setting, each training instance xi is a multivariate temporal instance up to

time ti (e.g., the first 5 days of the health record for a specific patient) and it is associated

with a label that indicates whether or not the event of interest (e.g., a specific disorder)

occurred at time ti. The objective to learn temporal patterns that capture the behavior that led

Batal et al. Page 7

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to the development of the event and apply these patterns to detect the occurrence of events

in future instances (e.g., monitor new patients).

For event detection problems, recent observations of the temporal variables of xi

(observations close to ti) are typically the most important for predicting the label. For

example, in the clinical domain, recent lab measurements are usually more indicative of the

patient’s current health status (hence more predictive) than old lab measurements. For

instance, to diagnose a disease, the physician usually first looks at the most recent data and

then looks back in time to understand how the data evolved over time. Our objective is to

develop a temporal pattern mining method that takes into account this local nature of

decisions for monitoring and event detection problems. We start by defining the concept of

recent temporal patterns and then present an efficient algorithm to automatically mine these

patterns from data4.

Definition 4—Given an MSS Z = 〈 E1, E2, …, El 〉 and a maximum gap parameter g, we

say that Ej ∈ Z is a recent state interval in Z, denoted as rg(Ej, Z), if any of the following

two conditions is satisfied:

1. Z․end − Ej․e ≤ g.

2. ∄ Ek ∈ Z : Ek․F = Ej․F ∧ k > j.

The first condition is satisfied if Ej is less than g time units away from the end of the MSS

(Z․end) and the second condition is satisfied if Ej is the most recent state interval for its

variable (there is no state interval for the variable of Ej that appears after Ej). Note that if the

maximum gap g = ∞, any state interval of Z (Ej ∈ Z) would be a recent state interval.

Definition 5—Given an MSS Z =〈E1, E2, …, El〉 and a maximum gap parameter g, we say

that temporal pattern P = (〈S1, …, Sk〉, R) is a Recent Temporal Pattern (RTP) for Z,

denoted as Rg (P, Z), if all of the following conditions are satisfied:

1. P ∈ Z (Definition 3) with a mapping π from the states of P to the state intervals of

Z.

2. Sk matches a recent state interval in Z: rg (Eπ(k), Z).

3. ∀i ∈ {1, …, k−1}, Si and Si+1 match state intervals that are no more than g time

units away from each other: Eπ(i+1)․s − Eπ(i)․e ≤ g.

The definition says that in order for temporal pattern P to be an RTP for MSS Z, 1) P should

be contained in Z (Definition 3), 2) the last state of P should map to a recent state interval in

Z (Definition 4), and 3) any pair of consecutive states in P should map to state intervals that

are “close to each other” (within the maximum gap g). This definition forces P to be close to

the end of Z and to have limited temporal extension in the past. Note that g is a parameter

that specifies the restrictiveness of the RTP definition. If g = ∞, any pattern P ∈ Z would be

considered to be an RTP for Z. Let us denote an RTP that contains k states as a k-RTP.

4This section contains materials that have been published in (Batal, Fradkin, Harrison, Moerchen & Hauskrecht 2012).

Batal et al. Page 8

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 3: Let Z be the MSS in Figure 5, which has 4 temporal variables (F1 to F4) that are

abstracted using alphabet Σ = {A, B, C, D}. Let the maximum gap parameter be g=3.

Temporal pattern P = (〈 (F4, A), (F2, C), (F1, B) 〉, R1,2 = b, R1,3 = b, R2,3 = b) is an RTP for

Z because P ∈ Z (shown in red in Figure 5), (F1, B, 15, 18) is a recent state interval in Z, (F2,

C, 8, 13) is “close to” (F1, B, 15, 18) (15−13 ≤ g) and (F4, A, 1, 5) is “close to” (F2, C, 8, 13)

(8−5 ≤ g).

Example 4: Let Z be the MSS (abstracted EHR) in Figure 3 and let g = 3 days. Temporal

pattern P1 = (B, N) c (C, H) (i.e., BUN=Normal co-occurs with Creatinine=High) is an RTP

in Z. On the other hand, P2 = (G, H) b (G, N) (i.e., Glucose=High before Glucose=Normal)

is contained in Z: P2 ∈ Z, but it is not an RTP because the second condition of Definition 5

is violated: (G, N, 6, 9) is not a recent state interval.

Definition 6—Given temporal patterns P = (〈S1, …, Sk1 〉, R) and

with k1 < k2, we say that P is a suffix subpattern of P′, denoted as Suffix (P, P′), if:

This definition simply says that for a k1-pattern P to be a suffix subpattern of a k2-pattern P′

(k1 < k2), P should match the last k1 states of P′ and should satisfy among them the same

temporal relations that are satisfied in P′. For example, pattern (〈 (F3, A), (F2, C), (F3, B) 〉,

R1,2 = c, R1,3 = b, R2,3 = c) is a suffix subpattern of the pattern in Figure 4.

If P is a suffix subpattern of P′, we say that P′ is a backward-extension superpattern of P,

which we abbreviate as b-extension.

Proposition 1—Given an MSS Z and temporal patterns P and P′, if P′ is an RTP for Z and

P is a suffix subpattern of P′, then P is an RTP for Z:

The proof follows directly from the Definition of RTP.

Example 5: In Example 3, we showed that pattern (〈 (F4, A), (F2, C), (F1, B) 〉, R1,2 = b,

R1,3 = b, R2,3 = b) is an RTP for MSS Z in Figure 5 when the maximum gap is 3.

Proposition 1 says that its suffix subpattern (〈 (F2, C), (F1, B) 〉, R1,2 = b) must also be an

RTP for Z. However, this does not imply that subpattern (〈 (F4, A), (F2, C) 〉, R1,2 = b) must

be an RTP (the second condition of Definition 5 is violated) nor that subpattern (〈 (F4, A),

(F1, B) 〉, R1,2 = b) must be an RTP (the third condition of Definition 5 is violated).

One of the most used statistics in pattern mining is the support of the pattern (Agrawal &

Srikant 1994) that counts the occurrences of the pattern in data. We define the support for

RTPs as follows:

Batal et al. Page 9

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 7—Given a dataset D of MSS and a maximum gap parameter g, the support of

RTP P in D is defined as RTP-supg (P, D)= | {Zi : Zi ∈ D ∧ Rg (P, Zi)} |.

Given a user defined minimum support threshold σ, temporal pattern P is a frequent RTP in

D given σ if RTP-supg (P, D) ≥ σ.

A key property that all frequent pattern mining algorithms rely on is the Apriori property

(Agrawal & Srikant 1994), which states that the support of a pattern is no more than the

support of any of its subpatterns. This property holds for RTPs on suffix subpatterns. In

particular, Proposition 1 implies that the RTP-sup of an RTP cannot be larger than the RTP-

sup of its suffix subpatterns:

Corollary 1—If P and P′ are two temporal patterns such that Suffix(P, P′), then RTP-supg

(P, D) ≥ RTP-supg (P′, D).

This corollary will be used by our algorithm for mining frequent RTPs.

4.2 The Mining Algorithm

In this section, we present the algorithm for mining frequent RTPs. In order to improve the

efficiency and effectiveness of the mining algorithm, we utilize the label information and

mine frequent RTPs for each class label separately using a local minimum support that is

related to the size of the population of that label. For example, suppose we have 10K

instances, 1K of them has the event of interest (positives) and 9K do not have the event

(negatives). If we set the local minimum support to be 10% the number of instances, we

mine frequent RTPs from the positives and the negatives separately using σpos = 100 for the

positives and σneg = 900 for the negatives. This approach is more appropriate when mining

pattern in a supervised setting compared to mining frequent patterns from the entire data

using a single global minimum support for the following reasons:

1. Mining patterns that are frequent for one of the classes (hence potentially predictive

for that class) is more efficient than mining patterns that are globally frequent5.

2. For unbalanced data, mining frequent patterns using a global minimum support

may result in missing many important patterns for the rare class.

The algorithm for mining frequent RTPs for class y takes as input Dy: the MSS from y, g:

the maximum gap parameter and σy: the local minimum support threshold for y. It outputs

all temporal patterns that have an RTP-sup (Definition 7) in Dy that is larger or equal to σy:

The algorithm explores the space of temporal patterns level by level. It first finds all

frequent 1-RTPs (RTPs that consist of a single state). Then it extends these patterns

backward in time to find more complex patterns (frequent 2-RTPs, then frequent 3-RTPs

5It is more efficient to mine patterns that cover more than n instances in one of the classes compared to mining patterns that cover
more than n instances in the entire database (the former is always a subset of the latter).

Batal et al. Page 10

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and so on). For each level k, the algorithm performs the following two steps to obtain the

frequent (k+1)-RTPs:

1. Candidate generation: Generate candidate (k+1)-patterns by extending frequent

k-RTPs backward in time.

2. Counting: Obtain the frequent (k+1)-RTPs by removing the candidates with RTP-

sup less than σy.

This process repeats until no more frequent RTPs can be found.

