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Abstract

This work proposes a pattern mining approach to learn event detection models from complex 

multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern 

mining, a novel approach for efficiently finding predictive patterns for event detection problems. 

This approach first converts the time series data into time-interval sequences of temporal 

abstractions. It then constructs more complex time-interval patterns backward in time using 

temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework 

for selecting a small set of predictive and non-spurious patterns. We apply our methods for 

predicting adverse medical events in real-world clinical data. The results demonstrate the benefits 

of our methods in learning accurate event detection models, which is a key step for developing 

intelligent patient monitoring and decision support systems.

1 Introduction

Advances in data collection and data storage technologies have led to the emergence of 

complex multivariate temporal datasets, where the data instances are traces of complex 

behaviors characterized by time series of multiple variables. Designing algorithms capable 

of analyzing and learning from such data is one of the most challenging topics of data 

mining research.
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In this work, we study the supervised learning task of event detection in multivariate 

temporal data. In this task, the labels denote different events that are associated with specific 

time points during the temporal instances. The goal is to learn how to accurately detect (in 

time) the occurrence of these events for future instances (a monitoring task). This setting 

appears in a wide range of applications, such as the detection of adverse medical events 

(e.g., onsets of diseases or drug toxicity) in clinical data (Hauskrecht et al. 2010), the 

detection of equipment malfunctions (Guttormsson et al. 1999), fraud detection (Srivastava 

et al. 2008), environmental monitoring (Papadimitriou et al. 2005), intrusion detection 

(Chandola et al. 2006) and others.

Given that the events are associated with specific time points during the instances, the 

temporal observations that are close to the time of the event are typically the most important 

for prediction. Consequently, the context for prediction is often local and affected by the 

most recent behavior of the monitored instance. The focus of this paper is to develop a 

temporal pattern mining method that takes into account the local nature of decisions for 

monitoring and event detection problems.

We primarily focus on data in Electronic Health Record (EHR) systems. In this data, each 

record (instance) consists of multiple time series of clinical variables collected for a specific 

patient, such as laboratory test results and medication orders. The data also provide temporal 

information about the incidence of several adverse medical events, such as diseases or drug 

toxicities. The task is to learn how to predict these adverse medical events for future 

patients. This is practically very useful for intelligent patient monitoring, outcome prediction 

and clinical decision support.

Temporal modeling for EHR data is challenging because the data are multivariate and the 

time series for clinical variables are irregularly sampled in time (measured asynchronously 

at different time moments). Therefore, most existing times series classification methods 

(Blasiak & Rangwala 2011, Vail et al. 2007), time series similarity measures (Yang & 

Shahabi 2004, Ratanamahatana & Keogh 2005) and time series feature extraction methods 

(Li et al. 2010, Batal & Hauskrecht 2009, Weng & Shen 2008) cannot be directly applied to 

the raw EHR data.

In this paper, we present a pattern mining approach that can handle complex temporal data 

such as EHR. The first step is to define a pattern language that can adequately represent the 

temporal dimension of the data. To do this, we rely on temporal abstractions (Shahar 1997) 

to convert time series variables into time-interval sequences of abstract states and on 

Höppner’s representation of time-interval patterns (Höppner 2001, 2003) to define complex 

temporal interactions among multiple states. For example, this allows us to express a 

concept like “the administration of heparin precedes a decreasing trend in platelet counts”.

After defining the pattern language, we need to design an efficient algorithm for finding 

useful patterns in time-interval (temporally abstracted) data. Unlike the existing methods 

that mine all frequent time-interval patterns in an unsupervised setting (Wu & Chen 2007, 

Winarko & Roddick 2007, Papapetrou et al. 2005, Sacchi et al. 2007, Moerchen 2006a, 

Höppner 2001, Kam & Fu 2000), we are only interested in mining those patterns that are 
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important for the event detection task (patterns that describe the temporal behavior that led 

to the development of the event).

To achieve this goal, we propose Recent Temporal Pattern (RTP) mining, a novel approach 

that mines frequent time-interval patterns backward in time starting from patterns related to 

the most recent observations, which we argue are typically the most important for 

prediction. Applying this technique, temporal patterns that extend far into the past are likely 

to have low support in the data and hence would not be considered for prediction. 

Incorporating the concept of recency in temporal pattern mining is a new research direction 

that, to the best of our knowledge, has not been previously explored in the pattern mining 

literature.

In addition, we present the concept of Minimal Predictive Recent Temporal Patterns 

(MPRTP), a pattern selection technique for choosing a small set of predictive and non-

redundant RTPs. MPRTP applies Bayesian inference to evaluate the predictiveness of each 

RTP. Moreover, it considers the structure of patterns to ensure that every RTP in the result is 

significantly more predictive than all of its simplifications, which we demonstrate can 

eliminate a lot of spurious and redundant RTPs.

We test and demonstrate the usefulness of our methods on two real-world EHR datasets. The 

first dataset is a large-scale data that contains health records for 13,558 diabetic patients. 

The task is predict and diagnose various types of disorders that are frequently associated 

with diabetes, such as cardiological, renal or neurological disorders. The second dataset 

contains records of post cardiac surgical patients (Hauskrecht et al. 2010, 2012) and the task 

is to predict patients who are at risk of developing Heparin Induced Thrombocytopenia 

(HIT), a life threatening condition that may develop in patients treated with heparin.

Our main contributions are summarized as follows:

– We propose recent temporal pattern (RTP) mining to find predictive time-

interval patterns for event detection problems.

– We present an algorithm that mines frequent RTPs backward in time and show 

that it is much more scalable than mining all frequent time-interval patterns.

– We propose the concept of minimal predictive recent temporal patterns 

(MPRTP) for selecting predictive and non-spurious patterns.

– We present a mining algorithm which integrates MPRTP evaluation with 

frequent RTP mining and applies efficient pruning techniques to speed up the 

mining.

– We apply our methods to two real-world clinical datasets and show that they are 

able to efficiently find useful patterns for detecting adverse medical events. 

Furthermore, we show that the mined patterns are easy to interpret by domain 

experts, which is beneficial for knowledge discovery purposes.
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Roadmap

The rest of the paper is organized as follows. Section 2 outlines related research. Section 3 

describes the background on temporal abstraction and temporal patterns for time-interval 

data. Section 4 describes the recent temporal patterns (RTPs) framework and explains our 

algorithm for mining frequent RTPs. Section 5 describes the minimal predictive recent 

temporal patterns (MPRTPs) framework and explains our mining algorithm. Section 6 

presents the experimental evaluation. Finally, Section 7 concludes the paper.

2 Related Research

This paper studies the problem of mining predictive time-interval patterns (defined over 

temporal abstractions) for event detection. The problem of mining time-interval patterns is a 

relatively young research field. Most of the techniques extend methods for mining sequential 

patterns (time-point patterns) (Agrawal & Srikant 1995, Zaki 2001, Pei et al. 2001, Yan et 

al. 2003) to deal with the more complex case of time-interval data1.

In (Allen 1984), Allen formalized a logic on time intervals by specifying 13 possible 

temporal relations and showing their completeness. These relations are shown in Figure 1. 

Allen’s temporal relations have been used by the majority of research on mining time-

interval data (Kam & Fu 2000, Höppner 2001, Papapetrou et al. 2005, Winarko & Roddick 

2007, Patel et al. 2008a, Moskovitch & Shahar 2009).

Kam and Fu (Kam & Fu 2000) were the first to propose using Allen’s relations for defining 

time-interval patterns (patterns consisting of multiple states). However, their representation 

was shown to be ambiguous (the same situation in the data can be described using several 

different patterns). Höppner (Höppner 2001) was the first to propose a non-ambiguous 

representation of time-interval patterns. The idea is to represent the pattern in the normalized 

form and to explicitly specify the temporal relations between all pairs of states. Höppner’s 

representation has been later used by several research papers (Papapetrou et al. 2005, 

Winarko & Roddick 2007, Moskovitch & Shahar 2009), and we adopt it as well in our work. 

Moerchen (Moerchen 2006a) proposed the time series knowledge representation (TSKR) as 

an alternative to using Allen’s relations. TSKR is based on the concept of cords, which 

describe coincidence of several states. Another representation appeared in (Wu & Chen 

2007), where a time-interval pattern is represented as a sequence of the boundaries of its 

states. Although this representation is conceptually different from Höppner’s representation, 

it can be shown that there is a one-to-one correspondence between them.

The related work on mining time-interval patterns (Kam & Fu 2000, Höppner 2001, 

Papapetrou et al. 2005, Moerchen 2006a, Sacchi et al. 2007, Winarko & Roddick 2007, Wu 

& Chen 2007, Moskovitch & Shahar 2009) have been mostly applied in an unsupervised 

setting for mining all frequent patterns. On the other hand, our work studies the supervised 

event detection task for mining the most predictive patterns, which we achieve by 

incorporating the concept of recency in the mining process.

1Sequential pattern mining is a special case of time-interval pattern mining, in which all intervals are simply time points with zero 
durations.
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3 Preliminaries and Definitions

In this section, we describe temporal abstraction and define temporal patterns for time-

interval data. For temporal abstraction, we use trend and value abstractions. For the pattern 

language, we use Höppner’s representation of time-interval patterns (Höppner 2001, 2003) 

with a simplified set of Allen’s temporal relations.

