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Abstract

It has been suggested that pharmacogenomic phenotypes are influenced by genetic variants with 

larger effect sizes than other phenotypes, such as complex disease risk. This is presumed to reflect 

the fact that relevant environmental factors (drug exposure) are appropriately measured and taken 

into account. To test this hypothesis, we performed a systematic comparison of effect sizes 

between pharmacogenomic and non-pharmacogenomic phenotypes across all genome-wide 

association studies (GWAS) reported in the NHGRI GWAS catalog. We found significantly larger 

effect sizes for studies focused on pharmacogenomic phenotypes, as compared to complex disease 

risk, morphological phenotypes, and endophenotypes. We found no significant differences in 

effect sizes between pharmacogenomic studies focused on adverse events versus those focused on 

drug efficacy. Furthermore, we found that this pattern persists among sample size-matched studies, 

suggesting that this pattern does not reflect over-estimation of effect sizes due to smaller sample 

sizes in pharmacogenomic studies.

Introduction

Genome-wide association studies (GWAS) have successfully identified genetic markers 

associated with many different phenotypes1. In so doing, GWAS have revealed that many 

common and complex phenotypes (e.g. disease risk) are influenced by a large number of 

genetic variants, each of which has a relatively small effect2. Many of these phenotypes have 

high heritability, but seem to be influenced by hundreds or thousands of causative 

polymorphisms with modest effects (i.e. polygenic architecture) rather than a few genetic 

variants with large effects (i.e. mono- or oligogenic architecture). As first shown for height3 

and subsequently for a number of other phenotypes4, 5, the total genetic variance combined 

across all these variants can often explain half or more of the heritability estimated from 

twin and family studies while highly significantly associated variants (presumably with the 

largest effects) explain only a small proportion of the heritability. This has complicated 

efforts to use genetic variants to predict disease risk6., although polygenic risk scores built 
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from a large number of causative variants identified through large-scale genetic studies may 

be promising path towards clinically useful tests7, 8.

In sharp contrast to the history of attempts to map disease risk, efforts to identify genetic 

variants associated with drug response (especially risk of adverse events) have been marked 

by the discovery of individual genetic variants with large effects9. Indeed, there are currently 

44 pharmacogenomic tests with sufficient explanatory ability to be used to guide clinical 

treatment decisions, as recommended by the Clinical Pharmacogenetics Implementation 

Consortium (i.e. CPIC Level ‘A’)10. Many of these tests are comprised of a small number of 

genetic variants. Indeed, in some cases only one genetic variant is sufficient to predict 

treatment outcome (e.g. the HLA-B*5801 allele and hypersensitivity to allopurinol11). These 

anecdotal observations have led some to suggest that pharmacogenomic phenotypes tend to 

be influenced by a relatively smaller number of genetic variants with larger effect sizes, 

especially compared to complex disease risk12, 13. Indeed, in 2012 Giacomini et al observed 

that GWAS hits from pharmacogenomic studies reported in NHGRI GWAS catalog were 7 

times as likely to have odds ratios above 3 as compared to other traits 14. Similarly, Chhibber 

et al plotted effect sizes from pharmacogenomics study against those from all studies in the 

NHGRI GWAS catalog to show a trend towards larger effects15. While this is an intriguing 

possibility, its legitimacy remains unclear as a formal comparison of effect sizes across 

studies with different types of phenotypes has not yet been performed. In this study, we 

sought to provide a systematic comparison of effect sizes between categories of phenotypes 

across all genome-wide association studies reported in the NHGRI GWAS catalog 

(www.genome.gov/gwastudies16). These categories included complex disease risk, 

pharmacogenetic traits (adverse events), pharmacogenetic traits (efficacy), morphological 

traits, and endophenotypes.