In the following, we describe in detail the candidate generation algorithm. Then we propose

techniques to improve the efficiency of both candidate generation and counting.

4.2.1 Backward Candidate Generation—We generate a candidate (k+1)-pattern by

appending a new state (an abstraction value for a specific variable) to the beginning of a

frequent k-RTP. Let us assume that we are backward extending pattern P = (〈S1, …, Sk〉, R)

with state Snew to generate candidates (k+1)-patterns of the form . First

of all, we set for i ∈ {1, …, k} and for i ∈ {1, …, k − 1}

∧ j ∈ {i+1, …, k}. This way, we know that every candidate P′ of this form is a b-extension

of P.

In order to fully define a candidate, we still need to specify the temporal relations between

the new state and states , i.e., we should define for i ∈ {2, …, k + 1}.

Since we have two possible temporal relations (before and co-occurs), there are 2k possible

ways to specify the missing relations, which results in 2k different candidates. If we denote

the set of all possible states by L and the set of all frequent k-RTPs by Fk, generating the (k

+1)-candidates naïvely in this fashion results in 2k × |L| × |Fk| candidate (k+1)-patterns.

This large number of candidates makes the mining algorithm computationally very

expensive and greatly limits its scalability. Below, we describe the concept of incoherent

patterns and introduce a method that generates fewer candidates without missing any real

pattern from the results.

4.2.2 Improving the Efficiency of Candidate Generation

Definition 8: A temporal pattern P is incoherent if there does not exist any valid MSS that

contains P.

Clearly, we do not have to generate and count incoherent candidates because we know that

they will have zero support in the data (they are invalid patterns). We introduce the

following two lemmas to avoid generating incoherent candidates when specifying the

relations : i ∈ {2, …, k+1} in candidates of the form . The first

lemma restricts the patterns that include the same variable with two co-occurring states. The

second lemma restricts the patterns that would violate the ordering of relations in time.

Batal et al. Page 11

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 1: is incoherent if ∃i ∈ {2, …, k+1} : and

.

Proof: Two state intervals that belong to the same temporal variable cannot co-occur.

Lemma 2: is incoherent if ∃i ∈ {2, …, k+1} :

.

Proof: Assume that there exists an MSS Z = 〈E1, …, El〉 where P′ ∈ Z. Let π be the mapping

from the states of P′ to the state intervals of Z. The definition of temporal patterns

(Definition 2) and the fact that state intervals in Z are ordered by their start values

(Definition 1) implies that the matching state intervals 〈Eπ(1), …, Eπ(k+1)〉 are also ordered

by their start times: Eπ(1)․s ≤ … ≤ Eπ(k+1)․s. Hence, Eπ(j)․s ≥ Eπ(i)․s since j > i. We also

know that Eπ(1)․e < Eπ(i)․s because . Therefore, Eπ(1)․e < Eπ(j)․s. However, since

, then Eπ(1)․e ≥ Eπ(j)․s, which is a contradiction. Therefore, there is no MSS that

contains P′.

Example 6: Assume we want to extend P = (〈S1 = (F1, B), S2 = (F3, A), S3 = (F2, C), S4 =

(F3, B)〉, R1,2 =c, R1,3 =b, R1,4 =b, R2,3 =c, R2,4 =b, R3,4 =c) in Figure 4 with state Snew =

(F2, B) to generate candidates of the form

. First, we set the

relations in R′ for the last four states to be the same as defined by R. Now,

we have to specify relations for i ∈ {2, …, k+1}. is allowed to be either before

 or co-occurs . If , then all the following relations must be before

according to Lemma 2, resulting in the candidate shown in Figure 6:a. If , then

is allowed to be either before or co-occurs , resulting in the candidates

shown in Figure 6:b and Figure 6:c, respectively. Now, according to Lemma 1,

because both and belong to the same temporal variable (variable F2). As we see, we

have reduced the number of candidates that result from adding state (F2, B) to a 4-RTP P

from 24=16 in the naïve way to only 3.

The following theorem gives the bound on the number of possible extensions of an RTP

with a new state (an abstraction value for a specific variable).

Theorem 1: There are at most k+1 coherent candidates that result from extending a single

k-RTP backward with a new state.

Proof: We know that every candidate corresponds to a specific

assignment of for i ∈ {2, …, k+1}. When we assign the temporal relations,

once a relation becomes before, all the following relations have to be before as well

according to Lemma 2. We can see that the relations can be co-occurs in the beginning of

Batal et al. Page 12

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the pattern, but once we have a before relation at some point q ∈ {2, …, k+1} in the pattern,

all subsequent relations (i>q) should be before as well:

Therefore, the total number of coherent candidates cannot be more than k+1, which is the

total number of different combinations of consecutive co-occurs relations followed by

consecutive before relations.

In some cases, the number of coherent candidates is less than k + 1. Assume that there are

some states in P′ that belong to the same variable as state . Let be the first such state (j

≤ k + 1). According to Lemma 1, . In this case, the number of coherent candidates is

j−1 < k+1.

Algorithm 1 illustrates how to extend a k-RTP P with a new state Snew to generate coherent

candidates (without violating Lemmas 1 and 2).

Algorithm 1

Extend backward a k-RTP P with a state Snew.

Input: A k-RTP: P = (〈S1, …, Sk〉, R); a new state: Snew

Output: Coherent candidates: C

1 S1
′ = Snew; Si+1

′ = Si : i ∈ {1, …, k};

2 Ri+1, j+1
′ = Ri, j : i ∈ {1, …, k − 1}, j ∈ {i + 1, …, k};

3 R1,i
′ = b : i ∈ {2, …, k + 1}; P ′ = (S1

′, … , Sk+1
′ , R ′);

4 C = {P′};

5 for i=2 to k+1 do

6 if (S1
′ ․ F = Si

′ ․ F) then

7 break;

8 else

9 R1,i
′ = c; P ′ = (S1

′, … , Sk+1
′ , R ′);

10 C = C ∪ {P′};

11 end

12 end

13 return C

The bound on the number of possible extensions of a k-RTP with a new state can be used to

calculate the bound on the total number of possible extensions of size k+1.

Batal et al. Page 13

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Corollary 2: Let L denote the set of all possible states and let Fk denote the set of all

frequent k-RTPs. The number of coherent (k+1)-candidates is no more than (k + 1) × |L| × |

Fk|.

4.2.3 Improving the Efficiency of Counting—Even after eliminating incoherent

candidates, the mining algorithm is still computationally expensive because for every

candidate, we need to scan the entire database in the counting phase to compute its RTP-

sup. The question we try to answer in this section is whether we can omit portions of the

database that are guaranteed not to contain the candidate we want to count. The proposed

solution is inspired by (Zaki 2000) that introduced the vertical data format for itemset

mining and later applied it for sequential pattern mining (Zaki 2001).

Let us associate every frequent RTP P with a list of identifiers of all MSS in Dy for which P

is an RTP (Definition 5):

Clearly, RTP-supg (P, Dy) = |P․RTP-list|.

Let us also associate every state S with a list of identifiers for all MSS that contain S

(Definition 3):

Now, when we generate candidate P′ by backward extending RTP P with state S, we define

the potential list (p-RTP-list) of P′ as follows:

Proposition 2: If P′ be a b-extension of RTP P with state S and P′․p-RTP-list = P․RTP-list ∩

S․list, then P′․RTP-list ⊆ P′․p-RTP-list.

Proof: Assume Zi is an MSS for which P′ is an RTP: Rg (P′, Zi). By definition, i ∈ P′․RTP-

list. We know that Rg (P′, Zi) ⇒ P′ ∈ Zi ⇒ S ∈ Zi ⇒ i ∈ S․list. Also, we know that Suffix(P,

P′) ⇒ Rg (P, Zi) (according to Proposition 1) ⇒ i ∈ P․RTP-list. Therefore, i ∈ P․RTP-list ∩

S․list = P′.p-RTP-list.

Putting it all together, we compute the RTP-lists in the counting phase (based on the true

matches) and the p-RTP-lists in the candidate generation phase. The key idea is that when

we count candidate P′, we only need to check the instances in its p-RTP-list because

according to Proposition 2: i ∉ P′․p-RTP-list ⇒ i ∉ P′․RTP-list ⇒ P′ is not an RTP for Zi.

This offers a lot of computational savings because the p-RTP-lists get smaller as the size of

the patterns increases, making the counting phase much faster.

Batal et al. Page 14

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 2 outlines the candidate generation. Line 4 generates coherent candidates

according to Algorithm 1. Line 6 computes the p-RTP-list for each candidate. Note that the

cost of the intersection is linear in the length of the lists because the lists are always sorted

according to the order of the instances in the data. Line 7 applies additional pruning to

remove candidates that are guaranteed not to be frequent according to the following

implication of Proposition 2:

Algorithm 2

A high-level description of candidate generation.