3.1 Temporal Abstraction

Temporal abstraction takes a numeric time series (e.g., series of creatinine values) and 

produces a sequence of abstractions 〈v1[s1, e1], …, vn[sn, en]〉, where vi ∈ Σ is an abstraction 

that holds from time si to time ei and Σ is the abstraction alphabet (a finite set of permitted 

abstractions).

In our work, we use two types of temporal abstractions:

1. Trend abstractions segment the time series based on its local trends. We use the 

following abstractions: Decreasing (D), Steady (S) and Increasing (I), i.e., Σ = {D, 

S, I}. We obtain these abstractions by applying the sliding window segmentation 

method (Keogh et al. 1993) and labeling the states according to the slopes of the 

fitted segments. For more information about trend segmentation, see (Keogh et al. 

1993).

2. Value abstractions segment the time series based on its values. We use the 

following abstractions: Very Low (VL), low (L), Normal (N), High (H) and Very 

High (VH), i.e., Σ = {VL, L, N, H, VH}. We obtain these abstractions using the 

10th, 25th, 75th and 90th percentiles on the lab values. That is, a value below the 

10th percentile is very low (VL), a value between the 10th and 25th percentiles is 

low (L), and so on.

Figure 2 shows the trend and value abstractions on a time series of creatinine values.

3.2 Multivariate State Sequences

Let a state be an abstraction value for a specific variable. We denote a state S by a pair (F, 

V), where F is a temporal variable (e.g., creatinine) and V ∈ Σ is an abstraction value. Let a 

state interval be a state that holds during an interval. We denote a state interval E by a 4-

tuple (F, V, s, e), where F is a temporal variable, V ∈ Σ is an abstraction value, and s and e 

are the start time and end time (respectively) of the state interval (E․s ≤ E․e)2. For example, 

assuming the time granularity is days, state interval (glucose, H, 5, 10) represents high 

glucose values from day 5 to day 10.

After abstracting all time series variables, each multivariate time series instance in the data 

becomes a multivariate state sequence.

Definition 1—A Multivariate State Sequence (MSS) is represented as a series of state 

intervals that are ordered according to their start times3:

2If E․s = E․e, state interval E corresponds to a time point.
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Note that we do not require Ei․e to be less than Ei+1․s because the state intervals are 

obtained from different temporal variables and their intervals may overlap. Let Z․end denote 

the end time of the MSS.

Example 1: Figure 3 shows an MSS (Z) with three temporal variables: creatinine (C), 

glucose (G) and BUN (Blood Urea Nitrogen) (B), where the variables are abstracted using 

value abstractions: Σ = {VL, L, N, H, VH}. Assuming the time granularity is days, this MSS 

represents 24 days of the patient’s record (Z․end=24). For instance, we can see that 

creatinine values are normal from day 2 until day 14, then become high from day 15 until 

day 24. We represent this MSS as follows: 〈 E1 = (G, H, 1, 5), E2 = (C, N, 2, 14), E3 = (B, N, 

4, 20), E4 = (G, N, 6, 9), E5 = (G, H, 10, 13), E6 = (C, H, 15, 24), E7 = (G, VH, 16, 23) 〉.

3.3 Temporal Relations

Most of Allen’s relations require equality of one or two of the intervals boundaries. That is, 

there is only a slight difference between overlaps, is-finished-by, contains, starts and equals 

relations (see Figure 1). Using all Allen’s relations can be problematic when the time 

information in the data is noisy (not very precise), which is the case for EHR data. The 

reason is that this leads to the problem of pattern fragmentation (Moerchen 2006b), which 

means that we obtain many different temporal patterns that describe a very similar concept 

in the data. Furthermore, if we use all Allen’s relations, the search space of temporal 

patterns becomes extremely large.

To alleviate the above mentioned problems, we opt to use only two temporal relations, 

namely before (b) and co-occurs (c), which we define as follows: Given two state intervals 

Ei and Ej:

– Ei is before Ej, denoted as b(Ei, Ej), if Ei․e < Ej․s (Ei finishes before Ej starts), 

which is the same as Allen’s before.

– Eico-occurs with Ej, denoted as c(Ei, Ej), if Ei․s ≤ Ej․s ≤ Ei․e (Ei starts before Ej 

and there is a nonempty time period where both Ei and Ej occur). Note that this 

relation covers the following Allen’s relations: meets, overlaps, is-finished-by, 

contains, starts and equals (see Figure 1).

3.4 Temporal Patterns

In order to define temporal patterns for abstracted time-interval data (time-interval patterns), 

we combine basic states (abstractions for specific variables) using temporal relations. We 

adopt Höppner’s representation of time-interval patterns (Höppner 2001), where the 

permitted temporal relations are either before (b) or co-occurs (c) (defined above). From 

hereafter, we use the terms “temporal pattern” and “time-interval pattern” interchangeably.

3If two state intervals have the same start time, we sort them by their end time. If they also have the same end time, we sort them by 
lexical order of their variable names (as proposed by (Höppner 2003)).
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Definition 2—A temporal pattern is defined as P = (〈S1, …, Sk〉, R) where Si is the ith 

state of the pattern and R is an upper triangular matrix that defines the temporal relations 

between each state and all of its following states:

i ∈ {1, …, k−1} ∧ j ∈ {i+1, …, k} : Ri,j ∈ {b, c} specifies the relation between Si and Sj.

The size of a temporal pattern P is the number of states it contains. If P contains k states, we 

say that P is a k-pattern. Hence, a single state is a 1-pattern (a singleton). When a pattern 

contains only 2 states: (〈S1, S2〉, R1,2), we sometimes write it simply as S1 R1,2 S2 because it 

is easier to read.

Figure 4 shows a graphical representation of a 4-pattern with states: S1 = (F1, B), S2 = (F3, 

A), S3 = (F2, C), and S4 = (F3, B). These states are abstractions of temporal variables F1, F2 

and F3 using abstraction alphabet Σ = {A, B, C} (the abstractions in Σ can be trend 

abstractions, value abstractions or any other type). The half matrix on the right represents 

the temporal relations between every state and the states that follow it. For example, R2,3 = c 
means that the second state S2 = (F3, A) co-occurs with the third state S3 = (F2, C).

Definition 3—Given an MSS Z = 〈 E1, E2, …, El 〉 and a temporal pattern P = (〈S1, …, Sk〉, 

R), we say that Z contains P, denoted as P ∈ Z, if there is an injective mapping π that 

matches every state Si in P to a state interval Eπ(i) in Z such that:

The definition says that checking whether an MSS contains a k-pattern requires: 1) matching 

all k states of the pattern and 2) checking that all k(k−1)/2 temporal relations are satisfied.

Example 2: Let Z be the MSS (abstracted EHR) in Figure 3 and let P be temporal pattern 

〈 (G, H), (C, N), (G, VH) 〉, R1,2 = c, R1,3 = b, R2,3 = b) (i.e., Glucose=High co-occurs with 

Creatinine=Normal and both of them are before Glucose=Very High). P is contained in Z (P 

∈ Z) because every state of P can be matched with a state interval in Z and these state 

intervals satisfy all the relations specified by P.

4 Mining Recent Temporal Patterns

In this section, we first introduce the concept of recent temporal patterns (RTPs) and 

illustrate their properties. After that, we describe an efficient algorithm for mining frequent 

RTPs.

4.1 Recent Temporal Patterns

In this work, we study the problem of mining predictive temporal patterns for event 

detection. In this setting, each training instance xi is a multivariate temporal instance up to 

time ti (e.g., the first 5 days of the health record for a specific patient) and it is associated 

with a label that indicates whether or not the event of interest (e.g., a specific disorder) 

occurred at time ti. The objective to learn temporal patterns that capture the behavior that led 
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to the development of the event and apply these patterns to detect the occurrence of events 

in future instances (e.g., monitor new patients).

For event detection problems, recent observations of the temporal variables of xi 

(observations close to ti) are typically the most important for predicting the label. For 

example, in the clinical domain, recent lab measurements are usually more indicative of the 

patient’s current health status (hence more predictive) than old lab measurements. For 

instance, to diagnose a disease, the physician usually first looks at the most recent data and 

then looks back in time to understand how the data evolved over time. Our objective is to 

develop a temporal pattern mining method that takes into account this local nature of 

decisions for monitoring and event detection problems. We start by defining the concept of 

recent temporal patterns and then present an efficient algorithm to automatically mine these 

patterns from data4.

Definition 4—Given an MSS Z = 〈 E1, E2, …, El 〉 and a maximum gap parameter g, we 

say that Ej ∈ Z is a recent state interval in Z, denoted as rg(Ej, Z), if any of the following 

two conditions is satisfied:

1. Z․end − Ej․e ≤ g.

2. ∄ Ek ∈ Z : Ek․F = Ej․F ∧ k > j.

The first condition is satisfied if Ej is less than g time units away from the end of the MSS 

(Z․end) and the second condition is satisfied if Ej is the most recent state interval for its 

variable (there is no state interval for the variable of Ej that appears after Ej). Note that if the 

maximum gap g = ∞, any state interval of Z (Ej ∈ Z) would be a recent state interval.