Methods

GWAS data

We obtained a list of all significant associations for all phenotypes listed in the NHGRI 

GWAS catalog1 (http://www.genome.gov/gwastudies/) as of April 23, 2014. These include 

all associations with p-values less than 10−5 reported in studies included in the catalog, for a 

total of 16,536 associations. We excluded associations if no effect size was provided, leaving 

14,201 associations. We then categorized associations based into continuous and binary 

phenotypes. Initially, we assigned associations based on keywords (“cases” or “controls” 

indicated binary phenotypes). These assignments were then manually reviewed and adjusted 

as necessary. To allow effect sizes to be comparable across phenotypes in the form of odds 

ratios, we then excluded associations for continuous phenotypes. This left a total of 5,376 

variant-phenotype associations. These associations include 4,930 (91.7%) with complex 

disease risk, 279 (5.2%) with pharmacogenomic phenotypes, and 167 (3.1%) with 

endophenotypes/morphological phenotypes.

Categorization of studies based on phenotype

We assigned each phenotype to a category based on keywords. Specifically, we determined a 

set of keywords for each category. We then made a list of all phenotypes included in the 
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catalog. We searched all keywords in each phenotype name. If a phenotype name contained 

one or more keywords from a given category, it was assigned to that category. Phenotype 

names that matched multiple categories were flagged and assigned to a single category 

through manual curation. Keywords for pharmacogenomics phenotypes were: “response”, 

“adverse”, “induced”, “sensitivity”, “exacerbated”, “interaction”, and “dosage”. Keywords 

for morphological phenotypes were: “metric”, “weight”, “color”, “eyes”, “mass”, 

“circumference”, “structure”, “size”, “freckling”, “thickness”, “curvature”, and “stiffness”. 

Keywords for endophenotypes were: “trait”, “antibody”, “biomarker”, “activity”, and 

“reactivity”. Some phenotypes contained keywords for multiple categories. Specifically, we 

observed the following: 4 phenotypes had both pharmacogenomics and morphological 

keywords, 11 phenotypes had both pharmacogenomics and endophenotype keywords, and 

10 phenotypes had both morphological and endophenotype keywords. These associations 

were flagged and resolved through manual review. To ensure the quality of keyword-based 

assignment, all phenotypes were validated, and modified as needed, through manual 

curation. Phenotype assignments are listed in Supplementary Table 1.

Comparison of odds ratio distribution between phenotype categories

We used a Wilcoxon Rank-Sum test to test for significant differences in median odds ratio 

between pairs of categories.

Additionally, we used re-sampling analyses to estimate null distributions of summary 

statistics (e.g. median odds ratio) and compare them between categories while controlling 

for specific parameters. To determine if the median odds ratio for pharmacogenomics 

phenotypes was significantly different from the median odds ratio for non-

pharmacogenomic phenotypes, we randomly re-sampled an equal number of studies 10,000 

times. For each re-sampling, we recorded the median odds ratio. We then used the 

distribution of median odds ratios from these re-samplings as null distribution. As re-

sampling was performed on studies, rather than individual variant-phenotype pairs, these 

analyses took into account the potential correlation of odds ratios within studies.

We used a similar re-sampling procedure to compare the median odds ratio between 

pharmacogenetic studies and complex disease risk studies while controlling for sample size. 

Sample size was defined as the sum of the number of cases and the number of controls used 

to obtain the association result. To describe the distribution of sample sizes for 

pharmacogenomics studies, we counted the number of studies in each of nine bins. Bins 

spanned the range of observed sample sizes and were broken at regular intervals in log10 

space. Specifically, the following bins, in terms of log10 sample sizes, were used: <=2 (8 

studies), >2 and <=2.2 (8 studies), >2.2 and <=2.4 (9 studies), >2.4 and <=2.6 (13 studies), 

>2.6 and <=2.8 (4 studies), >2.8 and <=3 (7 studies), >3 and <=3.2 (7 studies), >3.2 and 