Input: All frequent k-RTPs: Fk; all frequent states: L

Output: Candidate (k+1)-patterns: Cand, with their p-RTP-lists

1 Cand = Φ;

2 foreach P ∈ Fk do

3 foreach S ∈ L do

4 C = extend_backward(P, S); (Algorithm 1)

5 for q = 1 to | C | do

6 C[q]․p-RTP-list = P․RTP-list ∩ S․list;

7 if (| C[q]․p-RTP-list | ≥ σy) then

8 Cand = Cand ∪ {C[q]};

9 end

10 end

11 end

12 end

13 return Cand

5 Mining Minimal Predictive Recent Temporal Patterns

Although RTP mining focuses the search on temporal patterns that are potentially useful for

predicting the labels (e.g., whether or not the adverse medical event would happen), not all

frequent RTPs are as important for prediction.

In this section, we describe our approach for selecting the most predictive RTPs. First, we

describe the Bayesian score for evaluating the predictiveness of patterns (Section 5.1). After

that, we argue that scoring each RTP individually and selecting the top scoring ones often

leads to spurious patterns (Section 5.2). Then we describe the concept of Minimal Predictive

Recent Temporal Patterns (MPRTP) which considers the relations between patterns to filter

out spurious patterns (Section 5.3). Finally, we present an efficient mining algorithm that

integrates MPRTP evaluation with frequent RTP mining and applies efficient pruning

techniques to speed up the mining (Section 5.4).

Batal et al. Page 15

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.1 The Bayesian Score

The Bayesian score we describe here allows us to evaluate how predictive is an RTP P for

label y compared to a more general group of instances G (e.g., G might be the entire

dataset). We denote this score by BS (P ⇒ y, G).

Let GP denote the group of instances (MSS) in G for which P is an RTP:

Intuitively, the score of P ⇒ y compared to G should be high if there is a strong evidence to

support the hypothesis that the probability of observing label y in GP is higher than the

probability of observing y in G: Pr(y|GP) > Pr(y|G).

The main idea behind the Bayesian score is to apply Bayesian inference and treat the

estimated probabilities as uncertain random variables, which is done by modeling the

posterior distribution of the estimated probabilities and integrating over all possible values.

We have originally proposed this score in (Batal, Cooper & Hauskrecht 2012) in the context

of mining predictive itemset patterns (for atemporal data). The Bayesian score was shown to

be more robust compared to classical rule evaluation scores (see (Geng & Hamilton 2006)),

which only rely on point estimation and cannot model the uncertainty of the estimation.

To introduce the Bayesian score, we first define the following three competing models

(hypothesis):

1. Me conjectures that the probability of y is the same for all instances in G.

2. Mh conjectures that the probability of y in GP is higher than the probability of y

outside GP (G \ GP).

3. Ml conjectures that the probability of y in GP is lower than the probability of y

outside GP.

We define BS(P ⇒ y, G) to be the posterior probability of model Mh (the hypothesis of

interest):

(1)

To be “non-informative”, we might simply assume that all three models are equally likely a-

priori: .

In order to solve Equation 1, we need to compute the marginal likelihood of all models:

Pr(G|Me), Pr(G|Mh) and Pr(G|Ml). The likelihood of each model given the values of its

parameters follows the binomial distribution, while the prior distribution on the parameters

is a beta distribution (the beta distribution is a conjugate prior to the binomial distribution,

which makes the Bayesian computation tractable). If we do not have prior knowledge about

the parameters, we simply use uniform beta distributions.

Batal et al. Page 16

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the Appendix, we derive the closed form solutions for all three marginal likelihoods. We

also demonstrate that the complexity of computing the Bayesian score is O(min(N11, N12,

N21, N22)), where N11 is the number of instances in GP with label y, N12 is the number of

instances in GP without label y, N21 is the number of instances in G \ GP (the instances of G

outside GP) with label y and N21 is the number of instances in G \ GP without label y.

5.2 Spurious RTPs

A straightforward approach for selecting the most predictive RTPs is to score each RTP by

itself and then select the top scoring ones. However, this approach is not effective because it

leads to many spurious RTPs, as we explain in the following example.

Example 7—Assume that having elevated creatinine level is an important indicator of

chronic kidney disease (CKD). If we denote this pattern by P =(Creatinine, High), we

expect the probability of CKD in GP (the group of instances for which P is an RTP) to be

significantly higher than the probability of CKD in the entire population of patients D:

Pr(CKD|GP) > Pr(CKD|D).

Now consider a pattern P′ that is a b-extension of P, for example, P′ : (Cholesterol, Normal)

before (Creatinine, High). We know that GP′ ⊆ GP according to Proposition 1. Assume that

observing P′ does not change our belief about the presence of CKD compared to observing

P: Pr(CKD|GP′) ≈ Pr(CKD|GP). In other words, the instances in GP′ can be seen as a

random subsample of the instances in GP with respect to the labels of CKD.

The problem is that if we score P′ by comparing it to the entire data D (whether using our

Bayesian score or using another rule evaluation score (Geng & Hamilton 2006)), we may

conclude that P′ is important for predicting CKD because Pr(CKD|GP′) is significantly

higher than Pr(CKD|D). However, P′ is redundant given the real predictive pattern P.

In general, spurious RTPs are formed by extending predictive RTPs with additional

irrelevant states. Having spurious RTPs in the result is undesirable for knowledge discovery

because they overwhelm the domain expert and prevent him/her from understanding the real

patterns in data. It is also undesirable for prediction because they lead to many redundant

and highly correlated features, which might hurt the prediction performance. In order to

filter out spurious RTPs, we present the concept of Minimal Predictive Recent Temporal

Patterns.

5.3 Minimal Predictive Recent Temporal Patterns

Definition 9—A temporal pattern P is a Minimal Predictive Recent Temporal Pattern
(MPRTP) for label y if RTP P predicts y significantly better than all of its suffix

subpatterns.

Batal et al. Page 17

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Where BS is the Bayesian score, GS is the group of instances for which S is an RTP and δ is

a user specified significance parameter. Note that, by definition, the empty pattern Φ is a

suffix subpattern of any temporal pattern and GΦ is the entire data D.

This definition means that if P is an MPRTP for y, then there is a strong evidence in the data

not only to conclude that P improves the prediction of y compared to the entire data, but also

compared to the data matching any of its suffix subpatterns. We call such patterns “minimal

predictive” because they are more predictive than all of their simplifications, i.e., they do not

contain redundant states. Note that a spurious RTP (such as the one described in Example 7)

is not going to be an MPRTP because its effect on the class distribution can be explained by

a simpler suffix subpattern that covers a larger population.

5.4 The Mining Algorithm

The algorithm presented in Section 4.2 describes how to mine all frequent RTPs for label y

using Dy (the MSS in the data that belong to y). In order to mine MPRTPs for y, the

algorithm requires another input: D¬y, the MSS in the data that do not have label y (in order

to score the predictiveness of patterns).

The most common way for applying pattern mining in the supervised setting is to use the

two-phase approach as in (Cheng et al. 2007, Webb 2007, Xin et al. 2006, Kavsek & Lavrač

2006, Exarchos et al. 2008, Deshpande et al. 2005, Li et al. 2001). This approach first

generates all frequent patterns (the first phase) and then evaluates them in order to select the

predictive patterns (the second phase). If we were to apply the two-phase approach to mine

MPRTPs for y, we would perform the following two phases:

1. Phase I: Mine all of the frequent RTPs: Ω = {P1, …, Pm : RTP-supg (Pi, Dy) ≥ σy}.

2. Phase II: For each Pi ∈ Ω, output rule Pi ⇒ y if Pi is an MPRTP for y (i.e., Pi

satisfies Definition 9).

In contrast to the two-phase approach, our algorithm integrates pattern evaluation with

frequent RTP mining. This allows us to apply effective pruning techniques that are not

applicable in the two-phase approach. In our context, we say that an RTP is pruned if we do

not explore any of its b-extensions. Note that in frequent RTP mining (Section 4.2), we

prune an RTP if it is not frequent because we know that none of its b-extensions would be

frequent. The techniques presented here utilize the predictiveness of patterns to further

restrict the search space of the algorithm. In the following, we present two pruning

techniques: The first one is lossless and the second is lossy.

5.4.1 lossless pruning—The MPRTP definition can help us to prune the search space.

The idea is that we can prune a frequent RTP P, i.e., we do not further extend P backward in

time, if we guarantee that none of its backward-extension superpatterns is going to be an

MPRTP. We know that for any P′ that is a b-extension of P, the following holds according

to Corollary 1:

Batal et al. Page 18

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We now define the optimal b-extension of P with respect to y, denoted as P*, to be a

hypothetical pattern that is an RTP in all and only the instances of GP that have class label y:

Clearly, P* is the best possible b-extension of P for predicting y (as it covers all instances

from y and none of the other instances). Now, we safely prune P if P* does not satisfy the

MPRTP definition because then we guarantee that no b-extension of P is going to be an

MPRTP (hence the technique is lossless).