Definition 5—Given an MSS Z =〈E1, E2, …, El〉 and a maximum gap parameter g, we say 

that temporal pattern P = (〈S1, …, Sk〉, R) is a Recent Temporal Pattern (RTP) for Z, 

denoted as Rg (P, Z), if all of the following conditions are satisfied:

1. P ∈ Z (Definition 3) with a mapping π from the states of P to the state intervals of 

Z.

2. Sk matches a recent state interval in Z: rg (Eπ(k), Z).

3. ∀i ∈ {1, …, k−1}, Si and Si+1 match state intervals that are no more than g time 

units away from each other: Eπ(i+1)․s − Eπ(i)․e ≤ g.

The definition says that in order for temporal pattern P to be an RTP for MSS Z, 1) P should 

be contained in Z (Definition 3), 2) the last state of P should map to a recent state interval in 

Z (Definition 4), and 3) any pair of consecutive states in P should map to state intervals that 

are “close to each other” (within the maximum gap g). This definition forces P to be close to 

the end of Z and to have limited temporal extension in the past. Note that g is a parameter 

that specifies the restrictiveness of the RTP definition. If g = ∞, any pattern P ∈ Z would be 

considered to be an RTP for Z. Let us denote an RTP that contains k states as a k-RTP.

4This section contains materials that have been published in (Batal, Fradkin, Harrison, Moerchen & Hauskrecht 2012).
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Example 3: Let Z be the MSS in Figure 5, which has 4 temporal variables (F1 to F4) that are 

abstracted using alphabet Σ = {A, B, C, D}. Let the maximum gap parameter be g=3. 

Temporal pattern P = (〈 (F4, A), (F2, C), (F1, B) 〉, R1,2 = b, R1,3 = b, R2,3 = b) is an RTP for 

Z because P ∈ Z (shown in red in Figure 5), (F1, B, 15, 18) is a recent state interval in Z, (F2, 

C, 8, 13) is “close to” (F1, B, 15, 18) (15−13 ≤ g) and (F4, A, 1, 5) is “close to” (F2, C, 8, 13) 

(8−5 ≤ g).

Example 4: Let Z be the MSS (abstracted EHR) in Figure 3 and let g = 3 days. Temporal 

pattern P1 = (B, N) c (C, H) (i.e., BUN=Normal co-occurs with Creatinine=High) is an RTP 

in Z. On the other hand, P2 = (G, H) b (G, N) (i.e., Glucose=High before Glucose=Normal) 

is contained in Z: P2 ∈ Z, but it is not an RTP because the second condition of Definition 5 

is violated: (G, N, 6, 9) is not a recent state interval.

Definition 6—Given temporal patterns P = (〈S1, …, Sk1 〉, R) and 

with k1 < k2, we say that P is a suffix subpattern of P′, denoted as Suffix (P, P′), if:

This definition simply says that for a k1-pattern P to be a suffix subpattern of a k2-pattern P′ 

(k1 < k2), P should match the last k1 states of P′ and should satisfy among them the same 

temporal relations that are satisfied in P′. For example, pattern (〈 (F3, A), (F2, C), (F3, B) 〉, 

R1,2 = c, R1,3 = b, R2,3 = c) is a suffix subpattern of the pattern in Figure 4.

If P is a suffix subpattern of P′, we say that P′ is a backward-extension superpattern of P, 

which we abbreviate as b-extension.

Proposition 1—Given an MSS Z and temporal patterns P and P′, if P′ is an RTP for Z and 

P is a suffix subpattern of P′, then P is an RTP for Z:

The proof follows directly from the Definition of RTP.

Example 5: In Example 3, we showed that pattern (〈 (F4, A), (F2, C), (F1, B) 〉, R1,2 = b, 

R1,3 = b, R2,3 = b) is an RTP for MSS Z in Figure 5 when the maximum gap is 3. 

Proposition 1 says that its suffix subpattern (〈 (F2, C), (F1, B) 〉, R1,2 = b) must also be an 

RTP for Z. However, this does not imply that subpattern (〈 (F4, A), (F2, C) 〉, R1,2 = b) must 

be an RTP (the second condition of Definition 5 is violated) nor that subpattern (〈 (F4, A), 

(F1, B) 〉, R1,2 = b) must be an RTP (the third condition of Definition 5 is violated).

One of the most used statistics in pattern mining is the support of the pattern (Agrawal & 

Srikant 1994) that counts the occurrences of the pattern in data. We define the support for 

RTPs as follows:
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Definition 7—Given a dataset D of MSS and a maximum gap parameter g, the support of 

RTP P in D is defined as RTP-supg (P, D)= | {Zi : Zi ∈ D ∧ Rg (P, Zi)} |.

Given a user defined minimum support threshold σ, temporal pattern P is a frequent RTP in 

D given σ if RTP-supg (P, D) ≥ σ.

A key property that all frequent pattern mining algorithms rely on is the Apriori property 

(Agrawal & Srikant 1994), which states that the support of a pattern is no more than the 

support of any of its subpatterns. This property holds for RTPs on suffix subpatterns. In 

particular, Proposition 1 implies that the RTP-sup of an RTP cannot be larger than the RTP-

sup of its suffix subpatterns:

Corollary 1—If P and P′ are two temporal patterns such that Suffix(P, P′), then RTP-supg 

(P, D) ≥ RTP-supg (P′, D).

This corollary will be used by our algorithm for mining frequent RTPs.

4.2 The Mining Algorithm

In this section, we present the algorithm for mining frequent RTPs. In order to improve the 

efficiency and effectiveness of the mining algorithm, we utilize the label information and 

mine frequent RTPs for each class label separately using a local minimum support that is 

related to the size of the population of that label. For example, suppose we have 10K 

instances, 1K of them has the event of interest (positives) and 9K do not have the event 

(negatives). If we set the local minimum support to be 10% the number of instances, we 

mine frequent RTPs from the positives and the negatives separately using σpos = 100 for the 

positives and σneg = 900 for the negatives. This approach is more appropriate when mining 

pattern in a supervised setting compared to mining frequent patterns from the entire data 

using a single global minimum support for the following reasons:

1. Mining patterns that are frequent for one of the classes (hence potentially predictive 

for that class) is more efficient than mining patterns that are globally frequent5.

2. For unbalanced data, mining frequent patterns using a global minimum support 

may result in missing many important patterns for the rare class.

The algorithm for mining frequent RTPs for class y takes as input Dy: the MSS from y, g: 

the maximum gap parameter and σy: the local minimum support threshold for y. It outputs 

all temporal patterns that have an RTP-sup (Definition 7) in Dy that is larger or equal to σy:

The algorithm explores the space of temporal patterns level by level. It first finds all 

frequent 1-RTPs (RTPs that consist of a single state). Then it extends these patterns 

backward in time to find more complex patterns (frequent 2-RTPs, then frequent 3-RTPs 

5It is more efficient to mine patterns that cover more than n instances in one of the classes compared to mining patterns that cover 
more than n instances in the entire database (the former is always a subset of the latter).
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and so on). For each level k, the algorithm performs the following two steps to obtain the 

frequent (k+1)-RTPs:

1. Candidate generation: Generate candidate (k+1)-patterns by extending frequent 

k-RTPs backward in time.

2. Counting: Obtain the frequent (k+1)-RTPs by removing the candidates with RTP-

sup less than σy.

This process repeats until no more frequent RTPs can be found.

In the following, we describe in detail the candidate generation algorithm. Then we propose 

techniques to improve the efficiency of both candidate generation and counting.

4.2.1 Backward Candidate Generation—We generate a candidate (k+1)-pattern by 

appending a new state (an abstraction value for a specific variable) to the beginning of a 

frequent k-RTP. Let us assume that we are backward extending pattern P = (〈S1, …, Sk〉, R) 

with state Snew to generate candidates (k+1)-patterns of the form . First 

of all, we set  for i ∈ {1, …, k} and  for i ∈ {1, …, k − 1} 

∧ j ∈ {i+1, …, k}. This way, we know that every candidate P′ of this form is a b-extension 

of P.

In order to fully define a candidate, we still need to specify the temporal relations between 

the new state  and states , i.e., we should define  for i ∈ {2, …, k + 1}. 

Since we have two possible temporal relations (before and co-occurs), there are 2k possible 

ways to specify the missing relations, which results in 2k different candidates. If we denote 

the set of all possible states by L and the set of all frequent k-RTPs by Fk, generating the (k

+1)-candidates naïvely in this fashion results in 2k × |L| × |Fk| candidate (k+1)-patterns.

This large number of candidates makes the mining algorithm computationally very 

expensive and greatly limits its scalability. Below, we describe the concept of incoherent 

patterns and introduce a method that generates fewer candidates without missing any real 

pattern from the results.

4.2.2 Improving the Efficiency of Candidate Generation

Definition 8: A temporal pattern P is incoherent if there does not exist any valid MSS that 

contains P.

Clearly, we do not have to generate and count incoherent candidates because we know that 

they will have zero support in the data (they are invalid patterns). We introduce the 

following two lemmas to avoid generating incoherent candidates when specifying the 

relations  : i ∈ {2, …, k+1} in candidates of the form . The first 

lemma restricts the patterns that include the same variable with two co-occurring states. The 

second lemma restricts the patterns that would violate the ordering of relations in time.
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Lemma 1:  is incoherent if ∃i ∈ {2, …, k+1} :  and 

.