<=3.4 (3 studies), and >3.4 and <=3.6 (6 studies). For 10,000 iterations, we randomly 

sampled an equal number of complex disease risk studies with matching sample sizes for 

each bin and recorded the median odds ratio. The total number of available complex disease 

risk traits for each bin were: <=2 (3 studies), >2 and <=2.2 (6 studies), >2.2 and <=2.4 (10 

studies), >2.4 and <=2.6 (11 studies), >2.6 and <=2.8 (31 studies), >2.8 and <=3 (49 

studies), >3 and <=3.2 (73 studies), >3.2 and <=3.4 (130 studies), and >3.4 and <=3.6 (120 
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studies). As there were too few complex disease risk studies in the bins with less than 398 

(102.6) samples, we excluded studies of this size from both the pharmacogenomic and 

complex diseas risk categories. All analyses were performed in the statistical programming 

language R (http://www.r-project.org).

Results

Summary of included studies

We collected a set of 5,376 variant-phenotype associations from the GWAS catalog 

corresponding to 822 published studies (summarized by phenotype category in Table 1). The 

vast majority of these associations were from studies of complex disease risk (91%). 

Approximately 5.7% of the studies and associations corresponded to pharmacogenomic 

phenotypes. The remainder of these associations came from studies focused on either 

endophenotypes (e.g. LDL cholesterol) or morphological phenotypes (e.g. hair color). Many 

endophenotypes are measured on a continuous scale. To allow us to compare standardized 

effect sizes across categories, we only included associations reported in odds ratio. We were 

still able to capture traits traditionally measured as continuous variables, however, as many 

of these studies set thresholds to transform continuous measurements into binary variables. 

For example, we included association results from a GWAS of body mass index that 

compared the upper and lower 5th percentiles of body mass index17.

Pharmacogenetic studies report larger effect sizes than other phenotypes

We found that the distribution of odds ratios for pharmacogenomic phenotypes showed a 

strong skew towards larger odds ratios relative to other phenotypes (Figure 1A). Specifically, 

we found that pharmacogenomic phenotypes (from 47 studies) had a median odds ratio of 

2.5 versus a median odds ratio of 1.25 for complex disease risk (748 studies). A Wilcoxon 

Rank-Sum test showed that these distributions were highly significantly different 

(P=7.2×10−111). To account for the dependence structure between associations from the 

same studies, we used a re-sampling approach to generate a null distribution of median odds 

ratios expected from a random sampling of all included studies. In each permutation, all 

studies were randomly designated as either “pharmacogenomic” or “non-pharmacogenomic” 

according to the proportions observed in our data (~5.7% of studies involve 

pharmacogenomics traits). In 10,000 permutations, none showed a median odds ratio as 

large as we observed for pharmacogenomics phenotypes (Figure 1B).

Distribution of effect sizes similar between adverse events and drug efficacy

Many of the strongest associations observed for pharmacogenomic traits have involved 

prediction of adverse events. To determine if the tendency for large odds ratios in 

pharmacogenomics phenotypes was driven by adverse event phenotypes as opposed to drug 

efficacy phenotypes, we compared the distribution of odds ratios between studies focused on 

these two sub-categories. We found no significant differences in effect sizes between 

pharmacogenetic studies focused on adverse events compared to those focused on drug 

efficacy (Figure 2, P=0.49). Indeed, the median odds ratio for drug efficacy phenotypes (3) 

was slightly higher (not significantly) than for adverse events (2.39).
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Pharmacogenetic studies report larger effect sizes than endophenotypes and 
morphological phenotypes

It has also been suggested that endophenotypes may be influenced by a smaller number of 

genetic variants with larger effects as compared to disease risk18. In support of this 

hypothesis, we found that associations with endophenotypes had significantly higher odds 

ratios than disease risk (Figure 3, median odds ratio for endophenotypes = 1.52, P = 

6×10−11). Interestingly, morphological phenotypes, which are measurements of anatomical 

features such as hair or eye color, tended to have slightly larger odds ratios as compared to 

endophenotypes. Specifically, median odds ratio for morphological phenotypes was 1.7, 

which was significantly larger than that for endophenotypes (Figure 3 P = 6.3×10−4) and 

disease risk (P = 8.8×10−16). Still, we found that pharmacogenomic phenotypes had 

significantly larger odds ratios than either endophenotypes (Figure 3, P = 5.7×10−18) or 

morphological traits (Figure 3, P = 3.4×10−3).