5.4.2 lossy pruning—This technique performs lossy pruning, which means that it speeds

up the mining, but at the risk of missing some MPRTPs. The idea is that if we are mining

MPRTPs for y, we prune a frequent RTP P if we have evidence that the underlying

probability of y in GP is lower than the probability of y in the data D. To do so, we apply the

Bayesian score to evaluate rule P ⇒ y compared to D and we prune P if model Ml (the

model that assumes the probability of y in GP is lower that outside GP) is the most likely

model. The rationale for this heuristic is that for any P′ that is a b-extension of P, we know

that GP′ ⊆ GP (Proposition 1). So if Pr(Y =y|GP) is relatively low, we also expect Pr(Y = y|

GP′) to be low as well. Thus, P′ is unlikely to be an MPRTP for y. Note that this heuristic

only extends promising RTPs and prunes unpromising ones.

6 Experimental Evaluation

This section presents our experimental evaluation. We first describe the two real-world EHR

datasets we used in the experiments (Section 6.1). Then we compare RTP and MPRTP with

other baselines for the task of detecting adverse medical events (Section 6.2). After that, we

show the top patterns that MPRTP extracted from the data (Section 6.3). Finally, we

compare the efficiency of our algorithms with other time-interval pattern mining algorithms

(Section 6.4).

6.1 Temporal Datasets

6.1.1 Diabetes Dataset—This data consist of 13,558 electronic health records of adult

diabetic patients (both type I and type II diabetes). The task is to learn models that can detect

various types of disorders that are frequently associated with diabetes.

Each patient’s record consists of time series of 19 different lab values, including blood

glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen, liver function tests,

cholesterol, etc. In addition, we have access to time series of ICD-9 diagnosis codes

reflecting the diagnoses made for the patient over time. Overall, the database contains 602

different ICD-9 codes. These codes were grouped by a medical expert into the following

eight major disease categories:

– Cardiovascular disease (CARDI).

– Renal disease (RENAL).

– Peripheral vascular disease (PERIP).

Batal et al. Page 19

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

– Neurological disease (NEURO).

– Metabolic disease (METAB).

– Inflammatory (infectious) disease (INFLM).

– Ocular (ophthalmologic) disease (OCULR).

– Cerebrovascular disease (CEREB).

Our objective is to learn models that are able to accurately diagnose each of these major

diseases. For each disease, we divide the data into positive instances and negative instances

as follows:

– The positives are records of patients with the target disease and they include

clinical information up to the time the disease was first diagnosed.

– The negatives are records of patients without the target disease and they include

clinical information up to a randomly selected time point in the patient’s record.

To avoid having uninformative data, we discard instances that contain less than 10 total lab

measurements or that span less than 3 months (short instances). To make the datasets

balanced, we choose the same number of negatives as the number of positives for each

category (by randomly sub-sampling the negatives).

For each instance, we consider both the laboratory tests and the disease categories. Note that

the diagnosis of one or more disease categories may be predictive of the (first) occurrence of

another disease, so it is important to include them as features. Laboratory tests are numeric

time series, so we convert them into time-interval state sequences using value abstractions

(see Section 3.1). Disease categories, when used as features, are represented as intervals that

start at the time of the diagnosis and extend until the end of the record. For these variables,

we simply use temporal abstractions that indicate whether or not the patient has been

diagnosed with the disease.

Table 1 summarizes the characteristics of the diabetes datasets, where a different dataset is

defined for each of the 8 major diseases. For all of these datasets, we use value abstractions

(very low, low, normal, high and very high) for the laboratory variables and one abstraction

for the disease categories. Hence, the abstraction alphabet size (|Σ|) is 6. Since we have 19

laboratory variables and 7 disease variables (the 8 major diseases minus the one we are

predicting), we have 26 temporal variables per instance. The last column shows the total

number of state intervals for each dataset.

6.1.2 HIT Dataset—This data are acquired from a database that contains electronic health

records of post cardiac surgical patients (Hauskrecht et al. 2010, 2012). The task is to learn a

model that can detect the onset of Heparin Induced Thrombocytopenia (HIT), which is a

pro-thrombotic disorder induced by heparin exposure with subsequent thrombocytopenia

(low platelet in the blood) and associated thrombosis (blood clot). HIT is a life-threatening

condition if it is not detected and managed properly. Hence, it is very important to detect its

onset.

Batal et al. Page 20

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Patients who are at risk of HIT were selected using information about the Heparin Platelet

Factor 4 antibody (HPF4) test, which is ordered for a patient when the physician suspects

that he/she is developing HIT. Therefore, an HPF4 test order is a good surrogate for the

HIT-risk label. Our dataset contains 220 positive instances (HIT-risk) and we randomly

select 220 negative instances (no HIT-risk). The positives include clinical information up to

the time HFP4 was first ordered. The negatives were selected from the remaining patients

and they include clinical information up to a randomly selected time point in the patient’s

record.

For each instance, we consider 5 clinical variables: platelet counts (PLT), activated partial

thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin (Hgb) and

heparin orders. PLT, APTT, WBC and Hgb (laboratory variables) are numeric time series,

so we convert them into time-interval state sequences using both trend abstractions and

value abstractions (see Section 3.1). Heparin orders (already in an interval-based format)

specify the time period during which the patient was taking heparin. For this variable, we

simply use temporal abstractions that indicate whether or not the patient is currently on

heparin.

6.2 Classification Performance

In this section, we test the ability of RTP and MPRTP in representing and capturing

temporal patterns that are important for the event detection task.

6.2.1 Compared Methods—We compare several feature construction methods, which

create different feature-vector representations of EHR data in order to apply a standard

classifier. We did not compare with other time series classification methods such as (Blasiak

& Rangwala 2011, Li et al. 2010, Batal & Hauskrecht 2009, Weng & Shen 2008, Vail et al.

2007, Ratanamahatana & Keogh 2005, Yang & Shahabi 2004) because these methods are

not directly applicable to the multivariate irregularly sample EHR data6.

In particular, we compare the performance of the following methods:

1. Last-abs: The features are the most recent abstractions of each clinical variable.

For example, the most recent trend abstraction for platelet counts is “decreasing”,

the most recent value abstraction for platelet counts is “low”, and so on.

2. TP: The features correspond to all frequent temporal patterns.

where sup(P, Dy) = | {Zi : Zi ∈ Dy ∧ P ∈ Zi} | (see Definition 3)

3. TP-IG: The features correspond to the top 50 frequent temporal patterns, where the

patterns are scored using Information Gain (IG) as in (Patel et al. 2008b).

4. RTP: The features correspond to all frequent RTPs.

6The observations of the clinical variables are irregular in time because they are measured asynchronously at different time moments.

Batal et al. Page 21

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where RTP-supg(P, Dy) = | {Zi : Zi ∈ Dy ^ Rg(Pj, Zi)} | (see Definition 5)

5. RTP-IG: The features correspond to the top 50 frequent RTPs, where the RTPs are

scored using IG.

6. MPRTP: The features correspond to the top 50 frequent RTPs, where only the

RTPs that satisfy the MPRTP definition (Definition 9 using a significance

parameter δ = 0.95) are retained and they are scored according to the Bayesian

score (see Section 5.1).

The first method (Last-abs) is atemporal and only considers the most recent abstractions for

defining the classification features. On the other hand, methods (2–6) use temporal patterns

(built using temporal abstractions and temporal relations) to define features for

classification, where a different binary feature is defined for each temporal pattern in the

result.

When defining the binary representation of an instance (MSS) Zi for TP-based methods (TP

and TP-IG), the feature value is set to one if the corresponding temporal pattern is observed

anywhere during the instance (Definition 3), and is set to zero otherwise:

When defining the binary representation of an instance Zi for RTP-based methods (RTP,

RTP-IG and MPRTP), the feature value is set to one if the corresponding temporal pattern is

observed recently in the instance (Definition 5), and is set to zero otherwise:

It is important to note that although patterns generated by TP subsume the ones generated by

RTP (by definition, every frequent RTP is also a frequent temporal pattern), the induced

binary features are different. For example, a temporal pattern may be very discriminative

only when observed recently (close to the end of the temporal instance).

We use methods TP-IG, RTP-IG and MPRTP in the evaluation because we want to compare

the ability of TP and RTP in representing the classifier using only a limited number of

temporal patterns. Moreover, we want to compare using standard univariate scoring (scoring

each pattern individually by information gain) with our MPRTP approach, which considers

the structure of patterns to filter out spurious RTPs.

We judged the quality of the different feature representations in terms of their induced

classification performance. More specifically, we use the features extracted by each method

to learn a linear SVM classifier and evaluate its performance using the area under the ROC

curve (AUC).

Batal et al. Page 22

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

All classification results are reported using averages obtained via 10-fold cross-validation,

where the same train/test splits are used for all compared methods. To evaluate the statistical

significance of performance difference, we apply paired t-tests at 0.05 significance level7.

6.2.2 Results on Diabetes Data—For all temporal pattern mining methods (TP, TP-IG,

RTP, RTP-IG and MPRTP), we set the local minimum supports (σy) to 15% of the number

of instances in the class8. For RTP, RTP-IG and MPRTP, we set the maximum gap

parameter (see Definition 5) to 6 months, which was suggested by our medical expert.