Proof: Two state intervals that belong to the same temporal variable cannot co-occur.

Lemma 2:  is incoherent if ∃i ∈ {2, …, k+1} : 

.

Proof: Assume that there exists an MSS Z = 〈E1, …, El〉 where P′ ∈ Z. Let π be the mapping 

from the states of P′ to the state intervals of Z. The definition of temporal patterns 

(Definition 2) and the fact that state intervals in Z are ordered by their start values 

(Definition 1) implies that the matching state intervals 〈Eπ(1), …, Eπ(k+1)〉 are also ordered 

by their start times: Eπ(1)․s ≤ … ≤ Eπ(k+1)․s. Hence, Eπ(j)․s ≥ Eπ(i)․s since j > i. We also 

know that Eπ(1)․e < Eπ(i)․s because . Therefore, Eπ(1)․e < Eπ(j)․s. However, since 

, then Eπ(1)․e ≥ Eπ(j)․s, which is a contradiction. Therefore, there is no MSS that 

contains P′.

Example 6: Assume we want to extend P = (〈S1 = (F1, B), S2 = (F3, A), S3 = (F2, C), S4 = 

(F3, B)〉, R1,2 =c, R1,3 =b, R1,4 =b, R2,3 =c, R2,4 =b, R3,4 =c) in Figure 4 with state Snew = 

(F2, B) to generate candidates of the form 

. First, we set the 

relations in R′ for the last four states  to be the same as defined by R. Now, 

we have to specify relations  for i ∈ {2, …, k+1}.  is allowed to be either before 

 or co-occurs . If , then all the following relations must be before 

according to Lemma 2, resulting in the candidate shown in Figure 6:a. If , then 

is allowed to be either before  or co-occurs , resulting in the candidates 

shown in Figure 6:b and Figure 6:c, respectively. Now, according to Lemma 1, 

because both  and  belong to the same temporal variable (variable F2). As we see, we 

have reduced the number of candidates that result from adding state (F2, B) to a 4-RTP P 

from 24=16 in the naïve way to only 3.

The following theorem gives the bound on the number of possible extensions of an RTP 

with a new state (an abstraction value for a specific variable).

Theorem 1: There are at most k+1 coherent candidates that result from extending a single 

k-RTP backward with a new state.

Proof: We know that every candidate  corresponds to a specific 

assignment of  for i ∈ {2, …, k+1}. When we assign the temporal relations, 

once a relation becomes before, all the following relations have to be before as well 

according to Lemma 2. We can see that the relations can be co-occurs in the beginning of 
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the pattern, but once we have a before relation at some point q ∈ {2, …, k+1} in the pattern, 

all subsequent relations (i>q) should be before as well:

Therefore, the total number of coherent candidates cannot be more than k+1, which is the 

total number of different combinations of consecutive co-occurs relations followed by 

consecutive before relations.

In some cases, the number of coherent candidates is less than k + 1. Assume that there are 

some states in P′ that belong to the same variable as state . Let  be the first such state (j 

≤ k + 1). According to Lemma 1, . In this case, the number of coherent candidates is 

j−1 < k+1.

Algorithm 1 illustrates how to extend a k-RTP P with a new state Snew to generate coherent 

candidates (without violating Lemmas 1 and 2).

Algorithm 1

Extend backward a k-RTP P with a state Snew.

Input: A k-RTP: P = (〈S1, …, Sk〉, R); a new state: Snew

Output: Coherent candidates: C

1 S1
′ = Snew; Si+1

′ = Si : i ∈ {1, …, k};

2 Ri+1, j+1
′ = Ri, j : i ∈ {1, …, k − 1}, j ∈ {i + 1, …, k};

3 R1,i
′ = b : i ∈ {2, …, k + 1}; P ′ = ( S1

′, … , Sk+1
′ , R ′ );

4 C = {P′};

5 for i=2 to k+1 do

6 if (S1
′ ․ F = Si

′ ․ F ) then

7 break;

8 else

9 R1,i
′ = c; P ′ = ( S1

′, … , Sk+1
′ , R ′ );

10 C = C ∪ {P′};

11 end

12 end

13 return C

The bound on the number of possible extensions of a k-RTP with a new state can be used to 

calculate the bound on the total number of possible extensions of size k+1.
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Corollary 2: Let L denote the set of all possible states and let Fk denote the set of all 

frequent k-RTPs. The number of coherent (k+1)-candidates is no more than (k + 1) × |L| × |

Fk|.

4.2.3 Improving the Efficiency of Counting—Even after eliminating incoherent 

candidates, the mining algorithm is still computationally expensive because for every 

candidate, we need to scan the entire database in the counting phase to compute its RTP-

sup. The question we try to answer in this section is whether we can omit portions of the 

database that are guaranteed not to contain the candidate we want to count. The proposed 

solution is inspired by (Zaki 2000) that introduced the vertical data format for itemset 

mining and later applied it for sequential pattern mining (Zaki 2001).

Let us associate every frequent RTP P with a list of identifiers of all MSS in Dy for which P 

is an RTP (Definition 5):

Clearly, RTP-supg (P, Dy) = |P․RTP-list|.

Let us also associate every state S with a list of identifiers for all MSS that contain S 

(Definition 3):

Now, when we generate candidate P′ by backward extending RTP P with state S, we define 

the potential list (p-RTP-list) of P′ as follows:

Proposition 2: If P′ be a b-extension of RTP P with state S and P′․p-RTP-list = P․RTP-list ∩ 

S․list, then P′․RTP-list ⊆ P′․p-RTP-list.

Proof: Assume Zi is an MSS for which P′ is an RTP: Rg (P′, Zi). By definition, i ∈ P′․RTP-

list. We know that Rg (P′, Zi) ⇒ P′ ∈ Zi ⇒ S ∈ Zi ⇒ i ∈ S․list. Also, we know that Suffix(P, 

P′) ⇒ Rg (P, Zi) (according to Proposition 1) ⇒ i ∈ P․RTP-list. Therefore, i ∈ P․RTP-list ∩ 

S․list = P′.p-RTP-list.

Putting it all together, we compute the RTP-lists in the counting phase (based on the true 

matches) and the p-RTP-lists in the candidate generation phase. The key idea is that when 

we count candidate P′, we only need to check the instances in its p-RTP-list because 

according to Proposition 2: i ∉ P′․p-RTP-list ⇒ i ∉ P′․RTP-list ⇒ P′ is not an RTP for Zi. 

This offers a lot of computational savings because the p-RTP-lists get smaller as the size of 

the patterns increases, making the counting phase much faster.
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Algorithm 2 outlines the candidate generation. Line 4 generates coherent candidates 

according to Algorithm 1. Line 6 computes the p-RTP-list for each candidate. Note that the 

cost of the intersection is linear in the length of the lists because the lists are always sorted 

according to the order of the instances in the data. Line 7 applies additional pruning to 

remove candidates that are guaranteed not to be frequent according to the following 

implication of Proposition 2:

Algorithm 2

A high-level description of candidate generation.

Input: All frequent k-RTPs: Fk; all frequent states: L

Output: Candidate (k+1)-patterns: Cand, with their p-RTP-lists

1 Cand = Φ;

2 foreach P ∈ Fk do

3 foreach S ∈ L do

4 C = extend_backward(P, S); (Algorithm 1)

5 for q = 1 to | C | do

6 C[q]․p-RTP-list = P․RTP-list ∩ S․list;

7 if (| C[q]․p-RTP-list | ≥ σy) then

8 Cand = Cand ∪ {C[q]};

9 end

10 end

11 end

12 end

13 return Cand

5 Mining Minimal Predictive Recent Temporal Patterns

Although RTP mining focuses the search on temporal patterns that are potentially useful for 

predicting the labels (e.g., whether or not the adverse medical event would happen), not all 

frequent RTPs are as important for prediction.

In this section, we describe our approach for selecting the most predictive RTPs. First, we 

describe the Bayesian score for evaluating the predictiveness of patterns (Section 5.1). After 

that, we argue that scoring each RTP individually and selecting the top scoring ones often 

leads to spurious patterns (Section 5.2). Then we describe the concept of Minimal Predictive 

Recent Temporal Patterns (MPRTP) which considers the relations between patterns to filter 

out spurious patterns (Section 5.3). Finally, we present an efficient mining algorithm that 

integrates MPRTP evaluation with frequent RTP mining and applies efficient pruning 

techniques to speed up the mining (Section 5.4).
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5.1 The Bayesian Score

The Bayesian score we describe here allows us to evaluate how predictive is an RTP P for 

label y compared to a more general group of instances G (e.g., G might be the entire 

dataset). We denote this score by BS (P ⇒ y, G).

Let GP denote the group of instances (MSS) in G for which P is an RTP:

Intuitively, the score of P ⇒ y compared to G should be high if there is a strong evidence to 

support the hypothesis that the probability of observing label y in GP is higher than the 

probability of observing y in G: Pr(y|GP) > Pr(y|G).