Larger effect sizes in pharmacogenetic studies not explained by smaller sample size

We observed that pharmacogenetic studies tended to have smaller much sample sizes than 

complex disease risk studies (P = 8.7×10−148, Table 1 and Figure 4A). It is possible that the 

larger odds ratios we observed could reflect systematically inflated estimates due to the 

tendency for smaller sample sizes. To test this hypothesis, we generated random sets of 

complex disease risk studies with distributions of sample sizes that mirrored those observed 

for pharmacogenomics phenotypes. We found that the observed median odds ratio for 

pharmacogenomic studies was significantly larger than the expected median odds ratio from 

a random sample of similarly sized complex disease risk studies (P = 0.047, Figure 4B).

Discussion

Analysis of association results included in the NHGRI GWAS catalog revealed a significant 

trend towards larger effect sizes for associations between genetic variants and 

pharmacogenomics phenotypes as compared to other types of phenotypes. Indeed, we found 

that the median odds ratio for pharmacogenomics phenotypes (2.5) was twice as large as that 

observed for associations with complex disease risk (1.25). Morphological and 

endophenotypes also showed larger effect sizes than complex disease risk, but still tended to 

be smaller than effect sizes for pharmacogenomic phenotypes. We also observed that 

pharmacogenomic studies tended to have lower sample sizes than studies of other 

phenotypes. Differences in sample size do not explain the observed differences in odds ratio 

distribution, however, as significant differences in odds ratio persist when similarly sized 

studies of pharmacogenomics and complex disease risk phenotypes are compared. This 

observation raises the intriguing possibility that additional pharmacogenomic associations 

may have large enough effects to be eventually translated into clinical practice. While it is 

difficult to draw conclusions about clinical utility solely based on odds ratio (see Manolio 

TA 201319 for a detailed discussion of odds ratio from GWAS and predictive ability), two 

prominent examples of clinically implemented pharmacogenetic tests reflect associations 

identified in GWAS with odds ratios well within the range observed for all 

pharmacogenomic associations in this study (SLCO1B1-simvastatin with odds ratio of 4.5 20 

and IL28-peginterferon with an odds ratio of 2 21).
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Larger effect sizes for pharmacogenomics associations may reflect inherent differences in 

study design for pharmacogenomics studies. Specifically, pharmacogenomic phenotypes are 

actually interaction effects between biological measurements (e.g. adverse events or disease 

processes) and drug treatment. For drug efficacy studies, the phenotype is often a summary 

of the change in disease processes measured before and after treatment, while for adverse 

events, there is at least appropriate utilization of information on drug exposure, and often 

incorporation of information on dose to event. Consequently, the measurement and analysis 

of pharmacogenomic phenotypes incorporates information on the most relevant 

environmental factors affecting the phenotypes – drug exposure. This should reduce non-

genetic variance, and as observed, increase estimates of effect size. Moreover, many of these 

studies were performed as a part of clinical trials for the corresponding drugs. Therefore, the 

tendency for larger effects sizes that we observe may be due in part to the use of more 

carefully measured and controlled phenotype data.