Table 2 shows the AUC for each classification task (major disease). We show the best

performing method in boldface and we show all methods that are statistically significantly

inferior to it in grey. Note that features based on temporal patterns (TP, RTP and MPRTP)

are beneficial for classification since they outperform features based on only most recent

abstractions (last-abs). We can see that for most tasks, RTP is the best performing method.

Note that although MPRTP does not perform as well as RTP, it mostly outperforms RTP-IG

because of its ability to filter out spurious patterns (see for example the performance on the

NEURO dataset in Table 2).

6.2.3 Results on HIT Data—For all temporal pattern mining methods (TP, TP-IG, RTP,

RTP-IG and MPRTP), we set the local minimum supports (σy) to 10% of the number of

instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap parameter

(see Definition 5) to 2 days, which was suggested by our medical expert. Note that the HIT

data are inpatient data and have much finer time granularity than the outpatient diabetes

data.

Table 3 shows the AUC on the HIT dataset. We can see that RTP and MPRTP are the best

performing methods.

6.3 Knowledge Discovery

In this section, we test the ability of MPRTP in finding predictive and non-spurious RTPs

that can concisely describe the predicted medical event.

6.3.1 Results on Diabetes Data—Table 4 shows some of the top MPRTPs according to

the Bayesian score on the diabetes data9. Patterns P1, P2 and P3 are predicting renal

(kidney) disease. These patterns relate the risk of renal problems with very high values of

the BUN (Blood Urea Nitrogen) test (P1), an increase in creatinine levels from normal to

high (P2), and high values of BUN co-occurring with high values of creatinine (P3). P4

shows that an increase in glucose levels from high to very high may indicate a metabolic

disease. Finally, P5 shows that patients who were previously diagnosed with cardiovascular

disease and exhibit an increase in glucose levels are prone to develop a cerebrovascular

7We apply statistical significance testing with k-fold cross validation. In this setting, the testing sets are independent of each other, but
the training sets are not. Even though this does not perfectly fit the iid assumption, the significance results are still of great help in
comparing different learning methods (Mitchell 1997).
8As discussed in Section 4.2, we mine frequent patterns for the positives and negatives separately using the local minimum supports.
9Most of the highest scores MPRTPs are predicting the RENAL category because it is the easiest prediction task. So to diversify the
patterns, we show the top 3 predictive MPRTPs for RENAL and the top 2 MPRTPs for other categories.

Batal et al. Page 23

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

disease. These patterns, extracted automatically from data without incorporating prior

clinical knowledge, are in accordance with the medical diagnosis guidelines.

6.3.2 Results on HIT Data—Table 5 shows the top 5 MPRTPs according to the Bayesian

score on the HIT data. Patterns P1, P2, P3 and P4 describe the main patterns used to detect

HIT and are in agreement with the current HIT detection guidelines (Warkentin 2000). P5

relates the risk of HIT with an increasing trend of APTT (activated partial thromboplastin

time). This relation is not obvious from the HIT detection guidelines. However it has been

recently discussed in the literature (Pendelton et al. 2006). Hence this pattern requires

further investigation.

6.4 Mining Efficiency

In this section, we study the efficiency of different temporal pattern mining algorithms.

6.4.1 Compared Methods—We compare the running time of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending the Apriori algorithm

(Agrawal & Srikant 1994, 1995) to the time-interval domain.

2. TP_lists: Mine frequent temporal patterns by applying the vertical data format

(Zaki 2000, 2001) to the time-interval domain as in (Batal et al. 2011, 2013).

RTP_no-lists: Mine frequent RTPs as described in Section 4.2, but without

applying the id-list indexing in Section 4.2.3 to speed up the counting. That is, this

method scans the entire dataset for each generated candidate in order to compute its

RTP-sup.

RTP: Our method for mining frequent RTPs as described in Section 4.2 which also

applies the id-list indexing.

MPRTP: Our method for mining MPRTPs which applies all optimizations used by

the RTP method and also the pruning techniques described in Section 5.4.1 and

Section 5.4.2.

To make the comparison fair, all methods apply the techniques we propose in Section 4.2.2

to avoid generating incoherent candidates. Note that if we do not remove incoherent

candidates, the execution time for all methods greatly increases.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon

3GHz CPU and 16GB of RAM.

6.4.2 Results on Diabetes Data—Figure 8 shows the execution time (on logarithmic

scale) of the compared methods on all major diagnosis datasets. Similar to the previous

settings (Section 6.2.2), we set the local minimum supports to 15% and the maximum gap

parameter to 6 months (unless stated otherwise).

We can see that RTP and MPRTP are much more efficient than the other temporal pattern

mining methods. For example, on the INFLM dataset, RTP is around 5 times faster than

Batal et al. Page 24

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

TP_lists, 10 times faster than RTP_no-lists and 30 times faster than TP_Apriori.

Furthermore, MPRTP is more efficient than RTP for all datasets.

Figure 9 compares the execution time of the different methods on the CARDI dataset for

different minimum support thresholds.

Finally, we examine the effect of the maximum gap parameter (g) on the efficiency of recent

temporal pattern mining methods (RTP_no-lists, RTP and MPRTP). Figure 10 shows the

execution time on the CARDI dataset for different values of g (the execution time of

TP_Apriori and TP_lists does not depend of g).

Clearly, the execution time of RTP_no-lists, RTP and MPRTP increase with g because the

search space becomes larger (more temporal patterns become RTPs). We can see that when

g is more than 18 months, RTP_no-lists becomes slower than TP_Apriori. The reason is that

for large values of g, applying the Apriori pruning in candidate generation (pruning a

candidate k-pattern if it contains an infrequent (k-1)-subpattern) becomes more efficient

(generates less candidates) than the backward extension of temporal patterns (see Example

5). On the other hand, the execution time of RTP and MPRTP increase much slower with g

and they maintain their efficiency advantage over TP_Apriori and TP_lists for larger values

of g.

6.4.3 Results on HIT Data—Figure 11 shows the execution time (on logarithmic scale)

of the compared methods. Similar to the previous settings for the HIT data (Section 6.2.3),

we set the local minimum supports to 10% and the maximum gap parameter to 2 days.

Again, we see that RTP and MPRTP are more efficient than the other temporal pattern

mining methods.

7 Conclusion

The increasing availability of large temporal data prompts the development of scalable and

more efficient mining methods. Methods for mining sequential patterns (time-point patterns)

were first introduced in the literature (Agrawal & Srikant 1995, Zaki 2001, Pei et al. 2001,

Yan et al. 2003). Later on, these methods have been extended to mine data for which the

events have time durations (time-interval patterns) (Kam & Fu 2000, Höppner 2001,

Papapetrou et al. 2005, Moerchen 2006a, Sacchi et al. 2007, Winarko & Roddick 2007, Wu

& Chen 2007, Moskovitch & Shahar 2009). However, mining the entire set of frequent

patterns (whether sequential patterns or time-interval patterns) from large-scale data is

inherently a computationally expensive task. To alleviate this problem, previous research

(Srikant & Agrawal 1996, Pei et al. 2007) introduced several temporal constraints to scale

up the mining, such as restricting the total pattern duration or restricting the permitted gap

between consecutive states in a pattern. This paper proposed a new class of temporal

constraints for finding recent temporal patterns (RTP), which we argued is appropriate for

event detection problems. We presented an efficient algorithm that mines time-interval

patterns backward in time, starting from patterns related to most recent observations. We

also presented the minimal predictive recent temporal patterns (MPRTP) framework for

selecting predictive and non-spurious RTPs.

Batal et al. Page 25

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We tested and demonstrated the usefulness of our methods on two clinical event detection

tasks. The results showed the following benefits of our methods:

1. RTP and MPRTP are able to learn accurate event detection classifiers for real-

world clinical tasks.

2. MPRTP is effective for selecting predictive and non-spurious RTPs, which makes

it a useful tool for knowledge discovery.

3. Mining RTPs or MPRTPs is much more scalable than mining all frequent time-

interval patterns.

Appendix A

A The Bayesian Score: Mathematical Derivation and Computational

Complexity

In Section 5.1, we briefly introduced the Bayesian score of RTP P for predicting class label

y compared to a more general group G: GP ⊂ G. In this appendix, we derive the marginal

likelihood for models Me, Mh and Ml, which are required for computing the Bayesian score

(solving Equation 1). Section A.1 describes the closed form solution for computing P(G|Me),

which is the marginal likelihood for model Me (the probability of y is the same inside and

outside GP). Section A.2 derives the closed form solution for computing P(G|Mh), which is

the marginal likelihood for model Mh (the probability of y in GP is higher than outside GP).

Section A.3 shows the four equivalent formulas for computing P(G|Mh). Section A.4

illustrates how to obtain the marginal likelihood for model Ml (the probability of y in GP is

lower than outside GP) directly from the solution to P(G|Mh). Finally, Section A.5 analyzes

the overall computational complexity for computing the Bayesian score.