The main idea behind the Bayesian score is to apply Bayesian inference and treat the 

estimated probabilities as uncertain random variables, which is done by modeling the 

posterior distribution of the estimated probabilities and integrating over all possible values. 

We have originally proposed this score in (Batal, Cooper & Hauskrecht 2012) in the context 

of mining predictive itemset patterns (for atemporal data). The Bayesian score was shown to 

be more robust compared to classical rule evaluation scores (see (Geng & Hamilton 2006)), 

which only rely on point estimation and cannot model the uncertainty of the estimation.

To introduce the Bayesian score, we first define the following three competing models 

(hypothesis):

1. Me conjectures that the probability of y is the same for all instances in G.

2. Mh conjectures that the probability of y in GP is higher than the probability of y 

outside GP (G \ GP).

3. Ml conjectures that the probability of y in GP is lower than the probability of y 

outside GP.

We define BS(P ⇒ y, G) to be the posterior probability of model Mh (the hypothesis of 

interest):

(1)

To be “non-informative”, we might simply assume that all three models are equally likely a-

priori: .

In order to solve Equation 1, we need to compute the marginal likelihood of all models: 

Pr(G|Me), Pr(G|Mh) and Pr(G|Ml). The likelihood of each model given the values of its 

parameters follows the binomial distribution, while the prior distribution on the parameters 

is a beta distribution (the beta distribution is a conjugate prior to the binomial distribution, 

which makes the Bayesian computation tractable). If we do not have prior knowledge about 

the parameters, we simply use uniform beta distributions.
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In the Appendix, we derive the closed form solutions for all three marginal likelihoods. We 

also demonstrate that the complexity of computing the Bayesian score is O(min(N11, N12, 

N21, N22)), where N11 is the number of instances in GP with label y, N12 is the number of 

instances in GP without label y, N21 is the number of instances in G \ GP (the instances of G 

outside GP) with label y and N21 is the number of instances in G \ GP without label y.

5.2 Spurious RTPs

A straightforward approach for selecting the most predictive RTPs is to score each RTP by 

itself and then select the top scoring ones. However, this approach is not effective because it 

leads to many spurious RTPs, as we explain in the following example.

Example 7—Assume that having elevated creatinine level is an important indicator of 

chronic kidney disease (CKD). If we denote this pattern by P =(Creatinine, High), we 

expect the probability of CKD in GP (the group of instances for which P is an RTP) to be 

significantly higher than the probability of CKD in the entire population of patients D: 

Pr(CKD|GP) > Pr(CKD|D).

Now consider a pattern P′ that is a b-extension of P, for example, P′ : (Cholesterol, Normal) 

before (Creatinine, High). We know that GP′ ⊆ GP according to Proposition 1. Assume that 

observing P′ does not change our belief about the presence of CKD compared to observing 

P: Pr(CKD|GP′) ≈ Pr(CKD|GP). In other words, the instances in GP′ can be seen as a 

random subsample of the instances in GP with respect to the labels of CKD.

The problem is that if we score P′ by comparing it to the entire data D (whether using our 

Bayesian score or using another rule evaluation score (Geng & Hamilton 2006)), we may 

conclude that P′ is important for predicting CKD because Pr(CKD|GP′) is significantly 

higher than Pr(CKD|D). However, P′ is redundant given the real predictive pattern P.

In general, spurious RTPs are formed by extending predictive RTPs with additional 

irrelevant states. Having spurious RTPs in the result is undesirable for knowledge discovery 

because they overwhelm the domain expert and prevent him/her from understanding the real 

patterns in data. It is also undesirable for prediction because they lead to many redundant 

and highly correlated features, which might hurt the prediction performance. In order to 

filter out spurious RTPs, we present the concept of Minimal Predictive Recent Temporal 

Patterns.

5.3 Minimal Predictive Recent Temporal Patterns

Definition 9—A temporal pattern P is a Minimal Predictive Recent Temporal Pattern 
(MPRTP) for label y if RTP P predicts y significantly better than all of its suffix 

subpatterns.
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Where BS is the Bayesian score, GS is the group of instances for which S is an RTP and δ is 

a user specified significance parameter. Note that, by definition, the empty pattern Φ is a 

suffix subpattern of any temporal pattern and GΦ is the entire data D.

This definition means that if P is an MPRTP for y, then there is a strong evidence in the data 

not only to conclude that P improves the prediction of y compared to the entire data, but also 

compared to the data matching any of its suffix subpatterns. We call such patterns “minimal 

predictive” because they are more predictive than all of their simplifications, i.e., they do not 

contain redundant states. Note that a spurious RTP (such as the one described in Example 7) 

is not going to be an MPRTP because its effect on the class distribution can be explained by 

a simpler suffix subpattern that covers a larger population.

5.4 The Mining Algorithm

The algorithm presented in Section 4.2 describes how to mine all frequent RTPs for label y 

using Dy (the MSS in the data that belong to y). In order to mine MPRTPs for y, the 

algorithm requires another input: D¬y, the MSS in the data that do not have label y (in order 

to score the predictiveness of patterns).

The most common way for applying pattern mining in the supervised setting is to use the 

two-phase approach as in (Cheng et al. 2007, Webb 2007, Xin et al. 2006, Kavsek & Lavrač 

2006, Exarchos et al. 2008, Deshpande et al. 2005, Li et al. 2001). This approach first 

generates all frequent patterns (the first phase) and then evaluates them in order to select the 

predictive patterns (the second phase). If we were to apply the two-phase approach to mine 

MPRTPs for y, we would perform the following two phases:

1. Phase I: Mine all of the frequent RTPs: Ω = {P1, …, Pm : RTP-supg (Pi, Dy) ≥ σy}.

2. Phase II: For each Pi ∈ Ω, output rule Pi ⇒ y if Pi is an MPRTP for y (i.e., Pi 

satisfies Definition 9).

In contrast to the two-phase approach, our algorithm integrates pattern evaluation with 

frequent RTP mining. This allows us to apply effective pruning techniques that are not 

applicable in the two-phase approach. In our context, we say that an RTP is pruned if we do 

not explore any of its b-extensions. Note that in frequent RTP mining (Section 4.2), we 

prune an RTP if it is not frequent because we know that none of its b-extensions would be 

frequent. The techniques presented here utilize the predictiveness of patterns to further 

restrict the search space of the algorithm. In the following, we present two pruning 

techniques: The first one is lossless and the second is lossy.

5.4.1 lossless pruning—The MPRTP definition can help us to prune the search space. 

The idea is that we can prune a frequent RTP P, i.e., we do not further extend P backward in 

time, if we guarantee that none of its backward-extension superpatterns is going to be an 

MPRTP. We know that for any P′ that is a b-extension of P, the following holds according 

to Corollary 1:
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We now define the optimal b-extension of P with respect to y, denoted as P*, to be a 

hypothetical pattern that is an RTP in all and only the instances of GP that have class label y:

Clearly, P* is the best possible b-extension of P for predicting y (as it covers all instances 

from y and none of the other instances). Now, we safely prune P if P* does not satisfy the 

MPRTP definition because then we guarantee that no b-extension of P is going to be an 

MPRTP (hence the technique is lossless).

5.4.2 lossy pruning—This technique performs lossy pruning, which means that it speeds 

up the mining, but at the risk of missing some MPRTPs. The idea is that if we are mining 

MPRTPs for y, we prune a frequent RTP P if we have evidence that the underlying 

probability of y in GP is lower than the probability of y in the data D. To do so, we apply the 

Bayesian score to evaluate rule P ⇒ y compared to D and we prune P if model Ml (the 

model that assumes the probability of y in GP is lower that outside GP) is the most likely 

model. The rationale for this heuristic is that for any P′ that is a b-extension of P, we know 

that GP′ ⊆ GP (Proposition 1). So if Pr(Y =y|GP) is relatively low, we also expect Pr(Y = y|

GP′) to be low as well. Thus, P′ is unlikely to be an MPRTP for y. Note that this heuristic 

only extends promising RTPs and prunes unpromising ones.

6 Experimental Evaluation

This section presents our experimental evaluation. We first describe the two real-world EHR 

datasets we used in the experiments (Section 6.1). Then we compare RTP and MPRTP with 

other baselines for the task of detecting adverse medical events (Section 6.2). After that, we 

show the top patterns that MPRTP extracted from the data (Section 6.3). Finally, we 

compare the efficiency of our algorithms with other time-interval pattern mining algorithms 

(Section 6.4).

6.1 Temporal Datasets

6.1.1 Diabetes Dataset—This data consist of 13,558 electronic health records of adult 

diabetic patients (both type I and type II diabetes). The task is to learn models that can detect 

various types of disorders that are frequently associated with diabetes.

Each patient’s record consists of time series of 19 different lab values, including blood 

glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen, liver function tests, 

cholesterol, etc. In addition, we have access to time series of ICD-9 diagnosis codes 

reflecting the diagnoses made for the patient over time. Overall, the database contains 602 

different ICD-9 codes. These codes were grouped by a medical expert into the following 

eight major disease categories:

– Cardiovascular disease (CARDI).

– Renal disease (RENAL).

– Peripheral vascular disease (PERIP).
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– Neurological disease (NEURO).

– Metabolic disease (METAB).

– Inflammatory (infectious) disease (INFLM).