It has been suggested that larger effects in pharmacogenomics studies may reflect negative 

selection on non-pharmacogenetic phenotypes, especially disease risk. The underlying 

hypothesis is that drug exposure is a recent phenomenon in human evolution. As a result, 

alleles with large deleterious effects in the presence of drug have been able to rise to high 

frequency through drift. Indeed, some pharmacogenomic alleles may have increased in 

frequency through positive selection as a consequence of non-pharmacological phenotypic 

effects (e.g. CYP3A drug metabolizing enzymes and salt sensitivity22). At the very least, the 

intermittent nature of exposures that induce pharmacogenomics phenotypes (inadvertent 

through diet, or more recently purposeful through drug therapy) increases the possibility that 

alleles reducing activity of drug metabolizing enzymes and transporters can rise to 

intermediate frequencies. Alleles with similar effect sizes but that influence other 

phenotypes that may have been more deleterious over the course of human evolution (e.g. 

increasing risk of developing childhood cancer), would be subject to negative selection and 

would have a decreased probability of reaching intermediate frequency (see discussion 

in 23).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pharmacogenomic associations tend to yield larger odds ratios than other phenotypes. A) 

Boxplot shows the distribution of natural log odds ratios between pharmacogenomic and 

non-pharmacogenomic phenotypes. Odds ratios for pharmacogenomic phenotypes were 

significantly larger than non-pharmacogenomic phenotypes (P=7.2×10−111). Boxes represent 

the first to third quartiles and whiskers represent 1.5 times the interquartile range from the 

upper and lower quartile. B) Histogram in grey shows the distribution of median odds ratios 

from 10,000 re-samplings where studies were randomly designated as “pharmacogenomic” 

or “non-pharmacogenomic” according to the observed proportions of these categories. The 

red line corresponds to the median odds ratio observed for actual pharmacogenomic studies, 

which is much larger than any median observed in 10,000 re-samplings.
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Figure 2. 
Adverse events and drug efficacy phenotypes have similar distributions of effect sizes. 

Boxplot shows distribution of natural log odds ratios by sub-category of pharmacogenomic 

phenotype (adverse event versus drug efficacy), which were not significantly different (P = 

0.49). Boxes represent the first to third quartiles and whiskers represent 1.5 times the 

interquartile range from the upper and lower quartile.
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Figure 3. 
Phenotype categories show a range of effect size distributions, with the larger effects 

observed for pharmacogenomic phenotypes. Boxplot shows distribution of natural log odds 

ratios by category of phenotype. Endophenotypes have significantly larger odds ratios than 

complex disease risk (P=6×10−11), but smaller odds ratios than morphological phenotypes 

(P=6.3×10−4). In turn, pharmacogenomic phenotypes have significantly larger odds ratios 

than morphological phenotypes (P = 3.4×10−3). Boxes represent the first to third quartiles 

and whiskers represent 1.5 times the interquartile range from the upper and lower quartile.
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Figure 4. 
Larger odds ratios for pharmacogenomic studies is not explained by smaller sample sizes. A) 

Boxplot shows the distribution of log10 sample sizes between pharmacogenomic and non-

pharmacogenomic phenotypes. Studies of pharmacogenomic phenotypes tend to have 

significantly smaller sample sizes (P = 8.7×10−148). Boxes represent the first to third 

quartiles and whiskers represent 1.5 times the interquartile range from the upper and lower 

quartile. B) Histogram in grey shows the distribution of median odds ratios from 10,000 

random re-samplings of complex disease risk studies with matching sample size 

distributions. The red line corresponds to the median odds ratio (1.74) observed for actual 

pharmacogenomic studies with N>398, which is significantly larger than expected for 

complex disease risk studies with similar sample sizes (P = 0.047).
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Table 1

Summary of association characteristics by phenotype category.

Complex disease risk Pharmacogenomic phenotypes Endophenotypes/morphological phenotypes

# Associations (%) 4930 (91.7) 279 (5.2) 167 (3.1)

# Studies (%) 748 (91) 47 (5.7) 33 (4)

Median log10 sample size 
(standard deviation)

3.8 (0.58) 2.53 (0.43) 3.7 (0.5)

Median minor allele frequency 0.28 0.23 0.23
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