A.1 The Closed-form Solution of the Marginal Likelihood for Model Me

Let us start by defining the marginal likelihood for model Me. This model assumes that all

instances in G have the same probability of having label Y = y. Let us denote this probability

by θ. To represent our uncertainty about θ, we use a beta distribution with parameters α and

β. Let N*1 be the number of instances in G with Y = y and let N*2 be the number of instances

in G with Y ≠ y (i.e., instances that do not have class label y). The marginal likelihood for

model Me is as follows:

The above integral yields the following well known closed-form solution (Heckerman et al.

1995):

(2)

where Γ is the gamma function.

Batal et al. Page 26

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A.2 Deriving a Closed-form Solution of the Marginal Likelihood for model Mh

Now let us now define the marginal likelihood for model Mh. This model assumes that the

probability of Y = y for the instances in GP, denoted by θ1, is higher than the probability of Y

= y for the instances of G that are outside GP (G \ GP), denoted by θ2. To represent our

uncertainty about θ1, we use a beta distribution with parameters α1 and β1. To represent our

uncertainty about θ2, we use a beta distribution with parameters α2 and β2. Let N11 and N12

be the number of instances in GP with Y = y and with Y ≠ y, respectively. Let N21 and N22 be

the number of instances outside GP with Y = y and with Y ≠ y, respectively (see Figure 12).

The marginal likelihood for model Mh (Pr(G|Mh)) is defined as follows:

(3)

where k is a normalization constant for the parameter prior. Note that we do not assume that

the parameters are independent, but rather we constrain θ1 to be higher than θ2.

To solve Equation 3, we first show how to solve the integral over θ2 in closed form, which is

denoted by f2 in Equation 3. We then expand the function denoted by f1, multiply it by the

solution to f2, and solve the integral over θ1 in closed form to complete the integration.

We use the regularized incomplete beta function (Abramowitz & Stegun 1964) to solve the

integral given by f2, which is as follows:

(4)

where a and b should be natural numbers.

Note that when x = 1 in Equation 4, the solution to the integral in that equation is simply the

following:

(5)

We now solve the integral given by f2 in Equation 3 as follows:

Batal et al. Page 27

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where a = N21 + α2 and b = N22 + β2.

Using Equation 4, we get the following:

(6)

We now turn to f1, which can be expanded as follows:

(7)

where c = N11 + α1 and d = N12 + β1.

Now we combine Equations 6 and 7 to solve Equation 3:

Batal et al. Page 28

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which by Equation 5 is

Batal et al. Page 29

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(8)

where a = N21 + α2, b = N22 + β2, c = N11 + α1 and d = N12 + β1.

We can solve for k (the normalization constant for the parameter prior) by solving Equation

3 (without the k term) with N11 = N12 = N21 = N22 = 0. Doing so is equivalent to applying

Equation 8 (without the k term) with a = α2, b = β2, c = α1 and d = β1. Note that if we

use uniform priors on both parameters by setting α1 = β1 = α2 = β2 = 1.

A.3 Four Equivalent Solutions of the Marginal Likelihood for Model Mh

In the previous section, we showed the full derivation of the closed-form solution of the

marginal likelihood for model Mh. It turned out that there are four equivalent solutions to

Equation 3. Let us use the notations introduced in the previous section: a = N21 + α2, b =

N22 + β2, c = N11 + α1 and d = N12 + β1. Also, let us define C as follows:

(9)

The marginal likelihood of Mh (Equation 3) can be obtained by solving any of the following

four equations:

(10)

which is the solution we derived in the previous section.

Batal et al. Page 30

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(11)

(12)

(13)

A.4 Deriving a Closed-form Solution of the Marginal Likelihood for Model Ml

Lastly, let us define the marginal likelihood for model Ml, which assumes that the

probability of Y = y for the instances in GP (θ1) is lower than the probability of Y = y for the

instances of G that are outside GP (θ2). The marginal likelihood for Ml is similar to Equation

3, but integrates θ2 from 0 to 1 and constrains θ1 to be integrated from 0 to θ2 (forcing θ1 to

be smaller than θ2) as follows:

(14)

By solving the integral given by f2, we get:

where, as before, c = N11 + α1 and d = N12 + β1.

By solving f1, we get:

Batal et al. Page 31

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where, as before, a = N21 + α2 and b = N22 + β2.

Now we can solve Equation 14:

(15)

where C is the same constant we defined by Equation 9 in the previous section.

Notice that Equation 15 (the solution to Pr(G|Ml)) can be obtained from Equation 13 (one of

the four solutions to Pr(G|Mh)) as follows:

(16)

It turns out that no matter which formula we use to solve Pr(G|Mh), we can use Equation 16

to obtain Pr(G|Ml).

A.5 Computational Complexity

Since we require that N11, N12, N21, N22, α1, β1, α2 and β2 be natural numbers, the gamma

function simply becomes a factorial function: Γ(x) = (x − 1)!. Since such numbers can

become very large, it is convenient to use the logarithm of the gamma function and express

Equations 2, 10, 11, 12, 13 and 16 in logarithmic form in order to preserve numerical

precision. The logarithm of the integer gamma function can be pre-computed and efficiently

stored in an array as follows:

lnGamma[1] = 0

For i = 2 to n

lnGamma[i] = lnGamma[i − 1] + ln(i − 1)

We then can use lnGamma in solving the above equations. However, Equations 10, 11, 12

and 13 include a sum, which makes the use of the logarithmic form more involved. To deal

with this issue, we can define function lnAdd, which takes two arguments x and y that are in

logarithmic form and returns ln(ex + ey). It does so in a way that preserves a good deal of

numerical precision that could be lost if ln(ex + ey) were calculated in a direct manner. This

is done by using the following formula:

Now that we introduced functions lnGamma and lnAdd, it is straightforward to evaluate

Equations 2, 10, 11, 12, 13 and 16 in logarithmic form.

Let us now analyze the overall computational complexity for computing the Bayesian score

for a specific rule (solving Equation 1). Doing so requires computing Pr(Me|G), Pr(Mh|G)

and Pr(Ml|G). Pr(Me|G) can be computed in O(1) using Equation 2. Pr(Mh|G) can be

Batal et al. Page 32

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computed by applying Equation 10, Equation 11, Equation 12 or Equation 13. The

computational complexity of these equations are O(N22 + β2), O(N11 + α1), O(N21 + α2) and

O(N12 + β1), respectively. Therefore, Pr(Mh|G) can be computed in O(min(N11 + α1, N12 +

β1, N21 + α2, N22 + β2)). Pr(Ml|G) can be computed from Pr(Mh|G) in O(1) using Equation

16. By assuming that α1, β1, α2, β2 bounded from above, the overall complexity for

computing the Bayesian score is O(min(N11, N12, N21, N22)).

References

Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. 1964

Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules in Large Databases;
Proceedings of the International Conference on Very Large Data Bases (VLDB); 1994.

Agrawal, R.; Srikant, R. Mining Sequential Patterns; Proceedings of the International Conference on
Data Engineering (ICDE); 1995.

Allen F. Towards a General Theory of Action and Time. Artificial Intelligence. 1984; 23:123–154.

Batal, I.; Cooper, G.; Hauskrecht, M. A Bayesian Scoring Technique for Mining Predictive and Non-
Spurious Rules; Proceedings of the European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD); 2012.

Batal, I.; Fradkin, D.; Harrison, J.; Moerchen, F.; Hauskrecht, M. Mining Recent Temporal Patterns for
Event Detection in Multivariate Time Series Data; Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD); 2012.

Batal I, Hauskrecht M. A Supervised Time Series Feature Extraction Technique Using DCT and
DWT. International Conference on Machine Learning and Applications (ICMLA). 2009

Batal, I.; Valizadegan, H.; Cooper, GF.; Hauskrecht, M. A Pattern Mining Approach for Classifying
Multivariate Temporal Data; Proceedings of the IEEE International Conference on Bioinformatics
and Biomedicine (BIBM); 2011.

Batal I, Valizadegan H, Cooper GF, Hauskrecht M. A Temporal Pattern Mining Approach for
Classifying Electronic Health Record Data. ACM Transaction on Intelligent Systems and
Technology (ACM TIST), Special Issue on Health Informatics. 2013

Blasiak, S.; Rangwala, H. A Hidden Markov Model Variant for Sequence Classification; Proceedings
of the International Joint Conferences on Artificial Intelligence (IJCAI); 2011.

Chandola, V.; Eilertson, E.; Ertoz, L.; Simon, G.; Kumar, V. Data Warehousing and Data Mining
Techniques for Computer Security. Springer: chapter Data Mining for Cyber Security; 2006.

Cheng, H.; Yan, X.; Han, J.; wei Hsu, C. Discriminative Frequent Pattern Analysis for Effective
Classification; Proceedings of the International Conference on Data Engineering (ICDE); 2007.

Deshpande M, Kuramochi M, Wale N, Karypis G. Frequent Substructure-Based Approaches for
Classifying Chemical Compounds. IEEE Transactions on Knowledge and Data Engineering. 2005;
17:1036–1050.