– Ocular (ophthalmologic) disease (OCULR).

– Cerebrovascular disease (CEREB).

Our objective is to learn models that are able to accurately diagnose each of these major 

diseases. For each disease, we divide the data into positive instances and negative instances 

as follows:

– The positives are records of patients with the target disease and they include 

clinical information up to the time the disease was first diagnosed.

– The negatives are records of patients without the target disease and they include 

clinical information up to a randomly selected time point in the patient’s record.

To avoid having uninformative data, we discard instances that contain less than 10 total lab 

measurements or that span less than 3 months (short instances). To make the datasets 

balanced, we choose the same number of negatives as the number of positives for each 

category (by randomly sub-sampling the negatives).

For each instance, we consider both the laboratory tests and the disease categories. Note that 

the diagnosis of one or more disease categories may be predictive of the (first) occurrence of 

another disease, so it is important to include them as features. Laboratory tests are numeric 

time series, so we convert them into time-interval state sequences using value abstractions 

(see Section 3.1). Disease categories, when used as features, are represented as intervals that 

start at the time of the diagnosis and extend until the end of the record. For these variables, 

we simply use temporal abstractions that indicate whether or not the patient has been 

diagnosed with the disease.

Table 1 summarizes the characteristics of the diabetes datasets, where a different dataset is 

defined for each of the 8 major diseases. For all of these datasets, we use value abstractions 

(very low, low, normal, high and very high) for the laboratory variables and one abstraction 

for the disease categories. Hence, the abstraction alphabet size (|Σ|) is 6. Since we have 19 

laboratory variables and 7 disease variables (the 8 major diseases minus the one we are 

predicting), we have 26 temporal variables per instance. The last column shows the total 

number of state intervals for each dataset.

6.1.2 HIT Dataset—This data are acquired from a database that contains electronic health 

records of post cardiac surgical patients (Hauskrecht et al. 2010, 2012). The task is to learn a 

model that can detect the onset of Heparin Induced Thrombocytopenia (HIT), which is a 

pro-thrombotic disorder induced by heparin exposure with subsequent thrombocytopenia 

(low platelet in the blood) and associated thrombosis (blood clot). HIT is a life-threatening 

condition if it is not detected and managed properly. Hence, it is very important to detect its 

onset.
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Patients who are at risk of HIT were selected using information about the Heparin Platelet 

Factor 4 antibody (HPF4) test, which is ordered for a patient when the physician suspects 

that he/she is developing HIT. Therefore, an HPF4 test order is a good surrogate for the 

HIT-risk label. Our dataset contains 220 positive instances (HIT-risk) and we randomly 

select 220 negative instances (no HIT-risk). The positives include clinical information up to 

the time HFP4 was first ordered. The negatives were selected from the remaining patients 

and they include clinical information up to a randomly selected time point in the patient’s 

record.

For each instance, we consider 5 clinical variables: platelet counts (PLT), activated partial 

thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin (Hgb) and 

heparin orders. PLT, APTT, WBC and Hgb (laboratory variables) are numeric time series, 

so we convert them into time-interval state sequences using both trend abstractions and 

value abstractions (see Section 3.1). Heparin orders (already in an interval-based format) 

specify the time period during which the patient was taking heparin. For this variable, we 

simply use temporal abstractions that indicate whether or not the patient is currently on 

heparin.

6.2 Classification Performance

In this section, we test the ability of RTP and MPRTP in representing and capturing 

temporal patterns that are important for the event detection task.

6.2.1 Compared Methods—We compare several feature construction methods, which 

create different feature-vector representations of EHR data in order to apply a standard 

classifier. We did not compare with other time series classification methods such as (Blasiak 

& Rangwala 2011, Li et al. 2010, Batal & Hauskrecht 2009, Weng & Shen 2008, Vail et al. 

2007, Ratanamahatana & Keogh 2005, Yang & Shahabi 2004) because these methods are 

not directly applicable to the multivariate irregularly sample EHR data6.

In particular, we compare the performance of the following methods:

1. Last-abs: The features are the most recent abstractions of each clinical variable. 

For example, the most recent trend abstraction for platelet counts is “decreasing”, 

the most recent value abstraction for platelet counts is “low”, and so on.

2. TP: The features correspond to all frequent temporal patterns.

where sup(P, Dy) = | {Zi : Zi ∈ Dy ∧ P ∈ Zi} | (see Definition 3)

3. TP-IG: The features correspond to the top 50 frequent temporal patterns, where the 

patterns are scored using Information Gain (IG) as in (Patel et al. 2008b).

4. RTP: The features correspond to all frequent RTPs.

6The observations of the clinical variables are irregular in time because they are measured asynchronously at different time moments.
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where RTP-supg(P, Dy) = | {Zi : Zi ∈ Dy ^ Rg(Pj, Zi)} | (see Definition 5)

5. RTP-IG: The features correspond to the top 50 frequent RTPs, where the RTPs are 

scored using IG.

6. MPRTP: The features correspond to the top 50 frequent RTPs, where only the 

RTPs that satisfy the MPRTP definition (Definition 9 using a significance 

parameter δ = 0.95) are retained and they are scored according to the Bayesian 

score (see Section 5.1).

The first method (Last-abs) is atemporal and only considers the most recent abstractions for 

defining the classification features. On the other hand, methods (2–6) use temporal patterns 

(built using temporal abstractions and temporal relations) to define features for 

classification, where a different binary feature is defined for each temporal pattern in the 

result.

When defining the binary representation of an instance (MSS) Zi for TP-based methods (TP 

and TP-IG), the feature value is set to one if the corresponding temporal pattern is observed 

anywhere during the instance (Definition 3), and is set to zero otherwise:

When defining the binary representation of an instance Zi for RTP-based methods (RTP, 

RTP-IG and MPRTP), the feature value is set to one if the corresponding temporal pattern is 

observed recently in the instance (Definition 5), and is set to zero otherwise:

It is important to note that although patterns generated by TP subsume the ones generated by 

RTP (by definition, every frequent RTP is also a frequent temporal pattern), the induced 

binary features are different. For example, a temporal pattern may be very discriminative 

only when observed recently (close to the end of the temporal instance).

We use methods TP-IG, RTP-IG and MPRTP in the evaluation because we want to compare 

the ability of TP and RTP in representing the classifier using only a limited number of 

temporal patterns. Moreover, we want to compare using standard univariate scoring (scoring 

each pattern individually by information gain) with our MPRTP approach, which considers 

the structure of patterns to filter out spurious RTPs.

We judged the quality of the different feature representations in terms of their induced 

classification performance. More specifically, we use the features extracted by each method 

to learn a linear SVM classifier and evaluate its performance using the area under the ROC 

curve (AUC).
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All classification results are reported using averages obtained via 10-fold cross-validation, 

where the same train/test splits are used for all compared methods. To evaluate the statistical 

significance of performance difference, we apply paired t-tests at 0.05 significance level7.

6.2.2 Results on Diabetes Data—For all temporal pattern mining methods (TP, TP-IG, 

RTP, RTP-IG and MPRTP), we set the local minimum supports (σy) to 15% of the number 

of instances in the class8. For RTP, RTP-IG and MPRTP, we set the maximum gap 

parameter (see Definition 5) to 6 months, which was suggested by our medical expert.

Table 2 shows the AUC for each classification task (major disease). We show the best 

performing method in boldface and we show all methods that are statistically significantly 

inferior to it in grey. Note that features based on temporal patterns (TP, RTP and MPRTP) 

are beneficial for classification since they outperform features based on only most recent 

abstractions (last-abs). We can see that for most tasks, RTP is the best performing method. 

Note that although MPRTP does not perform as well as RTP, it mostly outperforms RTP-IG 

because of its ability to filter out spurious patterns (see for example the performance on the 

NEURO dataset in Table 2).

6.2.3 Results on HIT Data—For all temporal pattern mining methods (TP, TP-IG, RTP, 

RTP-IG and MPRTP), we set the local minimum supports (σy) to 10% of the number of 

instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap parameter 

(see Definition 5) to 2 days, which was suggested by our medical expert. Note that the HIT 

data are inpatient data and have much finer time granularity than the outpatient diabetes 

data.

Table 3 shows the AUC on the HIT dataset. We can see that RTP and MPRTP are the best 

performing methods.

6.3 Knowledge Discovery

In this section, we test the ability of MPRTP in finding predictive and non-spurious RTPs 

that can concisely describe the predicted medical event.

6.3.1 Results on Diabetes Data—Table 4 shows some of the top MPRTPs according to 

the Bayesian score on the diabetes data9. Patterns P1, P2 and P3 are predicting renal 

(kidney) disease. These patterns relate the risk of renal problems with very high values of 

the BUN (Blood Urea Nitrogen) test (P1), an increase in creatinine levels from normal to 

high (P2), and high values of BUN co-occurring with high values of creatinine (P3). P4 

shows that an increase in glucose levels from high to very high may indicate a metabolic 

disease. Finally, P5 shows that patients who were previously diagnosed with cardiovascular 

disease and exhibit an increase in glucose levels are prone to develop a cerebrovascular 

7We apply statistical significance testing with k-fold cross validation. In this setting, the testing sets are independent of each other, but 
the training sets are not. Even though this does not perfectly fit the iid assumption, the significance results are still of great help in 
comparing different learning methods (Mitchell 1997).
8As discussed in Section 4.2, we mine frequent patterns for the positives and negatives separately using the local minimum supports.
9Most of the highest scores MPRTPs are predicting the RENAL category because it is the easiest prediction task. So to diversify the 
patterns, we show the top 3 predictive MPRTPs for RENAL and the top 2 MPRTPs for other categories.
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disease. These patterns, extracted automatically from data without incorporating prior 

clinical knowledge, are in accordance with the medical diagnosis guidelines.