Exarchos TP, Tsipouras MG, Papaloukas C, Fotiadis DI. A Two-stage Methodology for Sequence
Classification based on Sequential Pattern Mining and Optimization. Data and Knowledge
Engineering. 2008; 66:467–487.

Geng L, Hamilton HJ. Interestingness Measures for Data Mining: A Survey. ACM Computing
Surveys. 2006; 38

Guttormsson S, Marks RJI, El-Sharkawi M, Kerszenbaum I. Elliptical Novelty Grouping for on-line
short-turn Detection of Excited Running Rotors. IEEE Transactions on Energy Conversion. 1999

Hauskrecht M, Batal I, Valko M, Visweswaram S, Cooper G, Clermont G. Outlier Detection for
Patient Monitoring and Alerting. Journal of Biomedical Informatics (JBI). 2012

Hauskrecht M, Valko M, Batal I, Clermont G, Visweswaram S, Cooper G. Conditional Outlier
Detection for Clinical Alerting. Proceedings of the American Medical Informatics Association
(AMIA). 2010

Batal et al. Page 33

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heckerman D, Geiger D, Chickering DM. Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data. Machine Learning. 1995

Höppner, F. Discovery of Temporal Patterns. Learning Rules about the Qualitative Behaviour of Time
Series; Proceedings of the European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD); 2001.

Höppner, F. PhD thesis. Germany: Technical University Braunschweig; 2003. Knowledge Discovery
from Sequential Data.

Kam, P-s; Fu, AW-C. Discovering Temporal Patterns for Interval-Based Events; Proceedings of the
International Conference on Data Warehousing and Knowledge Dis covery (DaWaK); 2000.

Kavsek B, Lavrač N. APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery.
Applied Artificial Intelligence. 2006; 20(7):543–583.

Keogh E, Chu S, Hart D, Pazzani M. Segmenting Time Series: A Survey and Novel Approach. Data
Mining in Time Series Databases. 1993

Li L, Prakash BA, Faloutsos C. Parsimonious Linear Fingerprinting for Time Series. PVLDB. 2010;
3:385–396.

Li, W.; Han, J.; Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-
Association Rules; Proceedings of the International Conference on Data Mining (ICDM); 2001.

Mitchell, TM. Machine Learning. McGraw-Hill, Inc.; 1997.

Moerchen, F. Algorithms for Time Series Knowledge Mining; Proceedings of the International
Conference on Knowledge Discovery and Data Mining (SIGKDD); 2006a.

Moerchen, F. PhD thesis. Philipps-University Marburg; 2006b. Time Series Knowledge Mining.

Moskovitch R, Shahar Y. Medical Temporal-Knowledge Discovery via Temporal Abstraction.
Proceedings of the American Medical Informatics Association (AMIA). 2009

Papadimitriou, S.; Sun, J.; Faloutsos, C. Streaming Pattern Discovery in Multiple Time-Series;
Proceedings of the International Conference on Very Large Data Bases (VLDB); 2005.

Papapetrou, P.; Kollios, G.; Sclaroff, S.; Gunopulos, D. Discovering Frequent Arrangements of
Temporal Intervals; Proceedings of the International Conference on Data Mining (ICDM); 2005.

Patel, D.; Hsu, W.; Lee, ML. Mining Relationships among Interval-based Events for Classification;
Proceedings of the International Conference on Management of Data (SIGMOD); 2008a.

Patel, D.; Hsu, W.; Lee, ML. Mining relationships among interval-based events for classification;
Proceedings of the International Conference on Management of Data (SIGMOD); 2008b.

Pei, J.; Han, J.; Mortazavi-asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; chun Hsu, M. PrefixSpan: Mining
Sequential Patterns Efficiently by Prefix-Projected Pattern Growth; Proceedings of the
International Conference on Data Engineering (ICDE); 2001.

Pei J, Han J, Wang W. Constraint-based Sequential Pattern Mining: the Pattern-growth Methods.
Journal of Intelligent Information Systems. 2007; 28:133–160.

Pendelton R, Wheeler M, Rodgers G. Argatroban Dosing of Patients with Heparin Induced
Thrombocytopenia and an Alevated aPTT due to Antiphospholipid Antibody Syndrome. The
Annals of Pharmacotherapy. 2006; 40:972–976. [PubMed: 16569813]

Ratanamahatana, C.; Keogh, EJ. Three Myths about Dynamic Time Warping Data Mining;
Proceedings of the SIAM International Conference on Data Mining (SDM); 2005.

Sacchi L, Larizza C, Combi C, Bellazzi R. Data Mining with Temporal Abstractions: learning rules
from time series. Data Mining and Knowledge Discovery. 2007

Shahar Y. A Framework for Knowledge-Based Temporal Abstraction. Artificial Intelligence. 1997;
90:79–133.

Srikant, R.; Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements;
Proceedings of the International Conference on Extending Database Technology (EDBT); 1996.

Srivastava A, Kundu A, Sural S, Majumdar AK. Credit Card Fraud Detection Using Hidden Markov
Model. IEEE Transactions on Dependable and Secure Computing. 2008

Vail, DL.; Veloso, MM.; Lafferty, JD. Conditional Random Fields for Activity Recognition;
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS); 2007.

Batal et al. Page 34

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Warkentin T. Heparin-induced thrombocytopenia: pathogenesis and management. British Journal of
Haematology. 2000; 121:535–555. [PubMed: 12752095]

Webb GI. Discovering Significant Patterns. Machine Learning. 2007; 68(1):1–33.

Weng X, Shen J. Classification of Multivariate Time Series using two-dimensional Singular Value
Decomposition. Knowledge-Based Systems. 2008; 21(7):535–539.

Winarko E, Roddick JF. ARMADA - An Algorithm for Discovering Richer Relative Temporal
Association Rules from Interval-based Data. Data and Knowledge Engineering. 2007; 63:76–90.

Wu S-Y, Chen Y-L. Mining Nonambiguous Temporal Patterns for Interval-Based Events. IEEE
Transactions on Knowledge and Data Engineering. 2007; 19:742–758.

Xin, D.; Cheng, H.; Yan, X.; Han, J. Extracting Redundancy-aware Top-k Patterns; Proceedings of the
International Conference on Knowledge discovery and Data Mining (SIGKDD); 2006.

Yan, X.; Han, J.; Afshar, R. CloSpan: Mining Closed Sequential Patterns in Large Datasets;
Proceedings of the SIAM International Conference on Data Mining (SDM); 2003.

Yang K, Shahabi C. A PCA-based Similarity Measure for Multivariate Time Series. Proceedings of
the International workshop on Multimedia databases. 2004

Zaki MJ. Scalable Algorithms for Association Mining. IEEE Transaction on Knowledge and Data
Engineering. 2000; 12:372–390.

Zaki MJ. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning. 2001;
42:31–60.

Biographies

Iyad Batal obtained his Ph.D. in Computer Science from the University of Pittsburgh. His

thesis contributed novel and efficient methods for subgroup discovery, temporal pattern

mining, and their applications to electronic medical records. He has also worked on several

other research topics, including multi-dimensional time series analysis, multi-label

classification and probabilistic graphical models. He is currently a Research Scientist at GE

Global Research, working on designing machine learning solutions for solving real-world

industrial problems and modeling sensor time series data.

Gregory F. Cooper, M.D., Ph.D. is Professor of Biomedical Informatics and of Intelligent

Systems at the University of Pittsburgh. His research involves the use of decision theory,

probability theory, Bayesian statistics, machine learning, and artificial intelligence to

address biomedical informatics research problems. Current research includes the

development, implementation, and evaluation of computer-based methods for clinical

alerting based on machine learning, causal discovery from biomedical data, patient outcome

prediction, and disease outbreak detection in the population based on data in electronic

medical records.

Batal et al. Page 35

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dmitriy Fradkin is a Senior Scientist at Siemens Corporate Technology, Princeton NJ. He

received B.A. in Mathematics and Computer Science from Brandeis University, Waltham,

MA in 1999 and Ph.D. from Rutgers, The State University of New Jersey in 2006. Before

joining Siemens in 2007 he has worked at Ask.com. His research is in applying data mining

and machine learning techniques to solve real-world problems is areas of predictive

maintenance, healthcare and text analytics. Dr. Fradkin is a member of the ACM SIGKDD,

and a reviewer for several data mining journals

James Harrison Jr., M.D., Ph.D., is Associate Professor of Public Health Sciences and

Pathology, and Director of the Division of Biomedical Informatics in the Department of

Public Health Sciences at the University of Virginia. He has 20 years of experience in the

field of medical informatics, including work in clinical laboratory information systems,

electronic health records, clinical data analysis, and informatics research grant support from

the National Library of Medicine and the National Cancer Institute. He leads clinical

research informatics in the UVA School of Medicine with primary responsibility for the

institutional Clinical Data Repository, the Cancer Clinical Trials Management System, the

Biorepository Information System, and a locally-developed general purpose framework for

research databases.

Fabian Moerchen graduated with a Ph.D. in 2006 from the Philipps University of Marburg,

Germany with summa cum laude. His thesis contributed novel methods in mining temporal

pattern from interval data. From 2006–2012 worked at Siemens Corporate Research leading

data mining projects with applications in predictive maintenance, text mining, healthcare,

and sustainable energy. He continued his research in temporal data mining in the context of

industrial and scientific problems and served the community as a reviewer, organizer of

workshops, and presenter of tutorials. Since 2012 he is leading a data science team at

Amazon to improve customer experience using machine learning and big data analytics.

Batal et al. Page 36

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Ask.com

Milos Hauskrecht is an Associate Professor of Computer Science at the University of

Pittsburgh. He received his Ph.D. from MIT in 1997. His research interest are in

probabilistic modeling, machine learning, data mining and their applications in medicine. He

has authored or co-authored over 100 publications in these areas. His research is funded by

grants from NIH and NSF. He serves regularly on program committees of top artificial

intelligence and biomedical informatics conferences. He is the recipient of Homer R.

Warner award for 2010 for his work on outlier-based clinical monitoring and alerting.

Batal et al. Page 37

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Allen’s temporal relations.

Batal et al. Page 38

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
An example illustrating trend abstractions and value abstractions. The blue dashed lines

represent the 25th and 75th percentiles of the values and the red solid lines represent the

10th and 90th percentiles of the values.

Batal et al. Page 39

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
An MSS representing 24 days of a patient record. In this example, there are three temporal

variables (creatinine, glucose and BUN) that are abstracted using value abstractions.

Batal et al. Page 40

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
A temporal pattern with states 〈(F1, B), (F3, A), (F2, C), (F3, B)〉 and temporal relations R1,2

= c, R1,3 = b, R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c.

Batal et al. Page 41

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
An MSS with four temporal variables (F1, F2, F3 and F4) that are abstracted using

abstraction alphabet Σ = {A, B, C, D}. Temporal pattern (〈(F4, A), (F2, C), (F1, B)〉, R1,2 =

b, R1,3 = b, R2,3 = b) is an RTP for this MSS when the maximum gap parameter g ≥ 3.

Batal et al. Page 42

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Coherent candidates that result from extending the temporal pattern in Figure 4 backward

with state (F2, B).

Batal et al. Page 43

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Evaluating the predictiveness of P ⇒ y compared to more general group G: GP ⊂ G. The

instances with label y are denoted by • and the instances without y are denoted by ∘.

Batal et al. Page 44

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Diabetes dataset: The mining time (in seconds) of the compared temporal pattern mining

methods (Section 6.4.1) for the eight major diabetes diseases. The local minimum support is

15%.

Batal et al. Page 45

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Diabetes dataset (CARDI): The mining time (in seconds) of the compared temporal pattern

mining methods (Section 6.4.1) on the CARDI diabetes dataset for different values of the

minimum support.

Batal et al. Page 46

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Diabetes dataset (CARDI): The mining time (in seconds) of the compared temporal pattern

mining methods (Section 6.4.1) on the CARDI diabetes dataset for different values of the

maximum gap parameter.

Batal et al. Page 47

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
HIT dataset: The mining time (in seconds) of the compared temporal pattern mining

methods (Section 6.4.1). The local minimum support is 10%.

Batal et al. Page 48

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
A diagram illustrating model Mh.

Batal et al. Page 49

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Batal et al. Page 50

Table 1

Characteristics of the Diabetes datasets.

Dataset # Instances # Variables Alphabet Size # Intervals

CARDI 5, 486 26 6 235, 990

RENAL 6, 710 26 6 327, 957

PERIP 6, 740 26 6 325, 872

NEURO 4, 386 26 6 240, 572

METAB 1, 936 26 6 118, 378

INFLM 4, 788 26 6 264, 541

OCULR 4, 490 26 6 227, 708

CEREB 5, 648 26 6 319, 695

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Batal et al. Page 51

T
ab

le
 2

D
ia

be
te

s
da

ta
se

t:
 T

he
 a

re
a

un
de

r
R

O
C

 o
f

th
e

co
m

pa
re

d
fe

at
ur

e
re

pr
es

en
ta

tio
n

m
et

ho
ds

 f
or

 th
e

ei
gh

t m
aj

or
 d

ia
be

te
s

di
se

as
es

 (
Se

ct
io

n
6.

1.
1)

.

L
as

t-
ab

s
T

P
T

P
-I

G
R

T
P

R
T

P
-I

G
M

P
R

T
P

C
A

R
D

I
77

.5
2

*
80

.0
3

77
.2

8
*

80
.0

4
78

.7
4

*
79

.4
3

R
E

N
A

L
83

.2
8

*
84

.9
7

*
73

.3
8

*
86

.2
7

83
.6

5
*

84
.4

1
*

PE
R

IP
75

.1
1

*
76

.0
3

*
73

.5
3

*
77

.9
5

75
.7

2
*

75
.8

2
*

N
E

U
R

O
72

.2
0

*
74

.4
6

*
72

.0
3

*
76

.2
3

71
.8

9
*

74
.3

3
*

M
E

T
A

B
80

.8
1

*
83

.0
5

80
.1

7
*

81
.6

5
*

80
.7

6
*

82
.5

9

IN
FL

M
72

.2
1

*
73

.2
0

*
70

.9
3

*
74

.4
9

72
.5

2
*

73
.1

9
*

O
C

U
L

R
73

.7
1

*
76

.6
5

74
.9

2
*

75
.5

2
74

.7
4

*
75

.2
3

*

C
E

R
E

B
72

.6
9

*
75

.2
2

72
.5

3
*

76
.3

73
.3

4
*

73
.6

6
*

T
he

 b
es

t p
er

fo
rm

in
g

m
et

ho
d

is
 s

ho
w

n
in

 b
ol

d
an

d
al

l m
et

ho
ds

 th
at

 a
re

 s
ta

tis
tic

al
ly

 in
fe

ri
or

 to
 it

 a
re

 m
ar

ke
d

by
 *

. S
V

M
 is

 u
se

d
fo

r
cl

as
si

fi
ca

tio
n.

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Batal et al. Page 52

T
ab

le
 3

H
IT

 d
at

as
et

:
T

he
 a

re
a

un
de

r
R

O
C

 (
A

U
C

)
of

 th
e

co
m

pa
re

d
fe

at
ur

e
re

pr
es

en
ta

tio
n

m
et

ho
ds

.

L
as

t-
ab

s
T

P
T

P
-I

G
R

T
P

R
T

P
-I

G
M

P
R

T
P

A
U

C
87

.1
8

*
90

.8
7

87
.7

9
*

91
.9

9
88

.5
8

*
91

.5
7

T
he

 b
es

t p
er

fo
rm

in
g

m
et

ho
d

is
 s

ho
w

n
in

 b
ol

d
an

d
al

l m
et

ho
ds

 th
at

 a
re

 s
ta

tis
tic

al
ly

 in
fe

ri
or

 to
 it

 a
re

 m
ar

ke
d

by
 *

. S
V

M
 is

 u
se

d
fo

r
cl

as
si

fi
ca

tio
n.

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Batal et al. Page 53

Table 4

Diabetes dataset: The top MPRTPs with their precision and recall.

MPRTP Precision Recall

P1: BUN=VH ⇒ Dx=RENAL 0.97 0.17

P2: Creat=N before Creat=H ⇒ Dx=RENAL 0.96 0.21

P3: BUN=H co-occurs Creat=H ⇒ Dx=RENAL 0.95 0.21

P4: Gluc=H before Gluc=VH ⇒ Dx=METAB 0.79 0.24

P5: Dx=CARDI co-occurs (Gluc=N before Gluc=H) ⇒ Dx=CEREB 0.71 0.22

Abbreviations: Dx: diagnosis code (one of the 8 major categories described in Section 6.1.1); BUN: Blood Urea Nitrogen; Creat: creatinine; Gluc:
blood glucose. Value abstractions: BUN=VH: > 49 mg/dl; BUN=H: > 34 mg/dl; Creat=H: > 1.8 mg/dl; Creat=N: [0.8–1.8] mg/dl; Gluc=VH: >243
mg/dl; Gluc=H:>191 mg/dl.

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Batal et al. Page 54

Table 5

HIT dataset: The top 5 MPRTPs with their precision and recall.

MPRTP Precision Recall

P1: PLT=L ⇒ HIT-risk 78.3 84.79

P2: PLT=VL ⇒ HIT-risk 89.31 65.44

P3: PLT=L before PLT=VL ⇒ HIT-risk 91.13 52.07

P4: PLT=D co-occurs PLT=L ⇒ HIT-risk 86.33 55.3

P5: APTT=I before PLT=L ⇒ HIT-risk 88.24 41.47

Abbreviations: PLT: platelet count; APTT: activated partial thromboplastin time. Trend abstractions: PLT=D: decreasing trend in PLT; APTT=I:

increasing trend in APTT. Value abstractions: PLT=VL (Very Low):<76 × 109 per liter; PLT=L (Low):<118 × 109 per liter.

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