6.3.2 Results on HIT Data—Table 5 shows the top 5 MPRTPs according to the Bayesian 

score on the HIT data. Patterns P1, P2, P3 and P4 describe the main patterns used to detect 

HIT and are in agreement with the current HIT detection guidelines (Warkentin 2000). P5 

relates the risk of HIT with an increasing trend of APTT (activated partial thromboplastin 

time). This relation is not obvious from the HIT detection guidelines. However it has been 

recently discussed in the literature (Pendelton et al. 2006). Hence this pattern requires 

further investigation.

6.4 Mining Efficiency

In this section, we study the efficiency of different temporal pattern mining algorithms.

6.4.1 Compared Methods—We compare the running time of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending the Apriori algorithm 

(Agrawal & Srikant 1994, 1995) to the time-interval domain.

2. TP_lists: Mine frequent temporal patterns by applying the vertical data format 

(Zaki 2000, 2001) to the time-interval domain as in (Batal et al. 2011, 2013).

RTP_no-lists: Mine frequent RTPs as described in Section 4.2, but without 

applying the id-list indexing in Section 4.2.3 to speed up the counting. That is, this 

method scans the entire dataset for each generated candidate in order to compute its 

RTP-sup.

RTP: Our method for mining frequent RTPs as described in Section 4.2 which also 

applies the id-list indexing.

MPRTP: Our method for mining MPRTPs which applies all optimizations used by 

the RTP method and also the pruning techniques described in Section 5.4.1 and 

Section 5.4.2.

To make the comparison fair, all methods apply the techniques we propose in Section 4.2.2 

to avoid generating incoherent candidates. Note that if we do not remove incoherent 

candidates, the execution time for all methods greatly increases.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon 

3GHz CPU and 16GB of RAM.

6.4.2 Results on Diabetes Data—Figure 8 shows the execution time (on logarithmic 

scale) of the compared methods on all major diagnosis datasets. Similar to the previous 

settings (Section 6.2.2), we set the local minimum supports to 15% and the maximum gap 

parameter to 6 months (unless stated otherwise).

We can see that RTP and MPRTP are much more efficient than the other temporal pattern 

mining methods. For example, on the INFLM dataset, RTP is around 5 times faster than 
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TP_lists, 10 times faster than RTP_no-lists and 30 times faster than TP_Apriori. 

Furthermore, MPRTP is more efficient than RTP for all datasets.

Figure 9 compares the execution time of the different methods on the CARDI dataset for 

different minimum support thresholds.

Finally, we examine the effect of the maximum gap parameter (g) on the efficiency of recent 

temporal pattern mining methods (RTP_no-lists, RTP and MPRTP). Figure 10 shows the 

execution time on the CARDI dataset for different values of g (the execution time of 

TP_Apriori and TP_lists does not depend of g).

Clearly, the execution time of RTP_no-lists, RTP and MPRTP increase with g because the 

search space becomes larger (more temporal patterns become RTPs). We can see that when 

g is more than 18 months, RTP_no-lists becomes slower than TP_Apriori. The reason is that 

for large values of g, applying the Apriori pruning in candidate generation (pruning a 

candidate k-pattern if it contains an infrequent (k-1)-subpattern) becomes more efficient 

(generates less candidates) than the backward extension of temporal patterns (see Example 

5). On the other hand, the execution time of RTP and MPRTP increase much slower with g 

and they maintain their efficiency advantage over TP_Apriori and TP_lists for larger values 

of g.

6.4.3 Results on HIT Data—Figure 11 shows the execution time (on logarithmic scale) 

of the compared methods. Similar to the previous settings for the HIT data (Section 6.2.3), 

we set the local minimum supports to 10% and the maximum gap parameter to 2 days. 

Again, we see that RTP and MPRTP are more efficient than the other temporal pattern 

mining methods.

7 Conclusion

The increasing availability of large temporal data prompts the development of scalable and 

more efficient mining methods. Methods for mining sequential patterns (time-point patterns) 

were first introduced in the literature (Agrawal & Srikant 1995, Zaki 2001, Pei et al. 2001, 

Yan et al. 2003). Later on, these methods have been extended to mine data for which the 

events have time durations (time-interval patterns) (Kam & Fu 2000, Höppner 2001, 

Papapetrou et al. 2005, Moerchen 2006a, Sacchi et al. 2007, Winarko & Roddick 2007, Wu 

& Chen 2007, Moskovitch & Shahar 2009). However, mining the entire set of frequent 

patterns (whether sequential patterns or time-interval patterns) from large-scale data is 

inherently a computationally expensive task. To alleviate this problem, previous research 

(Srikant & Agrawal 1996, Pei et al. 2007) introduced several temporal constraints to scale 

up the mining, such as restricting the total pattern duration or restricting the permitted gap 

between consecutive states in a pattern. This paper proposed a new class of temporal 

constraints for finding recent temporal patterns (RTP), which we argued is appropriate for 

event detection problems. We presented an efficient algorithm that mines time-interval 

patterns backward in time, starting from patterns related to most recent observations. We 

also presented the minimal predictive recent temporal patterns (MPRTP) framework for 

selecting predictive and non-spurious RTPs.
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We tested and demonstrated the usefulness of our methods on two clinical event detection 

tasks. The results showed the following benefits of our methods:

1. RTP and MPRTP are able to learn accurate event detection classifiers for real-

world clinical tasks.

2. MPRTP is effective for selecting predictive and non-spurious RTPs, which makes 

it a useful tool for knowledge discovery.

3. Mining RTPs or MPRTPs is much more scalable than mining all frequent time-

interval patterns.

Appendix A

A The Bayesian Score: Mathematical Derivation and Computational 

Complexity

In Section 5.1, we briefly introduced the Bayesian score of RTP P for predicting class label 

y compared to a more general group G: GP ⊂ G. In this appendix, we derive the marginal 

likelihood for models Me, Mh and Ml, which are required for computing the Bayesian score 

(solving Equation 1). Section A.1 describes the closed form solution for computing P(G|Me), 

which is the marginal likelihood for model Me (the probability of y is the same inside and 

outside GP). Section A.2 derives the closed form solution for computing P(G|Mh), which is 

the marginal likelihood for model Mh (the probability of y in GP is higher than outside GP). 

Section A.3 shows the four equivalent formulas for computing P(G|Mh). Section A.4 

illustrates how to obtain the marginal likelihood for model Ml (the probability of y in GP is 

lower than outside GP) directly from the solution to P(G|Mh). Finally, Section A.5 analyzes 

the overall computational complexity for computing the Bayesian score.

A.1 The Closed-form Solution of the Marginal Likelihood for Model Me

Let us start by defining the marginal likelihood for model Me. This model assumes that all 

instances in G have the same probability of having label Y = y. Let us denote this probability 

by θ. To represent our uncertainty about θ, we use a beta distribution with parameters α and 

β. Let N*1 be the number of instances in G with Y = y and let N*2 be the number of instances 

in G with Y ≠ y (i.e., instances that do not have class label y). The marginal likelihood for 

model Me is as follows:

The above integral yields the following well known closed-form solution (Heckerman et al. 

1995):

(2)

where Γ is the gamma function.
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A.2 Deriving a Closed-form Solution of the Marginal Likelihood for model Mh

Now let us now define the marginal likelihood for model Mh. This model assumes that the 

probability of Y = y for the instances in GP, denoted by θ1, is higher than the probability of Y 

= y for the instances of G that are outside GP (G \ GP), denoted by θ2. To represent our 

uncertainty about θ1, we use a beta distribution with parameters α1 and β1. To represent our 

uncertainty about θ2, we use a beta distribution with parameters α2 and β2. Let N11 and N12 

be the number of instances in GP with Y = y and with Y ≠ y, respectively. Let N21 and N22 be 

the number of instances outside GP with Y = y and with Y ≠ y, respectively (see Figure 12).

The marginal likelihood for model Mh (Pr(G|Mh)) is defined as follows:

(3)

where k is a normalization constant for the parameter prior. Note that we do not assume that 

the parameters are independent, but rather we constrain θ1 to be higher than θ2.

To solve Equation 3, we first show how to solve the integral over θ2 in closed form, which is 

denoted by f2 in Equation 3. We then expand the function denoted by f1, multiply it by the 

solution to f2, and solve the integral over θ1 in closed form to complete the integration.

We use the regularized incomplete beta function (Abramowitz & Stegun 1964) to solve the 

integral given by f2, which is as follows:

(4)

where a and b should be natural numbers.

Note that when x = 1 in Equation 4, the solution to the integral in that equation is simply the 

following:

(5)

We now solve the integral given by f2 in Equation 3 as follows:
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where a = N21 + α2 and b = N22 + β2.

Using Equation 4, we get the following:

(6)

We now turn to f1, which can be expanded as follows:

(7)

where c = N11 + α1 and d = N12 + β1.

Now we combine Equations 6 and 7 to solve Equation 3:
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which by Equation 5 is
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(8)

where a = N21 + α2, b = N22 + β2, c = N11 + α1 and d = N12 + β1.

We can solve for k (the normalization constant for the parameter prior) by solving Equation 

3 (without the k term) with N11 = N12 = N21 = N22 = 0. Doing so is equivalent to applying 

Equation 8 (without the k term) with a = α2, b = β2, c = α1 and d = β1. Note that  if we 

use uniform priors on both parameters by setting α1 = β1 = α2 = β2 = 1.

A.3 Four Equivalent Solutions of the Marginal Likelihood for Model Mh

In the previous section, we showed the full derivation of the closed-form solution of the 

marginal likelihood for model Mh. It turned out that there are four equivalent solutions to 

Equation 3. Let us use the notations introduced in the previous section: a = N21 + α2, b = 

N22 + β2, c = N11 + α1 and d = N12 + β1. Also, let us define C as follows:

(9)

The marginal likelihood of Mh (Equation 3) can be obtained by solving any of the following 

four equations:

(10)

which is the solution we derived in the previous section.
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(11)

(12)

(13)

A.4 Deriving a Closed-form Solution of the Marginal Likelihood for Model Ml

Lastly, let us define the marginal likelihood for model Ml, which assumes that the 

probability of Y = y for the instances in GP (θ1) is lower than the probability of Y = y for the 

instances of G that are outside GP (θ2). The marginal likelihood for Ml is similar to Equation 

3, but integrates θ2 from 0 to 1 and constrains θ1 to be integrated from 0 to θ2 (forcing θ1 to 

be smaller than θ2) as follows:

(14)

By solving the integral given by f2, we get:

where, as before, c = N11 + α1 and d = N12 + β1.

By solving f1, we get:
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where, as before, a = N21 + α2 and b = N22 + β2.

Now we can solve Equation 14:

(15)

where C is the same constant we defined by Equation 9 in the previous section.

Notice that Equation 15 (the solution to Pr(G|Ml)) can be obtained from Equation 13 (one of 

the four solutions to Pr(G|Mh)) as follows:

(16)

It turns out that no matter which formula we use to solve Pr(G|Mh), we can use Equation 16 

to obtain Pr(G|Ml).

A.5 Computational Complexity

Since we require that N11, N12, N21, N22, α1, β1, α2 and β2 be natural numbers, the gamma 

function simply becomes a factorial function: Γ(x) = (x − 1)!. Since such numbers can 

become very large, it is convenient to use the logarithm of the gamma function and express 

Equations 2, 10, 11, 12, 13 and 16 in logarithmic form in order to preserve numerical 

precision. The logarithm of the integer gamma function can be pre-computed and efficiently 

stored in an array as follows:

lnGamma[1] = 0

For i = 2 to n

lnGamma[i] = lnGamma[i − 1] + ln(i − 1)

We then can use lnGamma in solving the above equations. However, Equations 10, 11, 12 

and 13 include a sum, which makes the use of the logarithmic form more involved. To deal 

with this issue, we can define function lnAdd, which takes two arguments x and y that are in 

logarithmic form and returns ln(ex + ey). It does so in a way that preserves a good deal of 

numerical precision that could be lost if ln(ex + ey) were calculated in a direct manner. This 

is done by using the following formula:

Now that we introduced functions lnGamma and lnAdd, it is straightforward to evaluate 

Equations 2, 10, 11, 12, 13 and 16 in logarithmic form.

Let us now analyze the overall computational complexity for computing the Bayesian score 

for a specific rule (solving Equation 1). Doing so requires computing Pr(Me|G), Pr(Mh|G) 

and Pr(Ml|G). Pr(Me|G) can be computed in O(1) using Equation 2. Pr(Mh|G) can be 

Batal et al. Page 32

Knowl Inf Syst. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed by applying Equation 10, Equation 11, Equation 12 or Equation 13. The 

computational complexity of these equations are O(N22 + β2), O(N11 + α1), O(N21 + α2) and 

O(N12 + β1), respectively. Therefore, Pr(Mh|G) can be computed in O(min(N11 + α1, N12 + 

β1, N21 + α2, N22 + β2)). Pr(Ml|G) can be computed from Pr(Mh|G) in O(1) using Equation 

16. By assuming that α1, β1, α2, β2 bounded from above, the overall complexity for 

computing the Bayesian score is O(min(N11, N12, N21, N22)).
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Fig. 1. 
Allen’s temporal relations.
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Fig. 2. 
An example illustrating trend abstractions and value abstractions. The blue dashed lines 

represent the 25th and 75th percentiles of the values and the red solid lines represent the 

10th and 90th percentiles of the values.
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Fig. 3. 
An MSS representing 24 days of a patient record. In this example, there are three temporal 

variables (creatinine, glucose and BUN) that are abstracted using value abstractions.
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Fig. 4. 
A temporal pattern with states 〈(F1, B), (F3, A), (F2, C), (F3, B)〉 and temporal relations R1,2 

= c, R1,3 = b, R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c.
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Fig. 5. 
An MSS with four temporal variables (F1, F2, F3 and F4) that are abstracted using 

abstraction alphabet Σ = {A, B, C, D}. Temporal pattern (〈(F4, A), (F2, C), (F1, B)〉, R1,2 = 

b, R1,3 = b, R2,3 = b) is an RTP for this MSS when the maximum gap parameter g ≥ 3.
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Fig. 6. 
Coherent candidates that result from extending the temporal pattern in Figure 4 backward 

with state (F2, B).
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Fig. 7. 
Evaluating the predictiveness of P ⇒ y compared to more general group G: GP ⊂ G. The 

instances with label y are denoted by • and the instances without y are denoted by ∘.
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Fig. 8. 
Diabetes dataset: The mining time (in seconds) of the compared temporal pattern mining 

methods (Section 6.4.1) for the eight major diabetes diseases. The local minimum support is 

15%.
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Fig. 9. 
Diabetes dataset (CARDI): The mining time (in seconds) of the compared temporal pattern 

mining methods (Section 6.4.1) on the CARDI diabetes dataset for different values of the 

minimum support.
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Fig. 10. 
Diabetes dataset (CARDI): The mining time (in seconds) of the compared temporal pattern 

mining methods (Section 6.4.1) on the CARDI diabetes dataset for different values of the 

maximum gap parameter.
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Fig. 11. 
HIT dataset: The mining time (in seconds) of the compared temporal pattern mining 

methods (Section 6.4.1). The local minimum support is 10%.
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Fig. 12. 
A diagram illustrating model Mh.
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Table 1

Characteristics of the Diabetes datasets.

Dataset # Instances # Variables Alphabet Size # Intervals

CARDI 5, 486 26 6 235, 990

RENAL 6, 710 26 6 327, 957

PERIP 6, 740 26 6 325, 872

NEURO 4, 386 26 6 240, 572

METAB 1, 936 26 6 118, 378

INFLM 4, 788 26 6 264, 541

OCULR 4, 490 26 6 227, 708

CEREB 5, 648 26 6 319, 695
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Table 4

Diabetes dataset: The top MPRTPs with their precision and recall.

MPRTP Precision Recall

P1: BUN=VH ⇒ Dx=RENAL 0.97 0.17

P2: Creat=N before Creat=H ⇒ Dx=RENAL 0.96 0.21

P3: BUN=H co-occurs Creat=H ⇒ Dx=RENAL 0.95 0.21

P4: Gluc=H before Gluc=VH ⇒ Dx=METAB 0.79 0.24

P5: Dx=CARDI co-occurs (Gluc=N before Gluc=H) ⇒ Dx=CEREB 0.71 0.22

Abbreviations: Dx: diagnosis code (one of the 8 major categories described in Section 6.1.1); BUN: Blood Urea Nitrogen; Creat: creatinine; Gluc: 
blood glucose. Value abstractions: BUN=VH: > 49 mg/dl; BUN=H: > 34 mg/dl; Creat=H: > 1.8 mg/dl; Creat=N: [0.8–1.8] mg/dl; Gluc=VH: >243 
mg/dl; Gluc=H:>191 mg/dl.
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Table 5

HIT dataset: The top 5 MPRTPs with their precision and recall.

MPRTP Precision Recall

P1: PLT=L ⇒ HIT-risk 78.3 84.79

P2: PLT=VL ⇒ HIT-risk 89.31 65.44

P3: PLT=L before PLT=VL ⇒ HIT-risk 91.13 52.07

P4: PLT=D co-occurs PLT=L ⇒ HIT-risk 86.33 55.3

P5: APTT=I before PLT=L ⇒ HIT-risk 88.24 41.47

Abbreviations: PLT: platelet count; APTT: activated partial thromboplastin time. Trend abstractions: PLT=D: decreasing trend in PLT; APTT=I: 

increasing trend in APTT. Value abstractions: PLT=VL (Very Low):<76 × 109 per liter; PLT=L (Low):<118 × 109 per liter.
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